Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

Laboratory robotics

Automation of air-free synthesis

Cutting-edge chemistry is often performed in non-atmospheric conditions. Continued development of the Chemputer platform now enables the utilization of sensitive compounds in automated synthetic protocols.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A brief timeline of advances in automated synthesis.

References

  1. Wilbraham, L., Mehr, S. H. M. & Cronin, L. Digitizing chemistry using the chemical processing unit: From synthesis to discovery. Acc. Chem. Res. 54, 253–262 (2021).

    Article  CAS  PubMed  Google Scholar 

  2. Olsen, K. The first 110 years of laboratory automation: Technologies, applications, and the creative scientist. J. Lab. Autom. 17, 469–480 (2012).

    Article  PubMed  Google Scholar 

  3. Stevens, T. Rapid and automatic filtration. Am. Chemist 6, 102 (1875).

    Google Scholar 

  4. Palkin, S., Murray, A. G. & Watkins, H. R. Automatic devices for extracting alkaloidal solutions. Ind. Eng. Chem. 17, 612–614 (1925).

    Article  CAS  Google Scholar 

  5. Ferguson, B. Jr. Semiautomatic fractionation. A rapid analytical method. Ind. Eng. Chem. Anal. Ed. 14, 493–496 (1942).

    Article  CAS  Google Scholar 

  6. Craig, L. C., Gregory, J. D. & Hausmann, W. Versatile laboratory concentration device. Anal. Chem. 22, 1462–1462 (1950).

    Article  CAS  Google Scholar 

  7. Steiner, S. et al. Organic synthesis in a modular robotic system driven by a chemical programming language. Science 363, eaav2211 (2019).

    Article  CAS  PubMed  Google Scholar 

  8. Bell, N. L. et al. Autonomous execution of highly reactive chemical transformations in the Schlenkputer. Nat. Chem. Eng. 1, 180–189 (2024).

    Article  Google Scholar 

  9. Malig, T. C., Yunker, L. P. E., Steiner, S. & Hein, J. E. Online high-performance liquid chromatography analysis of Buchwald–Hartwig aminations from within an inert environment. ACS Catal. 10, 13236–13244 (2020).

    Article  CAS  Google Scholar 

  10. Kleoff, M., Schwan, J., Christmann, M. & Heretsch, P. A Modular, argon-driven flow platform for natural product synthesis and late-stage transformations. Org. Lett. 23, 2370–2374 (2021).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Connor W. Coley.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahjour, B.A., Coley, C.W. Automation of air-free synthesis. Nat Rev Chem (2024). https://doi.org/10.1038/s41570-024-00599-x

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/s41570-024-00599-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing