Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Spearheading a new era in complex colloid synthesis with TPM and other silanes

Subjects

Abstract

Colloid science has recently grown substantially owing to the innovative use of silane coupling agents (SCAs), especially 3-trimethoxysilylpropyl methacrylate (TPM). SCAs were previously used mainly as modifying agents, but their ability to form droplets and condense onto pre-existing structures has enabled their use as a versatile and powerful tool to create novel anisotropic colloids with increasing complexity. In this Review, we highlight the advances in complex colloid synthesis facilitated by the use of TPM and show how this has driven remarkable new applications. The focus is on TPM as the current state-of-the-art in colloid science, but we also discuss other silanes and their potential to make an impact. We outline the remarkable properties of TPM colloids and their synthesis strategies, and discuss areas of soft matter science that have benefited from TPM and other SCAs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of colloidal syntheses enabled by silane coupling agent nucleation and growth plus additional synthesis strategies.
Fig. 2: Reaction scheme of 3-trimethoxysilylpropyl methacrylate (TPM) and heterogeneous nucleation of TPM to form dumbbell particles.
Fig. 3: Synthesis of anisotropic particles using 3-trimethoxysilylpropyl methacrylate (TPM).
Fig. 4: Colloidal synthesis strategies that enhance the versatility of silane coupling agent nucleation and growth.
Fig. 5: Self-assembly by capillary bridges and critical Casimir forces.
Fig. 6: Self-assembly by DNA interactions.
Fig. 7: Self-assembly by depletion interactions.
Fig. 8: Self-assembly of patchy particles by external fields.
Fig. 9: Silane coupling agent colloids used for nanophotonic applications.

Similar content being viewed by others

References

  1. Hueckel, T., Hocky, G. M. & Sacanna, S. Total synthesis of colloidal matter. Nat. Rev. Mater. 6, 1053–1069 (2021).

    Article  CAS  Google Scholar 

  2. Kim, Y.-J., Moon, J.-B., Hwang, H., Kim, Y. S. & Yi, G.-R. Advances in colloidal building blocks: toward patchy colloidal clusters. Adv. Mater. 35, 2203045 (2023).

    Article  CAS  Google Scholar 

  3. Jin, X., Yuan, X., Chen, K., Xie, H. & Chen, C. Role of 3-methacryloxypropyltrimethoxysilane in dentin bonding. ACS Omega 7, 15892–15900 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Marsden, J. G. in Handbook of Adhesives (ed. Skeist, I.) 536–548 (Springer, 1990).

  5. Badley, R. D., Ford, W. T., McEnroe, F. J. & Assink, R. A. Surface modification of colloidal silica. Langmuir 6, 792–801 (1990).

    Article  CAS  Google Scholar 

  6. van Blaaderen, A. & Vrij, A. Synthesis and characterization of monodisperse colloidal organo-silica spheres. J. Colloid Interface Sci. 156, 1–18 (1993).

    Article  Google Scholar 

  7. Gellermann, C., Storch, W. & Wolter, H. Synthesis and characterization of the organic surface modifications of monodisperse colloidal silica. J. Solgel Sci. Technol. 8, 173–176 (1997).

    Article  CAS  Google Scholar 

  8. Philipse, A. P. & Vrij, A. Preparation and properties of nonaqueous model dispersions of chemically modified, charged silica spheres. J. Colloid Interface Sci. 128, 121–136 (1989).

    Article  CAS  Google Scholar 

  9. Liu, B. et al. Switching plastic crystals of colloidal rods with electric fields. Nat. Commun. 5, 3092 (2014).

    Article  PubMed  Google Scholar 

  10. Van Helden, A. K., Jansen, J. W. & Vrij, A. Preparation and characterization of spherical monodisperse silica dispersions in nonaqueous solvents. J. Colloid Interface Sci. 81, 354–368 (1981).

    Article  Google Scholar 

  11. van Blaaderen, A., Peetermans, J., Maret, G. & Dhont, J. K. G. Long‐time self‐diffusion of spherical colloidal particles measured with fluorescence recovery after photobleaching. J. Chem. Phys. 96, 4591–4603 (1992).

    Article  Google Scholar 

  12. Bagwe, R. P., Hilliard, L. R. & Tan, W. Surface modification of silica nanoparticles to reduce aggregation and non-specific binding. Langmuir 22, 4357–4362 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Stöber, W., Fink, A. & Bohn, E. Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 26, 62–69 (1968).

    Article  Google Scholar 

  14. Giesche, H. Synthesis of monodispersed silica powders I. Particle properties and reaction kinetics. J. Eur. Ceram. Soc. 14, 189–204 (1994).

    Article  CAS  Google Scholar 

  15. Giesche, H. Synthesis of monodispersed silica powders II. Controlled growth reaction and continuous production process. J. Eur. Ceram. Soc. 14, 205–214 (1994).

    Article  CAS  Google Scholar 

  16. Bogush, G. H., Tracy, M. A. & Zukoski, C. F. Preparation of monodisperse silica particles: control of size and mass fraction. J. Non-Cryst. Solids 104, 95–106 (1988).

    Article  CAS  Google Scholar 

  17. Ghimire, P. P. & Jaroniec, M. Renaissance of Stöber method for synthesis of colloidal particles: new developments and opportunities. J. Colloid Interface Sci. 584, 838–865 (2021).

    Article  CAS  PubMed  Google Scholar 

  18. Jungmann, N., Schmidt, M. & Maskos, M. Characterization of polyorganosiloxane nanoparticles in aqueous dispersion by asymmetrical flow field-flow fractionation. Macromolecules 34, 8347–8353 (2001).

    Article  CAS  Google Scholar 

  19. Ma, C. & Kimura, Y. Preparation of nano-particles of poly(phenylsilsesquioxane)s by emulsion polycondensation of phenylsilanetriol formed in aqueous solution. Polym. J. 34, 709–713 (2002).

    Article  CAS  Google Scholar 

  20. Ma, C., Taniguchi, I., Miyamoto, M. & Kimura, Y. Formation of stable nanoparticles of poly(phenyl/methylsilsesquioxane) in aqueous solution. Polym. J. 35, 270–275 (2003).

    Article  CAS  Google Scholar 

  21. Bronstein, L. M. et al. Controlled synthesis of novel metalated poly(aminohexyl)-(aminopropyl)silsesquioxane colloids. Langmuir 19, 7071–7083 (2003).

    Article  CAS  Google Scholar 

  22. Nakamura, M. & Ishimura, K. One-pot synthesis and characterization of three kinds of thiol–organosilica nanoparticles. Langmuir 24, 5099–5108 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Hah, H. J., Kim, J. S., Jeon, B. J., Koo, S. M. & Lee, Y. E. Simple preparation of monodisperse hollow silica particles without using templates. Chem. Commun. 34, 1712–1713 (2003).

    Article  Google Scholar 

  24. Wang, Q., Liu, Y. & Yan, H. Mechanism of a self-templating synthesis of monodispersed hollow silica nanospheres with tunable size and shell thickness. Chem. Commun. 21, 2339–2341 (2007).

    Article  Google Scholar 

  25. Segers, M., Arfsten, N., Buskens, P. & Möller, M. A facile route for the synthesis of sub-micron sized hollow and multiporous organosilica spheres. RSC Adv. 4, 20673–20676 (2014).

    Article  CAS  Google Scholar 

  26. Segers, M., Sliepen, M., Kraft, D. J., Möller, M. & Buskens, P. Synthesis of sub-micron sized hollow, and nanoporous phenylsiloxane spheres through use of phenyltrimethoxysilane as surfmer: insights into the surfactant and factors influencing the particle architecture. Colloids Surf. A Physicochem. Eng. Asp. 497, 378–384 (2016).

    Article  CAS  Google Scholar 

  27. Mori, H. Design and synthesis of functional silsesquioxane-based hybrids by hydrolytic condensation of bulky triethoxysilanes. Int. J. Polym. Sci. 2012, 173624 (2012).

    Article  Google Scholar 

  28. Miller, C. R. et al. Functionalized organosilica microspheres via a novel emulsion-based route. Langmuir 21, 9733–9740 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Lee, Y.-G., Park, J.-H., Oh, C., Oh, S.-G. & Kim, Y. C. Preparation of highly monodispersed hybrid silica spheres using a one-step sol–gel reaction in aqueous solution. Langmuir 23, 10875–10878 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Meng, Z. et al. Preparation of highly monodisperse hybrid silica nanospheres using a one-step emulsion reaction in aqueous solution. Langmuir 25, 7879–7883 (2009).

    Article  CAS  PubMed  Google Scholar 

  31. Deng, T.-S. et al. One-step synthesis of highly monodisperse hybrid silica spheres in aqueous solution. J. Colloid Interface Sci. 329, 292–299 (2009).

    Article  CAS  PubMed  Google Scholar 

  32. Nair, B. P. & Pavithran, C. Bifunctionalized hybrid silica spheres by hydrolytic cocondensation of 3-aminopropyltriethoxysilane and vinyltriethoxysilane. Langmuir 26, 730–735 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. Dirè, S., Tagliazucca, V., Callone, E. & Quaranta, A. Effect of functional groups on condensation and properties of sol–gel silica nanoparticles prepared by direct synthesis from organoalkoxysilanes. Mater. Chem. Phys. 126, 909–917 (2011).

    Article  Google Scholar 

  34. Lu, Z., Sun, L., Nguyen, K., Gao, C. & Yin, Y. Formation mechanism and size control in one-pot synthesis of mercapto-silica colloidal spheres. Langmuir 27, 3372–3380 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Chiu, S.-J., Wang, S.-Y., Chou, H.-C., Liu, Y.-L. & Hu, T.-M. Versatile synthesis of thiol- and amine-bifunctionalized silica nanoparticles based on the Ouzo effect. Langmuir 30, 7676–7686 (2014).

    Article  CAS  PubMed  Google Scholar 

  36. Chou, H.-C., Chiu, S.-J., Liu, Y.-L. & Hu, T.-M. Direct formation of S-nitroso silica nanoparticles from a single silica source. Langmuir 30, 812–822 (2014).

    Article  CAS  PubMed  Google Scholar 

  37. Hong, F. C.-N. & Yan, C.-J. Preparation and application of monodisperse spherical polymethylsilsesquioxane (PMSQ) beads by sol-gel method. Adv. Powder Technol. 29, 1632–1639 (2018).

    Article  CAS  Google Scholar 

  38. Zhang, H., Zhang, J., Wu, C., Zhang, B. & Zhang, Q. Preparation of functionalized SiO2 microspheres by one step method. Silicon 11, 2819–2827 (2019).

    Article  CAS  Google Scholar 

  39. Chen, G.-T. & Hu, T.-M. Stable encapsulation of methylene blue in polysulfide organosilica colloids for fluorescent tracking of nanoparticle uptake in cells. ACS Omega 6, 32109–32119 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Giasuddin, A. B. M., Cartwright, A. & Britt, D. W. Silica nanoparticles synthesized from 3,3,3-propyl(trifluoro)trimethoxysilane or n-propyltrimethoxysilane for creating superhydrophobic surfaces. ACS Appl. Nano Mater. 4, 4092–4102 (2021).

    Article  CAS  Google Scholar 

  41. Huo, Z. & Chen, L. Base-deactivated and alkaline-resistant chromatographic stationary phase based on functionalized polymethylsilsesquioxane microspheres. J. Sep. Sci. 43, 389–397 (2020).

    Article  CAS  PubMed  Google Scholar 

  42. Suzuki, T. M. et al. Direct synthesis of amino-functionalized monodispersed mesoporous silica spheres and their catalytic activity for nitroaldol condensation. J. Mol. Catal. A Chem. 280, 224–232 (2008).

    Article  CAS  Google Scholar 

  43. Wani, A. et al. Surface functionalization of mesoporous silica nanoparticles controls loading and release behavior of mitoxantrone. Pharm. Res. 29, 2407–2418 (2012).

    Article  CAS  PubMed  Google Scholar 

  44. Fujii, Y., Zhou, S., Shimada, M. & Kubo, M. Synthesis of monodispersed hollow mesoporous organosilica and silica nanoparticles with controllable shell thickness using soft and hard templates. Langmuir 39, 4571–4582 (2023).

    Article  CAS  PubMed  Google Scholar 

  45. El Moujarrad, I. et al. Size-tuning of hollow periodic mesoporous organosilica nanoparticles (HPMO-NPs) using a dual templating strategy. J. Solgel Sci. Technol. 107, 302–311 (2023).

    Article  CAS  Google Scholar 

  46. Zou, H. & Ren, Y. Synthetic strategies for nonporous organosilica nanoparticles from organosilane. Nanoscale 15, 10484–10497 (2023).

    Article  CAS  PubMed  Google Scholar 

  47. Obey, T. M. & Vincent, B. Novel monodisperse ‘silicone oil’/water emulsions. J. Colloid Interface Sci. 163, 454–463 (1994).

    Article  CAS  Google Scholar 

  48. Anderson, K. R., Obey, T. M. & Vincent, B. Surfactant-stabilized silicone oil in water emulsions. Langmuir 10, 2493–2494 (1994).

    Article  CAS  Google Scholar 

  49. Zoldesi, C. I. & Imhof, A. Synthesis of monodisperse colloidal spheres, capsules, and microballoons by emulsion templating. Adv. Mater. 17, 924–928 (2005).

    Article  CAS  Google Scholar 

  50. Zoldesi, C. I., Ivanovska, I. L., Quilliet, C., Wuite, G. J. L. & Imhof, A. Elastic properties of hollow colloidal particles. Phys. Rev. E 78, 051401 (2008).

    Article  CAS  Google Scholar 

  51. Quilliet, C., Zoldesi, C., Riera, C., van Blaaderen, A. & Imhof, A. Anisotropic colloids through non-trivial buckling. Eur. Phys. J. E 27, 13–20 (2008).

    Article  CAS  PubMed  Google Scholar 

  52. Marechal, M., Kortschot, R. J., Demirörs, A. F., Imhof, A. & Dijkstra, M. Phase behavior and structure of a new colloidal model system of bowl-shaped particles. Nano Lett. 10, 1907–1911 (2010).

    Article  CAS  PubMed  Google Scholar 

  53. Jose, J., Kamp, M., van Blaaderen, A. & Imhof, A. Unloading and reloading colloidal microcapsules with apolar solutions by controlled and reversible buckling. Langmuir 30, 2385–2393 (2014).

    Article  CAS  PubMed  Google Scholar 

  54. Elbers, N. A., Jose, J., Imhof, A. & van Blaaderen, A. Bulk scale synthesis of monodisperse PDMS droplets above 3 μm and their encapsulation by elastic shells. Chem. Mater. 27, 1709–1719 (2015).

    Article  CAS  Google Scholar 

  55. Kamp, M. et al. Electric-field-induced lock-and-key interactions between colloidal spheres and bowls. Chem. Mater. 28, 1040–1048 (2016).

    Article  CAS  Google Scholar 

  56. Sacanna, S., Kegel, W. K. & Philipse, A. P. Thermodynamically stable Pickering emulsions. Phys. Rev. Lett. 98, 158301 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Sacanna, S., Irvine, W. T. M., Chaikin, P. M. & Pine, D. J. Lock and key colloids. Nature 464, 575–578 (2010).

    Article  CAS  PubMed  Google Scholar 

  58. van der Wel, C. et al. Preparation of colloidal organosilica spheres through spontaneous emulsification. Langmuir 33, 8174–8180 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Sacanna, S., Rossi, L. & Pine, D. J. Magnetic click colloidal assembly. J. Am. Chem. Soc. 134, 6112–6115 (2012).

    Article  CAS  PubMed  Google Scholar 

  60. Sacanna, S. et al. Shaping colloids for self-assembly. Nat. Commun. 4, 1688 (2013).

    Article  PubMed  Google Scholar 

  61. Kamp, M., de Nijs, B., Baumberg, J. J. & Scherman, O. A. Contact angle as a powerful tool in anisotropic colloid synthesis. J. Colloid Interface Sci. 581, 417–426 (2021).

    Article  CAS  PubMed  Google Scholar 

  62. Middleton, C., Hannel, M. D., Hollingsworth, A. D., Pine, D. J. & Grier, D. G. Optimizing the synthesis of monodisperse colloidal spheres using holographic particle characterization. Langmuir 35, 6602–6609 (2019).

    Article  CAS  PubMed  Google Scholar 

  63. Abdelaziz, M. A. et al. Ultrasonic chaining of emulsion droplets. Phys. Rev. Res. 3, 043157 (2021).

    Article  CAS  Google Scholar 

  64. Crothers, R. A., Orr, N. H. P., van der Meer, B., Dullens, R. P. A. & Yanagishima, T. Characterization and optimization of fluorescent organosilica colloids for 3D confocal microscopy prepared under “zero-flow” conditions. Langmuir 39, 5306–5314 (2023).

    Article  CAS  PubMed  Google Scholar 

  65. Chang, F. et al. Controllable synthesis of patchy particles with tunable geometry and orthogonal chemistry. J. Colloid Interface Sci. 582, 333–341 (2021).

    Article  CAS  PubMed  Google Scholar 

  66. Diaz A, J. A., Oh, J. S., Yi, G.-R. & Pine, D. J. Photo-printing of faceted DNA patchy particles. Proc. Natl Acad. Sci. USA 117, 10645–10653 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Issa, A. A. & Luyt, A. S. Kinetics of alkoxysilanes and organoalkoxysilanes polymerization: a review. Polymers 11, E537 (2019).

    Article  Google Scholar 

  68. Pantoja, M., Velasco, F., Broekema, D., Abenojar, J. & del Real, J. C. The influence of pH on the hydrolysis process of γ-methacryloxypropyltrimethoxysilane, analyzed by FT-IR, and the silanization of electrogalvanized steel. J. Adhes. Sci. Technol. 24, 1131–1143 (2010).

    Article  CAS  Google Scholar 

  69. Hu, T.-M., Chou, H.-C. & Lin, C.-Y. Facile green synthesis of organosilica nanoparticles by a generic “salt route”. J. Colloid Interface Sci. 539, 634–645 (2019).

    Article  CAS  PubMed  Google Scholar 

  70. Brochier Salon, M.-C., Bayle, P.-A., Abdelmouleh, M., Boufi, S. & Belgacem, M. N. Kinetics of hydrolysis and self condensation reactions of silanes by NMR spectroscopy. Colloids Surf. A Physicochem. Eng. Asp. 312, 83–91 (2008).

    Article  CAS  Google Scholar 

  71. Oh, C., Shim, S.-B., Lee, Y.-G. & Oh, S.-G. Effects of the concentrations of precursor and catalyst on the formation of monodisperse silica particles in sol–gel reaction. Mater. Res. Bull. 46, 2064–2069 (2011).

    Article  CAS  Google Scholar 

  72. van Bommel, M. J., Bernards, T. N. M. & Boonstra, A. H. The influence of the addition of alkyl-substituted ethoxysilane on the hydrolysis–condensation process of TEOS. J. Non-Cryst. Solids 128, 231–242 (1991).

    Article  Google Scholar 

  73. van Bommel, M. J., ten Wolde, P. M. C. & Bernards, T. N. M. The influence of methacryloxypropyltrimethoxysilane on the sol-gel process of TEOS. J. Solgel Sci. Technol. 2, 167–170 (1994).

    Article  Google Scholar 

  74. Wu, C., Wu, Y., Xu, T. & Yang, W. Study of sol–gel reaction of organically modified alkoxysilanes. Part I: investigation of hydrolysis and polycondensation of phenylaminomethyl triethoxysilane and tetraethoxysilane. J. Non-Cryst. Solids 352, 5642–5651 (2006).

    Article  CAS  Google Scholar 

  75. Yang, H., Lu, X. & Xin, Z. One-step synthesis of nonspherical organosilica particles with tunable morphology. Langmuir 34, 11723–11728 (2018).

    Article  CAS  PubMed  Google Scholar 

  76. Liang, R., Fang, X., Qiu, B. & Zou, H. One-step synthesis of golf ball-like thiol-functionalized silica particles. Soft Matter 16, 9113–9120 (2020).

    Article  CAS  Google Scholar 

  77. Eisenberg, P. et al. Cagelike precursors of high-molar-mass silsesquioxanes formed by the hydrolytic condensation of trialkoxysilanes. Macromolecules 33, 1940–1947 (2000).

    Article  CAS  Google Scholar 

  78. Borovin, E., Callone, E., Ribot, F. & Diré, S. Mechanism and kinetics of oligosilsesquioxane growth in the in situ water production sol–gel route: dependence on water availability. Eur. J. Inorg. Chem. 2016, 2166–2174 (2016).

    Article  CAS  Google Scholar 

  79. Tunstall-Garcia, H., Charles, B. L. & Evans, R. C. The role of polyhedral oligomeric silsesquioxanes in optical applications. Adv. Photonics Res. 2, 2000196 (2021).

    Article  CAS  Google Scholar 

  80. Pescarmona, P. P., Aprile, C. & Swaminathan, S. in New and Future Developments in Catalysis (ed. Suib, S. L.) 385–422 (Elsevier, 2013).

  81. Urata, C. et al. Aqueous colloidal mesoporous nanoparticles with ethenylene-bridged silsesquioxane frameworks. J. Am. Chem. Soc. 133, 8102–8105 (2011).

    Article  CAS  PubMed  Google Scholar 

  82. Neibloom, D., Bevan, M. A. & Frechette, J. Surfactant-stabilized spontaneous 3-(trimethoxysilyl) propyl methacrylate nanoemulsions. Langmuir 36, 284–292 (2020).

    Article  CAS  PubMed  Google Scholar 

  83. Neibloom, D., Bevan, M. A. & Frechette, J. Droplet formation and growth mechanisms in reaction-induced spontaneous emulsification of 3-(trimethoxysilyl) propyl methacrylate. Langmuir 37, 11625–11636 (2021).

    Article  CAS  PubMed  Google Scholar 

  84. Zheng, Y., Davis, C. R., Howarter, J. A., Erk, K. A. & Martinez, C. J. Spontaneous emulsions: adjusting spontaneity and phase behavior by hydrophilic–lipophilic difference-guided surfactant, salt, and oil selection. Langmuir 38, 4276–4286 (2022).

    Article  CAS  PubMed  Google Scholar 

  85. Sacanna, S., Irvine, W. T. M., Rossi, L. & Pine, D. J. Lock and key colloids through polymerization-induced buckling of monodisperse silicon oil droplets. Soft Matter 7, 1631–1634 (2011).

    Article  CAS  Google Scholar 

  86. Ohta, T., Nagao, D., Ishii, H. & Konno, M. Preparation of oil-containing, polymeric particles having a single depression with various shapes. Soft Matter 8, 4652–4658 (2012).

    Article  Google Scholar 

  87. Wu, H., Du, X., Meng, X., Qiu, D. & Qiao, Y. A three-tiered colloidosomal microreactor for continuous flow catalysis. Nat. Commun. 12, 6113 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. van der Wel, C., van de Stolpe, G. L., Verweij, R. W. & Kraft, D. J. Micrometer-sized TPM emulsion droplets with surface-mobile binding groups. J. Phys. Condens. Matter 30, 094005 (2018).

    Article  PubMed  Google Scholar 

  89. Shah, Z. H. et al. Synthesis of two-patch particles with controlled patch size via nonequilibrium solidification of droplets on rods. Polymer 177, 91–96 (2019).

    Article  CAS  Google Scholar 

  90. Shah, Z. H. et al. Highly efficient chemically-driven micromotors with controlled snowman-like morphology. Chem. Commun. 56, 15301–15304 (2020).

    Article  CAS  Google Scholar 

  91. Doura, T., Tamanoi, F. & Nakamura, M. Miniaturization of thiol-organosilica nanoparticles induced by an anionic surfactant. J. Colloid Interface Sci. 526, 51–62 (2018).

    Article  CAS  PubMed  Google Scholar 

  92. Vogel, R. et al. Fluorescent organosilica micro- and nanoparticles with controllable size. J. Colloid Interface Sci. 310, 144–150 (2007).

    Article  CAS  PubMed  Google Scholar 

  93. Surawski, P. P. T., Battersby, B. J., Vogel, R., Lawrie, G. & Trau, M. Modification and optimization of organosilica microspheres for peptide synthesis and microsphere-based immunoassays. Mol. BioSyst. 5, 826–831 (2009).

    Article  CAS  PubMed  Google Scholar 

  94. Kamp, M. et al. Cascaded nano-optics to probe microsecond atomic scale phenomena. Proc. Natl Acad. Sci. 117, 14819–14826 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Wang, Y. et al. Three-dimensional lock and key colloids. J. Am. Chem. Soc. 136, 6866–6869 (2014).

    Article  CAS  PubMed  Google Scholar 

  96. Chen, Y., Chen, H.-R. & Shi, J.-L. Construction of homogenous/heterogeneous hollow mesoporous silica nanostructures by silica-etching chemistry: principles, synthesis, and applications. Acc. Chem. Res. 47, 125–137 (2014).

    Article  CAS  PubMed  Google Scholar 

  97. Hunks, W. J. & Ozin, G. A. Challenges and advances in the chemistry of periodic mesoporous organosilicas (PMOs). J. Mater. Chem. 15, 3716–3724 (2005).

    Article  CAS  Google Scholar 

  98. Ren, X. & Tsuru, T. Organosilica-based membranes in gas and liquid-phase separation. Membranes 9, 107 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kadowaki, K., Ishii, H., Nagao, D. & Konno, M. Imprinting dimples on narrowly dispersed polymeric spheres by heterocoagulation between hard polymer particles and soft oil droplets. Langmuir 32, 11600–11605 (2016).

    Article  CAS  PubMed  Google Scholar 

  100. Graf, C., Vossen, D. L. J., Imhof, A. & van Blaaderen, A. A general method to coat colloidal particles with silica. Langmuir 19, 6693–6700 (2003).

    Article  CAS  Google Scholar 

  101. Ma, J., Liu, Y., Bao, Y., Liu, J. & Zhang, J. Research advances in polymer emulsion based on “core–shell” structure particle design. Adv. Colloid Interface Sci. 197198, 118–131 (2013).

    Article  PubMed  Google Scholar 

  102. Deng, T.-S. & Marlow, F. Synthesis of monodisperse polystyrene@vinyl-SiO2 core–shell particles and hollow SiO2 spheres. Chem. Mater. 24, 536–542 (2012).

    Article  CAS  Google Scholar 

  103. Liu, Y. et al. Core–shell particles for simultaneous 3D imaging and optical tweezing in dense colloidal materials. Adv. Mater. 28, 8001–8006 (2016).

    Article  CAS  PubMed  Google Scholar 

  104. Weijgertze, H. M. H., Kegel, W. K. & Zanini, M. Patchy rough colloids as Pickering stabilizers. Soft Matter 16, 8002–8012 (2020).

    Article  CAS  PubMed  Google Scholar 

  105. Lan, Y. et al. Unexpected stability of aqueous dispersions of raspberry-like colloids. Nat. Commun. 9, 3614 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Kamp, M. et al. Selective depletion interactions in mixtures of rough and smooth silica spheres. Langmuir 32, 1233–1240 (2016).

    Article  CAS  PubMed  Google Scholar 

  107. Van Blaaderen, A., Imhof, A., Hage, W. & Vrij, A. Three-dimensional imaging of submicrometer colloidal particles in concentrated suspensions using confocal scanning laser microscopy. Langmuir 8, 1514–1517 (1992).

    Article  Google Scholar 

  108. Liu, Y. et al. Colloidal organosilica spheres for three-dimensional confocal microscopy. Langmuir 35, 7962–7969 (2019).

    Article  CAS  PubMed  Google Scholar 

  109. Kamp, M. et al. Regiospecific nucleation and growth of silane coupling agent droplets onto colloidal particles. J. Phys. Chem. C 121, 19989–19998 (2017).

    Article  CAS  Google Scholar 

  110. Liu, M., Dong, F., Jackson, N. S., Ward, M. D. & Weck, M. Customized chiral colloids. J. Am. Chem. Soc. 142, 16528–16532 (2020).

    Article  CAS  PubMed  Google Scholar 

  111. Kamp, M. et al. Multivalent patchy colloids for quantitative 3D self-assembly studies. Langmuir 36, 2403–2418 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Wang, Z. et al. Active patchy colloids with shape-tunable dynamics. J. Am. Chem. Soc. 141, 14853–14863 (2019).

    Article  CAS  PubMed  Google Scholar 

  113. Aubret, A., Martinet, Q. & Palacci, J. Metamachines of pluripotent colloids. Nat. Commun. 12, 36398 (2021).

    Article  Google Scholar 

  114. Gong, Z., Hueckel, T., Yi, G.-R. & Sacanna, S. Patchy particles made by colloidal fusion. Nature 550, 234 (2017).

    Article  PubMed  Google Scholar 

  115. He, M. et al. Colloidal diamond. Nature 585, 524–529 (2020).

    Article  CAS  PubMed  Google Scholar 

  116. He, M., Gales, J. P., Shen, X., Kim, M. J. & Pine, D. J. Colloidal particles with triangular patches. Langmuir 37, 7246–7253 (2021).

    Article  CAS  PubMed  Google Scholar 

  117. Oh, J. S., Yi, G.-R. & Pine, D. J. Reconfigurable transitions between one- and two-dimensional structures with bifunctional DNA-coated Janus colloids. ACS Nano 14, 15786–15792 (2020).

    Article  CAS  PubMed  Google Scholar 

  118. Segers, M., Vermeer, I., Möller, M., Verheijen, M. & Buskens, P. Synthesis and characterization of hybrid particles obtained in a one-pot process through simultaneous sol-gel reaction of (3-mercaptopropyl)trimethoxysilane and emulsion polymerization of styrene. Colloids Interfaces 1, 7 (2017).

    Article  CAS  Google Scholar 

  119. Kim, D.-Y. et al. Microfluidic preparation of monodisperse polymeric microspheres coated with silica nanoparticles. Sci. Rep. 8, 8525 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Opdam, J., Tuinier, R., Hueckel, T., J. Snoeren, T. & Sacanna, S. Selective colloidal bonds via polymer-mediated interactions. Soft Matter 16, 7438–7446 (2020).

    Article  CAS  PubMed  Google Scholar 

  121. García-Santamaría, F., Míguez, H., Ibisate, M., Meseguer, F. & López, C. Refractive index properties of calcined silica submicrometer spheres. Langmuir 18, 1942–1944 (2002).

    Article  Google Scholar 

  122. Seet, K. Y. T. et al. Refractometry of organosilica microspheres. Appl. Opt. 46, 1554–1561 (2007).

    Article  CAS  PubMed  Google Scholar 

  123. Dong, F., Liu, M., Grebe, V., Ward, M. D. & Weck, M. Assembly of shape-tunable colloidal dimers in a dielectrophoretic field. Chem. Mater. 32, 6898–6905 (2020).

    Article  CAS  Google Scholar 

  124. Zhu, J., Wang, H. & Zhang, Z. Shape-tunable Janus micromotors via surfactant-induced dewetting. Langmuir 37, 4964–4970 (2021).

    Article  CAS  PubMed  Google Scholar 

  125. Iwamatsu, M. Size-dependent contact angle and the wetting and drying transition of a droplet adsorbed onto a spherical substrate: line-tension effect. Phys. Rev. E 94, 042803 (2016).

    Article  PubMed  Google Scholar 

  126. Liu, B. & Böker, A. Measuring rotational diffusion of colloidal spheres with confocal microscopy. Soft Matter 12, 6033–6037 (2016).

    Article  CAS  PubMed  Google Scholar 

  127. Yanagishima, T., Liu, Y., Tanaka, H. & Dullens, R. Particle-level visualization of hydrodynamic and frictional couplings in dense suspensions of spherical colloids. Phys. Rev. X 11, 021056 (2021).

    CAS  Google Scholar 

  128. Reculusa, S. et al. Hybrid dissymmetrical colloidal particles. Chem. Mater. 17, 3338–3344 (2005).

    Article  CAS  Google Scholar 

  129. Lv, X. et al. Synthesis of snowman-shaped photocatalytic microrotors and mechanical micropumps. ChemNanoMat 7, 902–905 (2021).

    Article  CAS  Google Scholar 

  130. Wang, L., Shi, S., Luo, Z., Qu, N. & Liu, B. Hierarchical, highly open microtubes and columnar liquid crystals self-assembled from symmetrical and asymmetrical colloidal rings. Angew. Chem. Int. Ed. 61, e202112507 (2022).

    Article  CAS  Google Scholar 

  131. Luo, Z., Li, S., Wang, L. & Liu, B. Asymmetrical ring-shaped colloidal particles for self-assembly and superhydrophobic coatings. Chem. Commun. 58, 5757–5760 (2022).

    Article  CAS  Google Scholar 

  132. Liu, M., Zheng, X., Grebe, V., Pine, D. J. & Weck, M. Tunable assembly of hybrid colloids induced by regioselective depletion. Nat. Mater. 19, 1354–1361 (2020).

    Article  CAS  PubMed  Google Scholar 

  133. van Ravensteijn, B. G. P., Kamp, M., van Blaaderen, A. & Kegel, W. K. General route toward chemically anisotropic colloids. Chem. Mater. 25, 4348–4353 (2013).

    Article  Google Scholar 

  134. Reculusa, S., Mingotaud, C., Bourgeat-Lami, E., Duguet, E. & Ravaine, S. Synthesis of daisy-shaped and multipod-like silica/polystyrene nanocomposites. Nano Lett. 4, 1677–1682 (2004).

    Article  CAS  Google Scholar 

  135. Nagao, D., Hashimoto, M., Hayasaka, K. & Konno, M. Synthesis of anisotropic polymer particles with soap-free emulsion polymerization in the presence of a reactive silane coupling agent. Macromol. Rapid Commun. 29, 1484–1488 (2008).

    Article  CAS  Google Scholar 

  136. Wang, Y. et al. Colloids with valence and specific directional bonding. Nature 491, 51–55 (2012).

    Article  CAS  PubMed  Google Scholar 

  137. Forestier, T., Ferrié, M. & Ravaine, S. Synthesis of hematite/silica/polymer composite colloids with a tunable morphology. Colloid Polym. Sci. 291, 187–192 (2013).

    Article  CAS  Google Scholar 

  138. Shibata, N., Nagao, D., Ishii, H. & Konno, M. Preparation of various Janus composite particles with two components differently combined. Colloid Polym. Sci. 291, 137–142 (2013).

    Article  CAS  Google Scholar 

  139. Zhang, W. et al. Effective structure control of colloidal molecules and the morphology evolution mechanism investigation. Langmuir 37, 12429–12437 (2021).

    Article  CAS  PubMed  Google Scholar 

  140. Sacanna, S. & Pine, D. J. Shape-anisotropic colloids: building blocks for complex assemblies. Curr. Opin. Colloid Interface Sci. 16, 96–105 (2011).

    Article  CAS  Google Scholar 

  141. Tian, L. et al. Particle-click-particle: colloidal clusters from click seeded emulsion polymerization. Polym. Chem. 13, 1084–1089 (2022).

    Article  CAS  Google Scholar 

  142. Yi, C. et al. Self-limiting directional nanoparticle bonding governed by reaction stoichiometry. Science 369, 1369–1374 (2020).

    Article  CAS  PubMed  Google Scholar 

  143. Kim, J.-W., Larsen, R. J. & Weitz, D. A. Synthesis of nonspherical colloidal particles with anisotropic properties. J. Am. Chem. Soc. 128, 14374–14377 (2006).

    Article  CAS  PubMed  Google Scholar 

  144. Park, J.-G., Forster, J. D. & Dufresne, E. R. High-yield synthesis of monodisperse dumbbell-shaped polymer nanoparticles. J. Am. Chem. Soc. 132, 5960–5961 (2010).

    Article  CAS  PubMed  Google Scholar 

  145. Kraft, D. J. et al. Surface roughness directed self-assembly of patchy particles into colloidal micelles. Proc. Natl Acad. Sci. USA 109, 10787 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Peng, B., Vutukuri, H. R., van Blaaderen, A. & Imhof, A. Synthesis of fluorescent monodisperse non-spherical dumbbell-like model colloids. J. Mater. Chem. 22, 21893–21900 (2012).

    Article  CAS  Google Scholar 

  147. Gui, H. et al. Preparation of asymmetric particles by controlling the phase separation of seeded emulsion polymerization with ethanol/water mixture. J. Colloid Interface Sci. 618, 496–506 (2022).

    Article  CAS  PubMed  Google Scholar 

  148. Ma, F., Wang, S., Wu, D. T. & Wu, N. Electric-field-induced assembly and propulsion of chiral colloidal clusters. Proc. Natl Acad. Sci. USA 112, 6307–6312 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Meester, V. & Kraft, D. J. Spherical, dimpled, and crumpled hybrid colloids with tunable surface morphology. Langmuir 32, 10668–10677 (2016).

    Article  CAS  PubMed  Google Scholar 

  150. Kim, J.-W., Larsen, R. J. & Weitz, D. A. Uniform nonspherical colloidal particles with tunable shapes. Adv. Mater. 19, 2005–2009 (2007).

    Article  CAS  Google Scholar 

  151. Peng, B. et al. Site-specific growth of polymers on silica rods. Soft Matter 10, 9644–9650 (2014).

    Article  CAS  PubMed  Google Scholar 

  152. Mann, D. et al. Protecting patches in colloidal synthesis of Au semishells. Chem. Commun. 53, 3898–3901 (2017).

    Article  CAS  Google Scholar 

  153. Youssef, M., Hueckel, T., Yi, G.-R. & Sacanna, S. Shape-shifting colloids via stimulated dewetting. Nat. Commun. 7, 12216 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Wang, Y., McGinley, J. T. & Crocker, J. C. Dimpled polyhedral colloids formed by colloidal crystal templating. Langmuir 33, 3080–3087 (2017).

    Article  CAS  PubMed  Google Scholar 

  155. Shillingford, C., Kim, B. M. & Weck, M. Capillary assembly of liquid particles. Small 16, 1907523 (2020).

    Article  CAS  Google Scholar 

  156. Oh, J. S., Lee, S., Glotzer, S. C., Yi, G.-R. & Pine, D. J. Colloidal fibers and rings by cooperative assembly. Nat. Commun. 10, 3936 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Edmond, K. V. et al. Large-scale synthesis of colloidal bowl-shaped particles. Soft Matter 17, 6176–6181 (2021).

    Article  CAS  PubMed  Google Scholar 

  158. Schade, N. B. et al. Tetrahedral colloidal clusters from random parking of bidisperse spheres. Phys. Rev. Lett. 110, 148303 (2013).

    Article  PubMed  Google Scholar 

  159. Shelke, Y., Marín-Aguilar, S., Camerin, F., Dijkstra, M. & Kraft, D. J. Exploiting anisotropic particle shape to electrostatically assemble colloidal molecules with high yield and purity. J. Colloid Interface Sci. 629, 322–333 (2023).

    Article  CAS  PubMed  Google Scholar 

  160. Liu, Y., Wang, J., Imaz, I. & Maspoch, D. Assembly of colloidal clusters driven by the polyhedral shape of metal–organic framework particles. J. Am. Chem. Soc. 143, 12943–12947 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Mani, E. et al. Sheet-like assemblies of spherical particles with point-symmetrical patches. J. Chem. Phys. 136, 144706 (2012).

    Article  PubMed  Google Scholar 

  162. Noya, E. G., Zubieta, I., Pine, D. J. & Sciortino, F. Assembly of clathrates from tetrahedral patchy colloids with narrow patches. J. Chem. Phys. 151, 094502 (2019).

    Article  PubMed  Google Scholar 

  163. Xu, Z., Hueckel, T., Irvine, W. T. M. & Sacanna, S. Transmembrane transport in inorganic colloidal cell-mimics. Nature 597, 220–224 (2021).

    Article  CAS  PubMed  Google Scholar 

  164. Zheng, X., Liu, M., He, M., Pine, D. J. & Weck, M. Shape-shifting patchy particles. Angew. Chem. Int. Ed. 129, 5599–5603 (2017).

    Article  Google Scholar 

  165. Stuij, S. et al. Revealing polymerization kinetics with colloidal dipatch particles. Phys. Rev. Lett. 127, 108001 (2021).

    Article  CAS  PubMed  Google Scholar 

  166. Swinkels, P. J. M. et al. Revealing pseudorotation and ring-opening reactions in colloidal organic molecules. Nat. Commun. 12, 2810 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Nguyen, V. D., Dang, M. T., Nguyen, T. A. & Schall, P. Critical Casimir forces for colloidal assembly. J. Phys. Condens. Matter 28, 043001 (2016).

    Article  CAS  PubMed  Google Scholar 

  168. Swinkels, M., Gong, P. J., Sacanna, S., Noya, E. & Schall, P. Phases of surface-confined trivalent colloidal particles. Soft Matter 19, 3414–3422 (2023).

    Article  CAS  PubMed  Google Scholar 

  169. Elacqua, E., Zheng, X., Shillingford, C., Liu, M. & Weck, M. Molecular recognition in the colloidal world. Acc. Chem. Res. 50, 2756–2766 (2017).

    Article  CAS  PubMed  Google Scholar 

  170. Barrow, S. J., Kasera, S., Rowland, M. J., del Barrio, J. & Scherman, O. A. Cucurbituril-based molecular recognition. Chem. Rev. 115, 12320–12406 (2015).

    Article  CAS  PubMed  Google Scholar 

  171. Elacqua, E., Zheng, X. & Weck, M. Light-mediated reversible assembly of polymeric colloids. ACS Macro Lett. 6, 1060–1065 (2017).

    Article  CAS  PubMed  Google Scholar 

  172. Zheng, X., Wang, Y., Wang, Y., Pine, D. J. & Weck, M. Thermal regulation of colloidal materials architecture through orthogonal functionalizable patchy particles. Chem. Mater. 28, 3984–3989 (2016).

    Article  CAS  Google Scholar 

  173. Zhang, T., Lyu, D., Xu, W., Mu, Y. & Wang, Y. Programming self-assembled materials with DNA-coated colloids. Front. Phys. 9, 330 (2021).

    Google Scholar 

  174. Wang, Y. et al. Crystallization of DNA-coated colloids. Nat. Commun. 6, 7253 (2015).

    Article  CAS  PubMed  Google Scholar 

  175. Wang, Y. et al. Synthetic strategies toward DNA-coated colloids that crystallize. J. Am. Chem. Soc. 137, 10760–10766 (2015).

    Article  CAS  PubMed  Google Scholar 

  176. Khalaf, R., Viamonte, A., Ducrot, E., Mérindol, R. & Ravaine, S. Transfer of multi-DNA patches by colloidal stamping. Nanoscale 15, 573–577 (2022).

    Article  Google Scholar 

  177. Lee, S., Zheng, C. Y., Bujold, K. E. & Mirkin, C. A. A cross-linking approach to stabilizing stimuli-responsive colloidal crystals engineered with DNA. J. Am. Chem. Soc. 141, 11827–11831 (2019).

    Article  CAS  PubMed  Google Scholar 

  178. Petukhov, A. V., Tuinier, R. & Vroege, G. J. Entropic patchiness: effects of colloid shape and depletion. Curr. Opin. Colloid Interface Sci. 30, 54–61 (2017).

    Article  CAS  Google Scholar 

  179. Badaire, S., Cottin-Bizonne, C. & Stroock, A. D. Experimental investigation of selective colloidal interactions controlled by shape, surface roughness, and steric layers. Langmuir 24, 11451–11463 (2008).

    Article  CAS  PubMed  Google Scholar 

  180. Colón-Meléndez, L. et al. Binding kinetics of lock and key colloids. J. Chem. Phys. 142, 174909 (2015).

    Article  PubMed  Google Scholar 

  181. Liu, M. et al. Two-dimensional (2D) or quasi-2D superstructures from DNA-coated colloidal particles. Angew. Chem. Int. Ed.133, 5808–5812 (2021).

    Article  Google Scholar 

  182. Liljeström, V., Chen, C., Dommersnes, P., Fossum, J. O. & Gröschel, A. H. Active structuring of colloids through field-driven self-assembly. Curr. Opin. Colloid Interface Sci. 40, 25–41 (2019).

    Article  Google Scholar 

  183. Driscoll, M. & Delmotte, B. Leveraging collective effects in externally driven colloidal suspensions: experiments and simulations. Curr. Opin. Colloid Interface Sci. 40, 42–57 (2019).

    Article  CAS  Google Scholar 

  184. Rossi, L. Magnetic colloids as building blocks for complex structures: Preparation and assembly. In Frontiers of Nanoscience Vol. 13 (eds Chakrabarti, D. & Sacanna, S.) Ch. 1 (Elsevier, 2019).

  185. Meijer, J.-M. & Rossi, L. Preparation, properties, and applications of magnetic hematite microparticles. Soft Matter 17, 2354–2368 (2021).

    Article  CAS  PubMed  Google Scholar 

  186. Van Blaaderen, A. et al. Manipulating the self assembly of colloids in electric fields. Eur. Phys. J. Spec. Top. 222, 2895–2909 (2013).

    Article  Google Scholar 

  187. Jia, Z., Sacanna, S. & Lee, S. S. Dielectrophoretic assembly of dimpled colloids into open packing structures. Soft Matter 13, 5724–5730 (2017).

    Article  CAS  PubMed  Google Scholar 

  188. Jia, Z., Youssef, M., Samper, A., Sacanna, S. & Lee, S. S. Reversible solid-state phase transitions in confined two-layer colloidal crystals. Colloid Polym. Sci. 298, 1611–1617 (2020).

    Article  CAS  Google Scholar 

  189. Collins, K. A. et al. Electric-field-induced reversible phase transitions in two-dimensional colloidal crystals. Langmuir 31, 10411–10417 (2015).

    Article  CAS  PubMed  Google Scholar 

  190. Boon, N. et al. Screening of heterogeneous surfaces: charge renormalization of Janus particles. J. Phys. Condens. Matter 22, 104104 (2010).

    Article  CAS  PubMed  Google Scholar 

  191. Song, P. et al. Patchy particle packing under electric fields. J. Am. Chem. Soc. 137, 3069–3075 (2015).

    Article  CAS  PubMed  Google Scholar 

  192. Wang, Z., Wang, Z., Li, J. & Wang, Y. Directional and reconfigurable assembly of metallodielectric patchy particles. ACS Nano 15, 5439–5448 (2021).

    Article  CAS  PubMed  Google Scholar 

  193. Yan, J. et al. Reconfiguring active particles by electrostatic imbalance. Nat. Mater. 15, 1095–1099 (2016).

    Article  CAS  PubMed  Google Scholar 

  194. Abrikosov, A. I., Sacanna, S., Philipse, A. P. & Linse, P. Self-assembly of spherical colloidal particles with off-centered magnetic dipoles. Soft Matter 9, 8904–8913 (2013).

    Article  CAS  Google Scholar 

  195. Sprinkle, B., Wee, E. B., van der, Luo, Y., Driscoll, M. M. & Donev, A. Driven dynamics in dense suspensions of microrollers. Soft Matter 16, 7982–8001 (2020).

    Article  CAS  PubMed  Google Scholar 

  196. van der Wee, E. B. et al. A simple catch: fluctuations enable hydrodynamic trapping of microrollers by obstacles. Sci. Adv. 9, eade0320 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Kang, N., Zhu, J., Zhang, X., Wang, H. & Zhang, Z. Reconfiguring self-assembly of photoresponsive hybrid colloids. J. Am. Chem. Soc. 144, 4754–4758 (2022).

    Article  CAS  PubMed  Google Scholar 

  198. Palacci, J., Sacanna, S., Steinberg, A. P., Pine, D. J. & Chaikin, P. M. Living crystals of light-activated colloidal surfers. Science 339, 936–940 (2013).

    Article  CAS  PubMed  Google Scholar 

  199. Aubret, A., Youssef, M., Sacanna, S. & Palacci, J. Targeted assembly and synchronization of self-spinning microgears. Nat. Phys. 14, 1114–1118 (2018).

    Article  CAS  Google Scholar 

  200. Gonzalez Ortiz, D., Pochat-Bohatier, C., Cambedouzou, J., Bechelany, M. & Miele, P. Current trends in Pickering emulsions: particle morphology and applications. Engineering 6, 468–482 (2020).

    Article  Google Scholar 

  201. Dekker, R. I. et al. Is there a difference between surfactant-stabilised and Pickering emulsions? Soft Matter 19, 1941–1951 (2023).

    Article  CAS  PubMed  Google Scholar 

  202. Kegel, W. K. & Groenewold, J. Scenario for equilibrium solid-stabilized emulsions. Phys. Rev. E 80, 030401 (2009).

    Article  Google Scholar 

  203. Hasnain, J. et al. Spontaneous emulsification induced by nanoparticle surfactants. J. Chem. Phys. 153, 224705 (2020).

    Article  CAS  PubMed  Google Scholar 

  204. Ketzetzi, S., de Graaf, J. & Kraft, D. J. Diffusion-based height analysis reveals robust microswimmer-wall separation. Phys. Rev. Lett. 125, 238001 (2020).

    Article  CAS  PubMed  Google Scholar 

  205. Ebbens, S. J. Active colloids: progress and challenges towards realising autonomous applications. Curr. Opin. Colloid Interface Sci. 21, 14–23 (2016).

    Article  CAS  Google Scholar 

  206. Notingher, I. et al. In situ characterisation of living cells by Raman spectroscopy. Spectroscopy 16, 43–51 (2002).

    Article  CAS  Google Scholar 

  207. Hess, H., Howard, J. & Vogel, V. A piconewton forcemeter assembled from microtubules and kinesins. Nano Lett. 2, 1113–1115 (2002).

    Article  Google Scholar 

  208. Hess, H., Bachand, G. D. & Vogel, V. Powering nanodevices with biomolecular motors. Chem. Eur. J. 10, 2110–2116 (2004).

    Article  CAS  PubMed  Google Scholar 

  209. Kabir, A. Md. R., Kageyama, Y. & Kakugo, A. Molecular actuators and their applications in molecular robotics. In Encyclopedia of Robotics (eds Ang, M. H. et al.) (Springer, 2020).

  210. Ikram, M. et al. Light-activated fuel-free Janus metal organic framework colloidal motors for the removal of heavy metal ions. ACS Appl. Mater. Interfaces 13, 51799–51806 (2021).

    Article  CAS  PubMed  Google Scholar 

  211. Xu, Z., Hueckel, T., Irvine, W. T. M. & Sacanna, S. Caged colloids. Chem. Mater. 35, 6357–6363 (2023).

    Article  CAS  Google Scholar 

  212. Peng, B., Liu, Y., Aarts, D. G. A. L. & Dullens, R. P. A. Stabilisation of hollow colloidal TiO2 particles by partial coating with evenly distributed lobes. Soft Matter 17, 1480–1486 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Liang, R. & Zou, H. Removal of aqueous Hg(II) by thiol-functionalized nonporous silica microspheres prepared by one-step sol–gel method. RSC Adv. 10, 18534–18542 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Ren, G., Wang, W., Shang, M., Zou, H. & Cheng, S. Using a macroporous silver shell to coat sulfonic acid group-functionalized silica spheres and their applications in catalysis and surface-enhanced Raman scattering. Langmuir 31, 10517–10523 (2015).

    Article  CAS  PubMed  Google Scholar 

  215. Hu, H. et al. Reversible and precise self-assembly of Janus metal-organosilica nanoparticles through a linker-free approach. ACS Nano 10, 7323–7330 (2016).

    Article  CAS  PubMed  Google Scholar 

  216. Huang, J. et al. Tracking interfacial single-molecule pH and binding dynamics via vibrational spectroscopy. Sci. Adv. 7, eabg1790 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Morphew, D., Shaw, J., Avins, C. & Chakrabarti, D. Programming hierarchical self-assembly of patchy particles into colloidal crystals via colloidal molecules. ACS Nano 12, 2355–2364 (2018).

    Article  CAS  PubMed  Google Scholar 

  218. Neophytou, A., Manoharan, V. N. & Chakrabarti, D. Self-assembly of patchy colloidal rods into photonic crystals robust to stacking faults. ACS Nano 15, 2668–2678 (2021).

    Article  CAS  PubMed  Google Scholar 

  219. Yang, S. & Li, Y. Fluorescent hybrid silica nanoparticles and their biomedical applications. WIREs Nanomed. Nanobiotechnol. 12, e1603 (2020).

    Article  Google Scholar 

  220. Nakamura, M., Mochizuki, C., Kuroda, C., Shiohama, Y. & Nakamura, J. Size effect of fluorescent thiol-organosilica particles on their distribution in the mouse spleen. Colloids Surf. B Biointerfaces 228, 113397 (2023).

    Article  CAS  PubMed  Google Scholar 

  221. Encinas, N. et al. Mixed-charge pseudo-zwitterionic mesoporous silica nanoparticles with low-fouling and reduced cell uptake properties. Acta Biomater. 84, 317–327 (2019).

    Article  CAS  PubMed  Google Scholar 

  222. Nakamura, M. Biomedical applications of organosilica nanoparticles toward theranostics. Nanotechnol. Rev. 1, 469–491 (2012).

    Article  CAS  Google Scholar 

  223. Shah, Z. H., Sockolich, M., Rivas, D. & Das, S. Fabrication and open-loop control of three-lobed nonspherical Janus microrobots. MRS Adv. 8, 1028–1032 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Picchetti, P. et al. Breaking with light: stimuli-responsive mesoporous organosilica particles. Chem. Mater. 32, 392–399 (2020).

    Article  CAS  Google Scholar 

  225. Riccio, D. A., Nugent, J. L. & Schoenfisch, M. H. Stöber synthesis of nitric oxide-releasing S-nitrosothiol-modified silica particles. Chem. Mater. 23, 1727–1735 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Grober, D. et al. Unconventional colloidal aggregation in chiral bacterial baths. Nat. Phys. 19, 1680–1688 (2023).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

S.S. acknowledges support from the US Army Research Office under award number W911NF-21-1-0011. R.P.A.D. acknowledges financial support from the European Research Council (ERC Consolidator Grant number 724834 OMCIDC).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed substantially to discussion of the content. M.K. substantially wrote the first draft of the article. All authors reviewed and edited the manuscript before submission.

Corresponding authors

Correspondence to Marlous Kamp or Roel P. A. Dullens.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Chemistry thanks Hua Zou, Bing Liu, Huaguang Wang and Serge Ravaine for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Critical point

Temperature above which the components of a medium are miscible.

Debye length

Characteristic colloidal length scale that expresses how far the effect of a colloid’s electrostatic charge persists in the medium at hand owing to screening by the charge carriers (ionic species) in the medium.

Depletion force

Effective attractive force between colloidal particles arising when suspended in a solution of solutes (for example, polymer or smaller particles). The solutes cannot reach the colloidal particles closer than their own radius (excluded volume), which causes the solutes to be excluded from the spaces between the particles (overlap volume). This results in a net attractive force between the colloidal particles.

Dielectrophoresis

(DEP). The motion of colloidal particles in a non-uniform electric field, driven by induced polarization acquired in the field provided the dielectric constant of particles differs from that of the medium.

Diffusiophoresis

The motion of particles (colloids, (macro)molecules, and so on) caused by a bulk concentration gradient of dissolved solutes in the medium.

Induced-charge electrophoresis

(ICEP). The motion of colloidal particles in an alternating electric field, driven by asymmetric fluid flow on account of the asymmetric surface properties of a particle. The asymmetric fluid flow itself is caused by induced-charge electro-osmosis or the effect of the alternating electric field on the ion clouds around colloidal particles.

Nematic phase

Type of liquid crystal in which anisotropic colloidal particles are oriented along a common direction but exhibit no positional order.

Pair potential

The potential energy between two colloidal particles as a function of the distance between them.

Protein corona

Coating of (non-bound) biomolecules, usually proteins, around the surface of a nanoparticle. This protein corona often assembles when colloids are suspended in biological media.

(Refractive) Index matching

In a dispersion, the refractive index of the medium can be matched to that of the colloids by careful choice of media. This is called index matching. It is usually done to reduce scattering of light from the particles, improving the quality of images taken by (confocal) fluorescence microscopy.

Sedimentation–diffusion equilibrium

In a colloidal dispersion, particles will settle owing to the gravitational force, whereas diffusion causes an upward particle flux. The balance of these two effects results in an equilibrium height distribution of the particles, called the sedimentation–diffusion equilibrium.

Spinodal decomposition

Spontaneous separation of a medium into two (or more) co-existing phases.

Yukawa interaction (screened Coulombic potential)

The pair potential between two charged colloidal particles in a medium, wherein the ions in the medium screen the colloidal electrostatic charges.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamp, M., Sacanna, S. & Dullens, R.P.A. Spearheading a new era in complex colloid synthesis with TPM and other silanes. Nat Rev Chem (2024). https://doi.org/10.1038/s41570-024-00603-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41570-024-00603-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing