Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

ROS1-dependent cancers — biology, diagnostics and therapeutics

Abstract

The proto-oncogene ROS1 encodes a receptor tyrosine kinase with an unknown physiological role in humans. Somatic chromosomal fusions involving ROS1 produce chimeric oncoproteins that drive a diverse range of cancers in adult and paediatric patients. ROS1-directed tyrosine kinase inhibitors (TKIs) are therapeutically active against these cancers, although only early-generation multikinase inhibitors have been granted regulatory approval, specifically for the treatment of ROS1 fusion-positive non-small-cell lung cancers; histology-agnostic approvals have yet to be granted. Intrinsic or extrinsic mechanisms of resistance to ROS1 TKIs can emerge in patients. Potential factors that influence resistance acquisition include the subcellular localization of the particular ROS1 oncoprotein and the TKI properties such as the preferential kinase conformation engaged and the spectrum of targets beyond ROS1. Importantly, the polyclonal nature of resistance remains underexplored. Higher-affinity next-generation ROS1 TKIs developed to have improved intracranial activity and to mitigate ROS1-intrinsic resistance mechanisms have demonstrated clinical efficacy in these regards, thus highlighting the utility of sequential ROS1 TKI therapy. Selective ROS1 inhibitors have yet to be developed, and thus the specific adverse effects of ROS1 inhibition cannot be deconvoluted from the toxicity profiles of the available multikinase inhibitors. Herein, we discuss the non-malignant and malignant biology of ROS1, the diagnostic challenges that ROS1 fusions present and the strategies to target ROS1 fusion proteins in both treatment-naive and acquired-resistance settings.

Key points

  • The proto-oncogene ROS1 encodes the receptor tyrosine kinase ROS1 with an unclear physiological role in humans.

  • Chromosomal rearrangement resulting in ROS1 fusion is the main mechanism underlying ROS1-driven oncogenesis. Most ROS1 mutations have unknown significance, and deregulated ROS1 expression is probably, at most, a secondary oncogenic mediator.

  • ROS1 fusions can be challenging to detect. Whereas no diagnostic assay is without limitations, the use of complementary DNA-based and RNA-based sequencing assays can maximize the identification of ROS1 fusions; immunohistochemistry is a proposed screening assay.

  • Cancers with diverse cellular origins can be driven by ROS1 fusions in both adults and children; however, ROS1 inhibitors are only approved for ROS1 fusion-positive non-small-cell lung cancers and have yet to receive a histology-agnostic indication.

  • The spectrum of ROS1-dependent and/or ROS1-independent resistance can be influenced by the subcellular localization of the fusion protein, the mode of drug binding (type I versus type II) and the profile of non-ROS1-kinase inhibition. The contribution of polyclonality to ROS1 inhibitor resistance remains underexplored.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: ROS1 gene, structure and signalling.
Fig. 2: ROS1 fusion structure and cellular location.
Fig. 3: Mechanisms of resistance to ROS1 TKIs.
Fig. 4: Preclinical activity and binding modes of ROS1 TKIs.
Fig. 5: Clinical activity of ROS1 TKIs and potential treatment algorithm for ROS1-rearranged cancers.
Fig. 6: ROS1 expression and ROS1 inhibitor safety profile.

Similar content being viewed by others

References

  1. Birchmeier, C., Sharma, S. & Wigler, M. Expression and rearrangement of the ROS1 gene in human glioblastoma cells. Proc. Natl Acad. Sci. USA 84, 9270–9274 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Sharma, S. et al. Characterization of the ros1-gene products expressed in human glioblastoma cell lines. Oncogene Res. 5, 91–100 (1989).

    CAS  PubMed  Google Scholar 

  3. Birchmeier, C., O’Neill, K., Riggs, M. & Wigler, M. Characterization of ROS1 cDNA from a human glioblastoma cell line. Proc. Natl Acad. Sci. USA 87, 4799–4803 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Charest, A. et al. Oncogenic targeting of an activated tyrosine kinase to the Golgi apparatus in a glioblastoma. Proc. Natl Acad. Sci. USA 100, 916–921 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Charest, A. et al. Fusion of FIG to the receptor tyrosine kinase ROS in a glioblastoma with an interstitial del(6)(q21q21). Genes Chromosomes Cancer 37, 58–71 (2003).

    CAS  PubMed  Google Scholar 

  6. Charest, A. et al. ROS fusion tyrosine kinase activates a SH2 domain-containing phosphatase-2/phosphatidylinositol 3-kinase/mammalian target of rapamycin signaling axis to form glioblastoma in mice. Cancer Res. 66, 7473–7481 (2006).

    CAS  PubMed  Google Scholar 

  7. Rikova, K. et al. Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell 131, 1190–1203 (2007).

    CAS  PubMed  Google Scholar 

  8. Shaw, A. T. et al. Crizotinib in ROS1-rearranged non-small-cell lung cancer. N. Engl. J. Med. 371, 1963–1971 (2014).

    PubMed  PubMed Central  Google Scholar 

  9. Chugai Pharmaceutical Co. Ltd. Chugai Obtains Approval for Additional Indication of Rozlytrek for ROS1 Fusion-Positive Non-Small Cell Lung Cancer https://www.roche.com/dam/jcr:6c8d9698-38cf-49c7-a25b-5a27acb04ac3/en/200221_IR_Chugai_eRozlytrek_ROS1-NSCLC_Approval.pdf (2020).

  10. Feldman, R. A., Wang, L. H., Hanafusa, H. & Balduzzi, P. C. Avian sarcoma virus UR2 encodes a transforming protein which is associated with a unique protein kinase activity. J. Virol. 42, 228–236 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Shibuya, M., Hanafusa, H. & Balduzzi, P. C. Cellular sequences related to three new onc genes of avian sarcoma virus (fps, yes, and ros) and their expression in normal and transformed cells. J. Virol. 42, 143–152 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Neckameyer, W. S. & Wang, L. H. Molecular cloning and characterization of avian sarcoma virus UR2 and comparison of its transforming sequence with those of other avian sarcoma viruses. J. Virol. 50, 914–921 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Neckameyer, W. S. & Wang, L. H. Nucleotide sequence of avian sarcoma virus UR2 and comparison of its transforming gene with other members of the tyrosine protein kinase oncogene family. J. Virol. 53, 879–884 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Notter, M. F., Navon, S. E., Fung, B. K. & Balduzzi, P. C. Infection of neuroretinal cells in vitro by avian sarcoma viruses UR1 and UR2: transformation, cell growth stimulation, and changes in transducin levels. Virology 160, 489–493 (1987).

    CAS  PubMed  Google Scholar 

  15. Matsushime, H., Wang, L. H. & Shibuya, M. Human c-ros-1 gene homologous to the v-ros sequence of UR2 sarcoma virus encodes for a transmembrane receptorlike molecule. Mol. Cell. Biol. 6, 3000–3004 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Kanwar, Y. S., Liu, Z. Z., Kumar, A., Wada, J. & Carone, F. A. Cloning of mouse c-ros renal cDNA, its role in development and relationship to extracellular matrix glycoproteins. Kidney Int. 48, 1646–1659 (1995).

    CAS  PubMed  Google Scholar 

  17. Chen, J., Tong, J., Tanaka-Sukegawa, I. & Wang, L. H. Cloning and functional characterization of the chicken c-ros promoter. Cell Growth Differ. 6, 1523–1530 (1995).

    CAS  PubMed  Google Scholar 

  18. Acquaviva, J., Wong, R. & Charest, A. The multifaceted roles of the receptor tyrosine kinase ROS in development and cancer. Biochim. Biophys. Acta 1795, 37–52 (2009).

    CAS  PubMed  Google Scholar 

  19. Matsushime, H. & Shibuya, M. Tissue-specific expression of rat c-ros-1 gene and partial structural similarity of its predicted products with sev protein of Drosophila melanogaster. J. Virol. 64, 2117–2125 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Springer, T. A. An extracellular beta-propeller module predicted in lipoprotein and scavenger receptors, tyrosine kinases, epidermal growth factor precursor, and extracellular matrix components. J. Mol. Biol. 283, 837–862 (1998).

    CAS  PubMed  Google Scholar 

  21. Neckameyer, W. S., Shibuya, M., Hsu, M. T. & Wang, L. H. Proto-oncogene c-ros codes for a molecule with structural features common to those of growth factor receptors and displays tissue specific and developmentally regulated expression. Mol. Cell. Biol. 6, 1478–1486 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Shibuya, M. et al. Analysis of structure and activation of some receptor-type tyrosine kinase oncogenes. Princess Takamatsu Symp. 17, 195–202 (1986).

    CAS  PubMed  Google Scholar 

  23. Kiyozumi, D. et al. NELL2-mediated lumicrine signaling through OVCH2 is required for male fertility. Science 368, 1132–1135 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Keilhack, H. et al. Negative regulation of Ros receptor tyrosine kinase signaling. An epithelial function of the SH2 domain protein tyrosine phosphatase SHP-1. J. Cell Biol. 152, 325–334 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Nguyen, K. T. et al. The role of phosphatidylinositol 3-kinase, rho family GTPases, and STAT3 in Ros-induced cell transformation. J. Biol. Chem. 277, 11107–11115 (2002).

    CAS  PubMed  Google Scholar 

  26. Riethmacher, D., Langholz, O., Godecke, S., Sachs, M. & Birchmeier, C. Biochemical and functional characterization of the murine ros protooncogene. Oncogene 9, 3617–3626 (1994).

    CAS  PubMed  Google Scholar 

  27. Xiong, Q., Chan, J. L., Zong, C. S. & Wang, L. H. Two chimeric receptors of epidermal growth factor receptor and c-Ros that differ in their transmembrane domains have opposite effects on cell growth. Mol. Cell. Biol. 16, 1509–1518 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Zong, C. S., Zeng, L., Jiang, Y., Sadowski, H. B. & Wang, L. H. Stat3 plays an important role in oncogenic Ros- and insulin-like growth factor I receptor-induced anchorage-independent growth. J. Biol. Chem. 273, 28065–28072 (1998).

    CAS  PubMed  Google Scholar 

  29. Grossmann, K. S., Rosario, M., Birchmeier, C. & Birchmeier, W. The tyrosine phosphatase Shp2 in development and cancer. Adv. Cancer Res. 106, 53–89 (2010).

    CAS  PubMed  Google Scholar 

  30. Mapstone, T., McMichael, M. & Goldthwait, D. Expression of platelet-derived growth factors, transforming growth factors, and the ros gene in a variety of primary human brain tumors. Neurosurgery 28, 216–222 (1991).

    CAS  PubMed  Google Scholar 

  31. Watkins, D., Dion, F., Poisson, M., Delattre, J. Y. & Rouleau, G. A. Analysis of oncogene expression in primary human gliomas: evidence for increased expression of the ros oncogene. Cancer Genet. Cytogenet. 72, 130–136 (1994).

    CAS  PubMed  Google Scholar 

  32. Zhao, J. F. & Sharma, S. Expression of the ROS1 oncogene for tyrosine receptor kinase in adult human meningiomas. Cancer Genet. Cytogenet. 83, 148–154 (1995).

    CAS  PubMed  Google Scholar 

  33. Girish, V. et al. Bcl2 and ROS1 expression in human meningiomas: an analysis with respect to histological subtype. Indian J. Pathol. Microbiol. 48, 325–330 (2005).

    CAS  PubMed  Google Scholar 

  34. Jun, H. J. et al. Epigenetic regulation of c-ROS receptor tyrosine kinase expression in malignant gliomas. Cancer Res. 69, 2180–2184 (2009).

    CAS  PubMed  Google Scholar 

  35. Brennan, C. W. et al. The somatic genomic landscape of glioblastoma. Cell 155, 462–477 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455, 1061–1068 (2008).

    Google Scholar 

  37. Shah, N. et al. Exploration of the gene fusion landscape of glioblastoma using transcriptome sequencing and copy number data. BMC Genomics 14, 818 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Puchalski, R. B. et al. An anatomic transcriptional atlas of human glioblastoma. Science 360, 660–663 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Shih, C. H. et al. EZH2-mediated upregulation of ROS1 oncogene promotes oral cancer metastasis. Oncogene 36, 6542–6554 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Sweet-Cordero, A. et al. An oncogenic KRAS2 expression signature identified by cross-species gene-expression analysis. Nat. Genet. 37, 48–55 (2005).

    CAS  PubMed  Google Scholar 

  41. Sweet-Cordero, A. et al. Comparison of gene expression and DNA copy number changes in a murine model of lung cancer. Genes Chromosomes Cancer 45, 338–348 (2006).

    CAS  PubMed  Google Scholar 

  42. Bajrami, I. et al. E-Cadherin/ROS1 inhibitor synthetic lethality in breast cancer. Cancer Discov. 8, 498–515 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01939899 (2016).

  44. Kalla, C. et al. ROS1 gene rearrangement and expression of splice isoforms in lung cancer, diagnosed by a novel quantitative RT-PCR assay. J. Mod. Hum. Pathol. 1, 25–34 (2016).

    Google Scholar 

  45. Rose-John, S. & Heinrich, P. C. Soluble receptors for cytokines and growth factors: generation and biological function. Biochem. J. 300, 281–290 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Cerami, E. et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2, 401–404 (2012).

    PubMed  Google Scholar 

  47. Gao, J. et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal. 6, pl1 (2013).

    PubMed  PubMed Central  Google Scholar 

  48. Gu, T. L. et al. Survey of tyrosine kinase signaling reveals ROS kinase fusions in human cholangiocarcinoma. PLoS ONE 6, e15640 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Lim, S. M. et al. Rare incidence of ROS1 rearrangement in cholangiocarcinoma. Cancer Res. Treat. 49, 185–192 (2017).

    CAS  PubMed  Google Scholar 

  50. Davare, M. A. et al. Rare but recurrent ROS1 fusions resulting from chromosome 6q22 microdeletions are targetable oncogenes in glioma. Clin. Cancer Res. 24, 6471–6482 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Rimkunas, V. M. et al. Analysis of receptor tyrosine kinase ROS1-positive tumors in non-small cell lung cancer: identification of a FIG-ROS1 fusion. Clin. Cancer Res. 18, 4449–4457 (2012).

    CAS  PubMed  Google Scholar 

  52. Seo, J. S. et al. The transcriptional landscape and mutational profile of lung adenocarcinoma. Genome Res. 22, 2109–2119 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhu, Y. C. et al. CEP72-ROS1: a novel ROS1 oncogenic fusion variant in lung adenocarcinoma identified by next-generation sequencing. Thorac. Cancer 9, 652–655 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. He, Y. et al. Different types of ROS1 fusion partners yield comparable efficacy to crizotinib. Oncol. Res. 27, 901–910 (2019).

    PubMed  PubMed Central  Google Scholar 

  55. Govindan, R. et al. Genomic landscape of non-small cell lung cancer in smokers and never-smokers. Cell 150, 1121–1134 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Park, S. et al. Characteristics and outcome of ROS1-positive non-small cell lung cancer patients in routine clinical practice. J. Thorac. Oncol. 13, 1373–1382 (2018).

    PubMed  Google Scholar 

  57. Takeuchi, K. et al. RET, ROS1 and ALK fusions in lung cancer. Nat. Med. 18, 378–381 (2012).

    CAS  PubMed  Google Scholar 

  58. Ou, S. H. et al. Identification of a novel TMEM106B-ROS1 fusion variant in lung adenocarcinoma by comprehensive genomic profiling. Lung Cancer 88, 352–354 (2015).

    PubMed  Google Scholar 

  59. Jun, H. J. et al. The oncogenic lung cancer fusion kinase CD74-ROS activates a novel invasiveness pathway through E-Syt1 phosphorylation. Cancer Res. 72, 3764–3774 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Davare, M. A. et al. Foretinib is a potent inhibitor of oncogenic ROS1 fusion proteins. Proc. Natl Acad. Sci. USA 110, 19519–19524 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Saborowski, A. et al. Mouse model of intrahepatic cholangiocarcinoma validates FIG-ROS as a potent fusion oncogene and therapeutic target. Proc. Natl Acad. Sci. USA 110, 19513–19518 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Neel, D. S. et al. Differential subcellular localization regulates oncogenic signaling by ROS1 kinase fusion proteins. Cancer Res. 79, 546–556 (2019).

    CAS  PubMed  Google Scholar 

  63. Crescenzo, R. et al. Convergent mutations and kinase fusions lead to oncogenic STAT3 activation in anaplastic large cell lymphoma. Cancer Cell 27, 516–532 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Arai, Y. et al. Mouse model for ROS1-rearranged lung cancer. PLoS ONE 8, e56010 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Wiesweg, M. et al. High prevalence of concomitant oncogene mutations in prospectively identified patients with ROS1-positive metastatic lung cancer. J. Thorac. Oncol. 12, 54–64 (2017).

    PubMed  Google Scholar 

  66. Lin, J. J. et al. ROS1 fusions rarely overlap with other oncogenic drivers in non-small cell lung cancer. J. Thorac. Oncol. 12, 872–877 (2017).

    PubMed  PubMed Central  Google Scholar 

  67. Antonescu, C. R. et al. Molecular characterization of inflammatory myofibroblastic tumors with frequent ALK and ROS1 gene fusions and rare novel RET rearrangement. Am. J. Surg. Pathol. 39, 957–967 (2015).

    PubMed  PubMed Central  Google Scholar 

  68. Lovly, C. M. et al. Inflammatory myofibroblastic tumors harbor multiple potentially actionable kinase fusions. Cancer Discov. 4, 889–895 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Wiesner, T. et al. Kinase fusions are frequent in Spitz tumours and spitzoid melanomas. Nat. Commun. 5, 3116 (2014).

    PubMed  Google Scholar 

  70. Moeini, A., Sia, D., Bardeesy, N., Mazzaferro, V. & Llovet, J. M. Molecular pathogenesis and targeted therapies for intrahepatic cholangiocarcinoma. Clin. Cancer Res. 22, 291–300 (2016).

    PubMed  Google Scholar 

  71. Guerreiro Stucklin, A. S. et al. Alterations in ALK/ROS1/NTRK/MET drive a group of infantile hemispheric gliomas. Nat. Commun. 10, 4343 (2019).

    PubMed  PubMed Central  Google Scholar 

  72. Bergethon, K. et al. ROS1 rearrangements define a unique molecular class of lung cancers. J. Clin. Oncol. 30, 863–870 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Parikh, D. A. et al. Characteristics of patients with ROS1+ cancers: results from the first patient-designed, global, pan-cancer ROS1 data repository. JCO Oncol. Pract. 16, e183–e189 (2020).

    PubMed  Google Scholar 

  74. Zhu, Q., Zhan, P., Zhang, X., Lv, T. & Song, Y. Clinicopathologic characteristics of patients with ROS1 fusion gene in non-small cell lung cancer: a meta-analysis. Transl. Lung Cancer Res. 4, 300–309 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Alexander, M. et al. A multicenter study of thromboembolic events among patients diagnosed with ROS1-rearranged non-small cell lung cancer. Lung Cancer 142, 34–40 (2020).

    PubMed  Google Scholar 

  76. Chiari, R. et al. ROS1-rearranged non-small-cell lung cancer is associated with a high rate of venous thromboembolism: analysis from a phase II, prospective, multicenter, two-arms trial (METROS). Clin. Lung Cancer 21, 15–20 (2020).

    PubMed  Google Scholar 

  77. Hong, D. S. et al. Phase I study of AMG 337, a highly selective small-molecule MET inhibitor, in patients with advanced solid tumors. Clin. Cancer Res. 25, 2403–2413 (2019).

    CAS  PubMed  Google Scholar 

  78. Pan, Y. et al. ALK, ROS1 and RET fusions in 1139 lung adenocarcinomas: a comprehensive study of common and fusion pattern-specific clinicopathologic, histologic and cytologic features. Lung Cancer 84, 121–126 (2014).

    PubMed  Google Scholar 

  79. Wahrenbrock, M., Borsig, L., Le, D., Varki, N. & Varki, A. Selectin-mucin interactions as a probable molecular explanation for the association of Trousseau syndrome with mucinous adenocarcinomas. J. Clin. Invest. 112, 853–862 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Johnson, A. et al. Comprehensive genomic profiling of 282 pediatric low- and high-grade gliomas reveals genomic drivers, tumor mutational burden, and hypermutation signatures. Oncologist 22, 1478–1490 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Richardson, T. E. et al. GOPC-ROS1 fusion due to microdeletion at 6q22 is an oncogenic driver in a subset of pediatric gliomas and glioneuronal tumors. J. Neuropathol. Exp. Neurol. 78, 1089–1099 (2019).

    CAS  PubMed  Google Scholar 

  82. Donati, M. et al. Spitz tumors with ROS1 fusions: a clinicopathological study of 6 cases, including FISH for chromosomal copy number alterations and mutation analysis using next-generation sequencing. Am. J. Dermatopathol. 42, 92–102 (2020).

    PubMed  Google Scholar 

  83. Chen, Y. F. et al. Efficacy of pemetrexed-based chemotherapy in patients with ROS1 fusion-positive lung adenocarcinoma compared with in patients harboring other driver mutations in east asian populations. J. Thorac. Oncol. 11, 1140–1152 (2016).

    PubMed  Google Scholar 

  84. Drilon, A. et al. Clinical outcomes with pemetrexed-based systemic therapies in RET-rearranged lung cancers. Ann. Oncol. 27, 1286–1291 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Kim, H. R. et al. The frequency and impact of ROS1 rearrangement on clinical outcomes in never smokers with lung adenocarcinoma. Ann. Oncol. 24, 2364–2370 (2013).

    CAS  PubMed  Google Scholar 

  86. Mazieres, J. et al. Crizotinib therapy for advanced lung adenocarcinoma and a ROS1 rearrangement: results from the EUROS1 cohort. J. Clin. Oncol. 33, 992–999 (2015).

    CAS  PubMed  Google Scholar 

  87. Shen, L. et al. First-line crizotinib versus platinum-pemetrexed chemotherapy in patients with advanced ROS1-rearranged non-small-cell lung cancer. Cancer Med. 9, 3310–3318 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Song, Z., Su, H. & Zhang, Y. Patients with ROS1 rearrangement-positive non-small-cell lung cancer benefit from pemetrexed-based chemotherapy. Cancer Med. 5, 2688–2693 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Xu, H. et al. Crizotinib vs platinum-based chemotherapy as first-line treatment for advanced non-small cell lung cancer with different ROS1 fusion variants. Cancer Med. 9, 3328–3336 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Zhang, L. et al. Efficacy of crizotinib and pemetrexed-based chemotherapy in Chinese NSCLC patients with ROS1 rearrangement. Oncotarget 7, 75145–75154 (2016).

    PubMed  PubMed Central  Google Scholar 

  91. Rangachari, D. et al. Correlation between classic driver oncogene mutations in EGFR, ALK, or ROS1 and 22C3-PD-L1 ≥50% expression in lung adenocarcinoma. J. Thorac. Oncol. 12, 878–883 (2017).

    PubMed  PubMed Central  Google Scholar 

  92. Jiang, L. et al. PD-L1 expression and its relationship with oncogenic drivers in non-small cell lung cancer (NSCLC). Oncotarget 8, 26845–26857 (2017).

    PubMed  PubMed Central  Google Scholar 

  93. Mazieres, J. et al. Immune checkpoint inhibitors for patients with advanced lung cancer and oncogenic driver alterations: results from the IMMUNOTARGET registry. Ann. Oncol. 30, 1321–1328 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Benayed, R. et al. High yield of RNA sequencing for targetable kinase fusions in lung adenocarcinomas with no mitogenic driver alteration detected by DNA sequencing and low tumor mutation burden. Clin. Cancer Res. 25, 4712–4722 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Schram, A. M., Chang, M. T., Jonsson, P. & Drilon, A. Fusions in solid tumours: diagnostic strategies, targeted therapy, and acquired resistance. Nat. Rev. Clin. Oncol. 14, 735–748 (2017).

    CAS  PubMed  Google Scholar 

  96. Rossi, G. et al. Detection of ROS1 rearrangement in non-small cell lung cancer: current and future perspectives. Lung Cancer 8, 45–55 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Cao, B. et al. Detection of lung adenocarcinoma with ROS1 rearrangement by IHC, FISH, and RT-PCR and analysis of its clinicopathologic features. Onco Targets Ther. 9, 131–138 (2016).

    CAS  PubMed  Google Scholar 

  98. Heydt, C. et al. Comparison of in Situ and extraction-based methods for the detection of ROS1 rearrangements in solid tumors. J. Mol. Diagn. 21, 971–984 (2019).

    CAS  PubMed  Google Scholar 

  99. Davies, K. D. et al. Comparison of molecular testing modalities for detection of ROS1 rearrangements in a cohort of positive patient samples. J. Thorac. Oncol. 13, 1474–1482 (2018).

    PubMed  PubMed Central  Google Scholar 

  100. Davies, K. D. et al. Identifying and targeting ROS1 gene fusions in non-small cell lung cancer. Clin. Cancer Res. 18, 4570–4579 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Wu, Y. L. et al. Phase II study of crizotinib in East Asian patients with ROS1-positive advanced non-small-cell lung cancer. J. Clin. Oncol. 36, 1405–1411 (2018).

    CAS  PubMed  Google Scholar 

  102. AmoyDx. AmoyDx ROS1 kit approval in Taiwan, China http://www.amoydiagnostics.com/newDetail/44 (2018).

  103. Drilon, A. et al. Broad, hybrid capture-based next-generation sequencing identifies actionable genomic alterations in lung adenocarcinomas otherwise negative for such alterations by other genomic testing approaches. Clin. Cancer Res. 21, 3631–3639 (2015).

    PubMed  PubMed Central  Google Scholar 

  104. Jordan, E. J. et al. Prospective comprehensive molecular characterization of lung adenocarcinomas for efficient patient matching to approved and emerging therapies. Cancer Discov. 7, 596–609 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Dagogo-Jack, I. et al. Molecular analysis of plasma from patients with ROS1-positive NSCLC. J. Thorac. Oncol. 14, 816–824 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. PR Newswire. ArcherDX's companion diagnostic assay for both liquid biopsy and tissue specimens granted breakthrough device designation by U.S. Food and Drug Administration https://www.prnewswire.com/news-releases/archerdxs-companion-diagnostic-assay-for-both-liquid-biopsy-and-tissue-specimens-granted-breakthrough-device-designation-by-us-food-and-drug-administration-300774247.html (2019).

  107. US Food and Drug Administration. Premarket approval of the Oncomine Dx Target Test https://www.accessdata.fda.gov/cdrh_docs/pdf16/P160045A.pdf (2017).

  108. Pavlakis, N. et al. Australian consensus statement for best practice ROS1 testing in advanced non-small cell lung cancer. Pathology 51, 673–680 (2019).

    CAS  PubMed  Google Scholar 

  109. Sholl, L. M. et al. ROS1 immunohistochemistry for detection of ROS1-rearranged lung adenocarcinomas. Am. J. Surg. Pathol. 37, 1441–1449 (2013).

    PubMed  Google Scholar 

  110. Hofman, V. et al. Multicenter evaluation of a novel ROS1 immunohistochemistry assay (SP384) for detection of ROS1 rearrangements in a large cohort of lung adenocarcinoma patients. J. Thorac. Oncol. 14, 1204–1212 (2019).

    CAS  PubMed  Google Scholar 

  111. Conde, E. et al. Assessment of a new ROS1 immunohistochemistry clone (SP384) for the identification of ROS1 rearrangements in patients with non-small cell lung carcinoma: the ROSING study. J. Thorac. Oncol. 14, 2120–2132 (2019).

    CAS  PubMed  Google Scholar 

  112. Huang, R. S. P. et al. Correlation of ROS1 immunohistochemistry with ROS1 fusion status determined by fluorescence in situ hybridization. Arch. Pathol. Lab. Med. 144, 735–741 (2020).

    PubMed  Google Scholar 

  113. Awad, M. M. et al. Acquired resistance to crizotinib from a mutation in CD74-ROS1. N. Engl. J. Med. 368, 2395–2401 (2013).

    CAS  PubMed  Google Scholar 

  114. Menichincheri, M. et al. Discovery of entrectinib: a new 3-aminoindazole as a potent anaplastic lymphoma kinase (ALK), c-ros oncogene 1 kinase (ROS1), and pan-tropomyosin receptor kinases (pan-TRKs) inhibitor. J. Med. Chem. 59, 3392–3408 (2016).

    CAS  PubMed  Google Scholar 

  115. Marsilje, T. H. et al. Synthesis, structure-activity relationships, and in vivo efficacy of the novel potent and selective anaplastic lymphoma kinase (ALK) inhibitor 5-chloro-N2-(2-isopropoxy-5-methyl-4-(piperidin-4-yl)phenyl)-N4-(2-(isopropylsulf onyl)phenyl)pyrimidine-2,4-diamine (LDK378) currently in phase 1 and phase 2 clinical trials. J. Med. Chem. 56, 5675–5690 (2013).

    CAS  PubMed  Google Scholar 

  116. Zhang, S. et al. The potent ALK inhibitor brigatinib (AP26113) overcomes mechanisms of resistance to first- and second-generation ALK inhibitors in preclinical models. Clin. Cancer Res. 22, 5527–5538 (2016).

    CAS  PubMed  Google Scholar 

  117. Lovly, C. M. et al. Insights into ALK-driven cancers revealed through development of novel ALK tyrosine kinase inhibitors. Cancer Res. 71, 4920–4931 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Zou, H. Y. et al. PF-06463922 is a potent and selective next-generation ROS1/ALK inhibitor capable of blocking crizotinib-resistant ROS1 mutations. Proc. Natl Acad. Sci. USA 112, 3493–3498 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Drilon, A. et al. Repotrectinib (TPX-0005) is a next-generation ROS1/TRK/ALK inhibitor that potently inhibits ROS1/TRK/ALK solvent-front mutations. Cancer Discov. 8, 1227–1236 (2018).

    CAS  PubMed  Google Scholar 

  120. Katayama, R. et al. The new-generation selective ROS1/NTRK inhibitor DS-6051b overcomes crizotinib resistant ROS1-G2032R mutation in preclinical models. Nat. Commun. 10, 3604 (2019).

    PubMed  PubMed Central  Google Scholar 

  121. Treiber, D. K. & Shah, N. P. Ins and outs of kinase DFG motifs. Chem. Biol. 20, 745–746 (2013).

    CAS  PubMed  Google Scholar 

  122. Hubbard, S. R. & Till, J. H. Protein tyrosine kinase structure and function. Annu. Rev. Biochem. 69, 373–398 (2000).

    CAS  PubMed  Google Scholar 

  123. Drilon, A. et al. Safety and antitumor activity of the multitargeted pan-TRK, ROS1, and ALK inhibitor entrectinib: combined results from two phase I trials (ALKA-372-001 and STARTRK-1). Cancer Discov. 7, 400–409 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Davare, M. A. et al. Structural insight into selectivity and resistance profiles of ROS1 tyrosine kinase inhibitors. Proc. Natl Acad. Sci. USA 112, E5381–E5390 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Yasuda, H., de Figueiredo-Pontes, L. L., Kobayashi, S. & Costa, D. B. Preclinical rationale for use of the clinically available multitargeted tyrosine kinase inhibitor crizotinib in ROS1-translocated lung cancer. J. Thorac. Oncol. 7, 1086–1090 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Chong, C. R. et al. Identification of existing drugs that effectively target NTRK1 and ROS1 rearrangements in lung cancer. Clin. Cancer Res. 23, 204–213 (2017).

    CAS  PubMed  Google Scholar 

  127. Drilon, A. et al. A novel crizotinib-resistant solvent-front mutation responsive to cabozantinib therapy in a patient with ROS1-rearranged lung cancer. Clin. Cancer Res. 22, 2351–2358 (2016).

    CAS  PubMed  Google Scholar 

  128. Facchinetti, F. et al. Crizotinib-resistant ROS1 mutations reveal a predictive kinase inhibitor sensitivity model for ROS1- and ALK-rearranged lung cancers. Clin. Cancer Res. 22, 5983–5991 (2016).

    CAS  PubMed  Google Scholar 

  129. Zou, H. Y. et al. PF-06463922, an ALK/ROS1 inhibitor, overcomes resistance to first and second generation ALK inhibitors in preclinical models. Cancer Cell 28, 70–81 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Ogura, H. et al. TKI-addicted ROS1-rearranged cells are destined to survival or death by the intensity of ROS1 kinase activity. Sci. Rep. 7, 5519 (2017).

    PubMed  PubMed Central  Google Scholar 

  131. Inoue, M. et al. Mouse models for ROS1-fusion-positive lung cancers and their application to the analysis of multikinase inhibitor efficiency. Carcinogenesis 37, 452–460 (2016).

    CAS  PubMed  Google Scholar 

  132. Ardini, E. et al. Entrectinib, a pan-TRK, ROS1, and ALK inhibitor with activity in multiple molecularly defined cancer indications. Mol. Cancer Ther. 15, 628–639 (2016).

    CAS  PubMed  Google Scholar 

  133. National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines): Non-Small Cell Lung Cancer https://www.nccn.org/professionals/physician_gls/pdf/nscl.pdf (2020).

  134. US Food and Drug Administration. FDA approves crizotinib capsules. https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-crizotinib-capsules (2016).

  135. Committee for Medicinal Products for Human Use (CHMP). Assessment report: Xalkori https://www.ema.europa.eu/en/documents/variation-report/xalkori-h-c-2489-ii-0039-epar-assessment-report-variation_en.pdf (2016).

  136. Liu, C. et al. Crizotinib in Chinese patients with ROS1-rearranged advanced nonsmall-cell lung cancer in routine clinical practice. Target. Oncol. 14, 315–323 (2019).

    PubMed  PubMed Central  Google Scholar 

  137. OxOnc Services Company. OxOnc announces that co-development partner has received approval in Japan and Taiwan for crizotinib (Xalkori®) as a first-line treatment for patients with ROS1-positive non-small cell lung cancer. https://www.globenewswire.com/news-release/2017/06/02/1006285/0/en/OxOnc-Announces-that-Co-development-Partner-Has-Received-Approval-in-Japan-and-Taiwan-for-Crizotinib-Xalkori-as-a-First-line-Treatment-for-Patients-with-ROS1-Positive-Non-Small-Cel.html (2017).

  138. Choi, W.-S. Pfizer crizotinib enters ROS1-positive target market [In Korean]. https://www.doctorsnews.co.kr/news/articleView.html?idxno=128964 (2019).

  139. State of Israel Ministry of Health. Xalkori – full prescribing information https://www.health.gov.il/units/pharmacy/trufot/alonim/Xalkori_DR_1444888564767.pdf (2015).

  140. Australian Government Department of Health. Australian Public Assessment Report for Crizotinib https://www.tga.gov.au/sites/default/files/auspar-crizotinib-181018.pdf (2017).

  141. Shaw, A. T. et al. Crizotinib in ROS1-rearranged advanced non-small-cell lung cancer (NSCLC): updated results, including overall survival, from PROFILE 1001. Ann. Oncol. 30, 1121–1126 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Peters, S. et al. Alectinib versus crizotinib in untreated ALK-positive non-small-cell lung cancer. N. Engl. J. Med. 377, 829–838 (2017).

    CAS  PubMed  Google Scholar 

  143. Gainor, J. F. et al. Patterns of metastatic spread and mechanisms of resistance to crizotinib in ROS1-positive non-small-cell lung cancer. JCO Precis. Oncol. https://doi.org/10.1200/PO.17.00063 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Li, Z. et al. Efficacy of crizotinib among different types of ROS1 fusion partners in patients with ROS1-rearranged non-small cell lung cancer. J. Thorac. Oncol. 13, 987–995 (2018).

    PubMed  Google Scholar 

  145. Drilon, A. et al. Entrectinib in ROS1 fusion-positive non-small-cell lung cancer: integrated analysis of three phase 1-2 trials. Lancet Oncol. 21, 261–270 (2020).

    CAS  PubMed  Google Scholar 

  146. Lim, S. M. et al. Open-label, multicenter, phase II study of ceritinib in patients with non-small-cell lung cancer harboring ROS1 rearrangement. J. Clin. Oncol. 35, 2613–2618 (2017).

    CAS  PubMed  Google Scholar 

  147. Shaw, A. T. et al. Lorlatinib in advanced ROS1-positive non-small-cell lung cancer: a multicentre, open-label, single-arm, phase 1-2 trial. Lancet Oncol. 20, 1691–1701 (2019).

    CAS  PubMed  Google Scholar 

  148. Drilon, A. et al. Abstract 442: Repotrectinib, a next generation TRK inhibitor, overcomes TRK resistance mutations including solvent front, gatekeeper and compound mutations. Cancer Res. 79, 442–442 (2019).

    Google Scholar 

  149. Fujiwara, Y. et al. Safety and pharmacokinetics of DS-6051b in Japanese patients with non-small cell lung cancer harboring ROS1 fusions: a phase I study. Oncotarget 9, 23729–23737 (2018).

    PubMed  PubMed Central  Google Scholar 

  150. Turning Point Therapeutics. Turning Point Therapeutics Reports First-Quarter Financial Results, Provides Update on Operations and COVID-19 Responsehttps://ir.tptherapeutics.com/node/7186/pdf (2020).

  151. Ramalingam, S. S. et al. Overall survival with osimertinib in untreated, EGFR-mutated advanced NSCLC. N. Engl. J. Med. 382, 41–50 (2020).

    CAS  PubMed  Google Scholar 

  152. Rossing, M. et al. Genomic diagnostics leading to the identification of a TFG-ROS1 fusion in a child with possible atypical meningioma. Cancer Genet. 212–213, 32–37 (2017).

    PubMed  Google Scholar 

  153. Meng, Z. et al. A patient with classic biphasic pulmonary blastoma harboring CD74-ROS1 fusion responds to crizotinib. Onco Targets Ther. 11, 157–161 (2018).

    PubMed  Google Scholar 

  154. Parsons, B. M. et al. Abstract 1317: exceptional responses to crizotinib in breast cancer patients with somatic MET and ROS1 alterations. Cancer Res. 79, 1317–1317 (2019).

    Google Scholar 

  155. Li, Y. et al. Partial response to ceritinib in a patient with abdominal inflammatory myofibroblastic tumor carrying a TFG-ROS1 fusion. J. Natl Compr. Canc Netw. 17, 1459–1462 (2019).

    CAS  PubMed  Google Scholar 

  156. Ambati, S. R., Slotkin, E. K., Chow-Maneval, E. & Basu, E. M. Entrectinib in two pediatric patients with inflammatory myofibroblastic tumors harboring ROS1 or ALK gene fusions. JCO Precis. Oncol. https://ascopubs.org/doi/10.1200/PO.18.00095 (2018).

  157. Robinson, G. W. et al. Phase 1/1B trial to assess the activity of entrectinib in children and adolescents with recurrent or refractory solid tumors including central nervous system (CNS) tumors. J. Clin. Oncol. 37 (Suppl. 15), 10009 (2019).

    Google Scholar 

  158. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02465060 (2020).

  159. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03213652 (2020).

  160. Ou, S. I. & Zhu, V. W. CNS metastasis in ROS1+ NSCLC: an urgent call to action, to understand, and to overcome. Lung Cancer 130, 201–207 (2019).

    PubMed  Google Scholar 

  161. Drilon, A. et al. Frequency of brain metastases and multikinase inhibitor outcomes in patients with RET-rearranged lung cancers. J. Thorac. Oncol. 13, 1595–1601 (2018).

    PubMed  PubMed Central  Google Scholar 

  162. Patil, T. et al. The incidence of brain metastases in stage IV ROS1-rearranged non–small cell lung cancer and rate of central nervous system progression on crizotinib. J. Thorac. Oncol. 13, 1717–1726 (2018).

    PubMed  PubMed Central  Google Scholar 

  163. Drilon, A. et al. Abstract CT192: Entrectinib in locally advanced or metastatic ROS1 fusion-positive non-small cell lung cancer (NSCLC): integrated analysis of ALKA-372-001, STARTRK-1 and STARTRK-2. Cancer Res. 79, CT192 (2019).

    Google Scholar 

  164. Sun, T. Y., Niu, X., Chakraborty, A., Neal, J. W. & Wakelee, H. A. Lengthy progression-free survival and intracranial activity of cabozantinib in patients with crizotinib and ceritinib-resistant ROS1-positive non-small cell lung cancer. J. Thorac. Oncol. 14, e21–e24 (2019).

    PubMed  Google Scholar 

  165. Costa, D. B. et al. CSF concentration of the anaplastic lymphoma kinase inhibitor crizotinib. J. Clin. Oncol. 29, e443–e445 (2011).

    PubMed  Google Scholar 

  166. Okimoto, T. et al. A low crizotinib concentration in the cerebrospinal fluid causes ineffective treatment of anaplastic lymphoma kinase-positive non-small cell lung cancer with carcinomatous meningitis. Intern. Med. 58, 703–705 (2019).

    CAS  PubMed  Google Scholar 

  167. Landi, L. et al. Crizotinib in MET-deregulated or ROS1-rearranged pretreated non-small cell lung cancer (METROS): a phase II, prospective, multicenter, two-arms trial. Clin. Cancer Res. 25, 7312–7319 (2019).

    CAS  PubMed  Google Scholar 

  168. Gadgeel, S. et al. Alectinib versus crizotinib in treatment-naive anaplastic lymphoma kinase-positive (ALK+) non-small-cell lung cancer: CNS efficacy results from the ALEX study. Ann. Oncol. 29, 2214–2222 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Cho, B. C. et al. Safety and preliminary clinical activity of repotrectinib in patients with advanced ROS1 fusion-positive non-small cell lung cancer (TRIDENT-1 study). J. Clin. Oncol. 37, 9011 (2019).

    Google Scholar 

  170. McCoach, C. E. et al. Resistance mechanisms to targeted therapies in ROS1+ and ALK+ non-small cell lung cancer. Clin. Cancer Res. 24, 3334–3347 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Cocco, E., Scaltriti, M. & Drilon, A. NTRK fusion-positive cancers and TRK inhibitor therapy. Nat. Rev. Clin. Oncol. 15, 731–747 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Song, A. et al. Molecular changes associated with acquired resistance to crizotinib in ROS1-rearranged non-small cell lung cancer. Clin. Cancer Res. 21, 2379–2387 (2015).

    CAS  PubMed  Google Scholar 

  173. Doebele, R. C. et al. Genomic landscape of entrectinib resistance from ctDNA analysis in STARTRK-2. Ann. Oncol. 30, v865 (2019).

    Google Scholar 

  174. Zhou, Y. et al. A novel ROS1 G2032 K missense mutation mediates lorlatinib resistance in a patient with ROS1-rearranged lung adenocarcinoma but responds to nab-paclitaxel plus pembrolizumab. Lung Cancer 143, 55–59 (2020).

    PubMed  Google Scholar 

  175. Lin, J. J. et al. Resistance to lorlatinib in ROS1 fusion-positive non-small cell lung cancer. J. Clin. Oncol. 38, 9611–9611 (2020).

    Google Scholar 

  176. Ogura, H. et al. TKI-addicted ROS1-rearranged cells are destined to survival or death by the intensity of ROS1 kinase activity. Sci. Rep. 7, 5519 (2017).

    PubMed  PubMed Central  Google Scholar 

  177. Gou, W. et al. CD74-ROS1 G2032R mutation transcriptionally up-regulates Twist1 in non-small cell lung cancer cells leading to increased migration, invasion, and resistance to crizotinib. Cancer Lett. 422, 19–28 (2018).

    CAS  PubMed  Google Scholar 

  178. Watanabe, J., Furuya, N. & Fujiwara, Y. Appearance of a BRAF mutation conferring resistance to crizotinib in non–small cell lung cancer harboring oncogenic ROS1 fusion. J. Thorac. Oncol. 13, e66–e69 (2018).

    PubMed  Google Scholar 

  179. Zhu, Y. C. et al. Concurrent ROS1 gene rearrangement and KRAS mutation in lung adenocarcinoma: a case report and literature review. Thorac. Cancer 9, 159–163 (2018).

    CAS  PubMed  Google Scholar 

  180. Cocco, E. et al. Resistance to TRK inhibition mediated by convergent MAPK pathway activation. Nat. Med. 25, 1422–1427 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Vaishnavi, A. et al. EGFR mediates responses to small-molecule drugs targeting oncogenic fusion kinases. Cancer Res. 77, 3551–3563 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Davies, K. D. et al. Resistance to ROS1 inhibition mediated by EGFR pathway activation in non-small cell lung cancer. PLoS ONE 8, e82236 (2013).

    PubMed  PubMed Central  Google Scholar 

  183. Zhu, V. W., Klempner, S. J. & Ou, S. I. Receptor tyrosine kinase fusions as an actionable resistance mechanism to EGFR TKIs in EGFR-mutant non-small-cell lung cancer. Trends Cancer 5, 677–692 (2019).

    CAS  PubMed  Google Scholar 

  184. Dziadziuszko, R. et al. An activating KIT mutation induces crizotinib resistance in ROS1-positive lung cancer. J. Thorac. Oncol. 11, 1273–1281 (2016).

    PubMed  PubMed Central  Google Scholar 

  185. Sato, H. et al. MAPK pathway alterations correlate with poor survival and drive resistance to therapy in patients with lung cancers driven by ROS1 fusions. Clin. Cancer Res. 26, 2932–2945 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Song, A. et al. Molecular changes associated with acquired resistance to crizotinib in ROS1-rearranged non-small cell lung cancer. Clin. Cancer Res. 21, 2379–2387 (2015).

    CAS  PubMed  Google Scholar 

  187. Drilon, A. et al. 444PD - Safety and preliminary clinical activity of repotrectinib in patients with advanced ROS1/TRK fusion-positive solid tumors (TRIDENT-1 study). Ann. Oncol. 30 (Suppl. 5), 162 (2019).

    Google Scholar 

  188. Sun, T. Y., Niu, X., Chakraborty, A., Neal, J. W. & Wakelee, H. A. Lengthy progression-free survival and intracranial activity of cabozantinib in patients with crizotinib and ceritinib-resistant ROS1-positive non-small cell lung cancer. J. Thorac. Oncol. 14, e21–e24 (2019).

    PubMed  Google Scholar 

  189. Chen, J., Zong, C. S. & Wang, L. H. Tissue and epithelial cell-specific expression of chicken proto-oncogene c-ros in several organs suggests that it may play roles in their development and mature functions. Oncogene 9, 773–780 (1994).

    CAS  PubMed  Google Scholar 

  190. GTEx Consortium. The genotype-tissue expression (GTEx) project. Nat. Genet. 45, 580–585 (2013).

    Google Scholar 

  191. LungMAP. ROS1. https://lungmap.net/breath-search-page/?searchCategory=gene&query=ROS1 (2020). The results referred to here are in whole or part based upon data generated by the LungMAP Consortium [U01HL122642] and downloaded from (www.lungmap.net), on June 23, 2016. The LungMAP consortium and the LungMAP Data Coordinating Center (1U01HL122638) are funded by the National Heart, Lung, and Blood Institute (NHLBI).

  192. Cooper, T. G. et al. Gene and protein expression in the epididymis of infertile c-ros receptor tyrosine kinase-deficient mice. Biol. Reprod. 69, 1750–1762 (2003).

    CAS  PubMed  Google Scholar 

  193. Cooper, T. G. et al. Mouse models of infertility due to swollen spermatozoa. Mol. Cell. Endocrinol. 216, 55–63 (2004).

    CAS  PubMed  Google Scholar 

  194. Sonnenberg-Riethmacher, E., Walter, B., Riethmacher, D., Godecke, S. & Birchmeier, C. The c-ros tyrosine kinase receptor controls regionalization and differentiation of epithelial cells in the epididymis. Genes Dev. 10, 1184–1193 (1996).

    CAS  PubMed  Google Scholar 

  195. Wagenfeld, A., Yeung, C. H., Lehnert, W., Nieschlag, E. & Cooper, T. G. Lack of glutamate transporter EAAC1 in the epididymis of infertile c-ros receptor tyrosine-kinase deficient mice. J. Androl. 23, 772–782 (2002).

    CAS  PubMed  Google Scholar 

  196. Yeung, C. H., Anapolski, M., Setiawan, I., Lang, F. & Cooper, T. G. Effects of putative epididymal osmolytes on sperm volume regulation of fertile and infertile c-ros transgenic Mice. J. Androl. 25, 216–223 (2004).

    CAS  PubMed  Google Scholar 

  197. Yeung, C. H., Sonnenberg-Riethmacher, E. & Cooper, T. G. Receptor tyrosine kinase c-ros knockout mice as a model for the study of epididymal regulation of sperm function. J. Reprod. Fertil. Suppl. 53, 137–147 (1998).

    CAS  PubMed  Google Scholar 

  198. Yeung, C. H., Sonnenberg-Riethmacher, E. & Cooper, T. G. Infertile spermatozoa of c-ros tyrosine kinase receptor knockout mice show flagellar angulation and maturational defects in cell volume regulatory mechanisms. Biol. Reprod. 61, 1062–1069 (1999).

    CAS  PubMed  Google Scholar 

  199. Yeung, C. H., Wagenfeld, A., Nieschlag, E. & Cooper, T. G. The cause of infertility of male c-ros tyrosine kinase receptor knockout mice. Biol. Reprod. 63, 612–618 (2000).

    CAS  PubMed  Google Scholar 

  200. Jun, H. J. et al. ROS1 signaling regulates epithelial differentiation in the epididymis. Endocrinology 155, 3661–3673 (2014).

    PubMed  PubMed Central  Google Scholar 

  201. Cardoso-Moreira, M. et al. Gene expression across mammalian organ development. Nature 571, 505–509 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Spigel, D. R. et al. Phase 1/2 study of the safety and tolerability of nivolumab plus crizotinib for the first-line treatment of anaplastic lymphoma kinase translocation - positive advanced non-small cell lung cancer (CheckMate 370). J. Thorac. Oncol. 13, 682–688 (2018).

    PubMed  Google Scholar 

  203. Lin, J. J. et al. Increased hepatotoxicity associated with sequential immune checkpoint inhibitor and crizotinib therapy in patients with non-small cell lung cancer. J. Thorac. Oncol. 14, 135–140 (2019).

    CAS  PubMed  Google Scholar 

  204. Pellegrino, B. et al. Lung toxicity in non-small-cell lung cancer patients exposed to alk inhibitors: report of a peculiar case and systematic review of the literature. Clin. Lung Cancer 19, e151–e161 (2018).

    CAS  PubMed  Google Scholar 

  205. Drilon, A. et al. Antitumor activity of crizotinib in lung cancers harboring a MET exon 14 alteration. Nat. Med. 26, 47–51 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  206. Ishii, T. et al. Crizotinib-induced abnormal signal processing in the retina. PLoS ONE 10, e0135521 (2015).

    PubMed  PubMed Central  Google Scholar 

  207. Liu, C. N. et al. Crizotinib reduces the rate of dark adaptation in the rat retina independent of ALK inhibition. Toxicol. Sci. 143, 116–125 (2015).

    CAS  PubMed  Google Scholar 

  208. Bauer, T. M. et al. Clinical management of adverse events associated with lorlatinib. Oncologist 24, 1103–1110 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  209. Stirrups, R. Brigatinib versus crizotinib for ALK-positive NSCLC. Lancet Oncol. 19, e585 (2018).

    PubMed  Google Scholar 

  210. Weickhardt, A. J. et al. Rapid-onset hypogonadism secondary to crizotinib use in men with metastatic nonsmall cell lung cancer. Cancer 118, 5302–5309 (2012).

    CAS  PubMed  Google Scholar 

  211. Liu, D. et al. Characterization of on-target adverse events caused by TRK inhibitor therapy. Ann. Oncol. https://doi.org/10.1016/j.annonc.2020.05.006 (2020).

    Article  PubMed  Google Scholar 

  212. Michels, S. et al. Safety and efficacy of crizotinib in patients with advanced or metastatic ROS1-rearranged lung cancer (EUCROSS): a European phase II clinical trial. J. Thorac. Oncol. 14, 1266–1276 (2019).

    CAS  PubMed  Google Scholar 

  213. Moro-Sibilot, D. et al. Crizotinib in c-MET- or ROS1-positive NSCLC: results of the AcSe phase II trial. Ann. Oncol. 30, 1985–1991 (2019).

    CAS  PubMed  Google Scholar 

  214. Gettinger, S. N. et al. Activity and safety of brigatinib in ALK-rearranged non-small-cell lung cancer and other malignancies: a single-arm, open-label, phase 1/2 trial. Lancet Oncol. 17, 1683–1696 (2016).

    CAS  PubMed  Google Scholar 

  215. Zeng, L. et al. Vav3 mediates receptor protein tyrosine kinase signaling, regulates GTPase activity, modulates cell morphology, and induces cell transformation. Mol. Cell. Biol. 20, 9212–9224 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  216. GTEx Consortium. The genotype-tissue expression (GTEx) project. Nat. Genet. 45, 580–585 (2013).

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr Clare Wilhelm for critically reading the manuscript and for editorial contributions. The work of the authors is supported in part by NIH grants (P01 CA129243 and P30 CA008748 to A.D. and R01 CA233495-01A1 to M.A.D.) and an American Cancer Society (ACS) grant (RSG-19-082-01-TBG to M.A.D.).

Author information

Authors and Affiliations

Authors

Contributions

All authors researched the data for the article. A.D., C.K. and M.A.D. made substantial contributions to discussions of content. A.D., C.J., S.I., A.S. and M.A.D. wrote the manuscript, and A.D. and M.A.D. reviewed/edited the manuscript before submission.

Corresponding authors

Correspondence to Alexander Drilon or Monika A. Davare.

Ethics declarations

Competing interests

A.D. has received honoraria from or participated on the advisory boards of 14ner/Elevation Oncology, Abbvie, ArcherDX, AstraZeneca, Beigene, BergenBio, Blueprint Medicines, Exelixis, Helsinn, Hengrui Therapeutics, Ignyta/Genentech/Roche, Loxo/Bayer/Lilly, Monopteros, MORE Health, Pfizer, Remedica, Takeda/Ariad/Millenium, TP Therapeutics, Tyra Biosciences and Verastem; research support paid to his institution from Exelixis, GlaxoSmithKlein, Pfizer, PharmaMar, Taiho and Teva; research support from Foundation Medicine; personal fees from Boehringer Ingelheim, Merck, Merus and Puma; and CME honoraria from Axis, Medscape, OncLive, Paradigm Medical Communications, Peerview Institute, PeerVoice, Physicians Education Resources, Research to Practice, Targeted Oncology and WebMD. The other authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Clinical Oncology thanks Myung-Ju Ahn, Luc Friboulet, who co-reviewed with Francesco Facchinetti, Justin Gainor and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

cBioPortal: https://www.cbioportal.org/

Chimera: https://www.cgl.ucsf.edu/chimera/

GTEx Portal: https://gtexportal.org/home/

MatchMaker: https://www.cgl.ucsf.edu/chimera/docs/ContributedSoftware/matchmaker/matchmaker.html

RCSB PDB 3ZBF: https://www.rcsb.org/structure/3ZBF

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drilon, A., Jenkins, C., Iyer, S. et al. ROS1-dependent cancers — biology, diagnostics and therapeutics. Nat Rev Clin Oncol 18, 35–55 (2021). https://doi.org/10.1038/s41571-020-0408-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41571-020-0408-9

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer