Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Small molecule approaches to targeting RNA

Abstract

The development of innovative methodologies to identify RNA binders has attracted enormous attention in chemical biology and drug discovery. Although antibiotics targeting bacterial ribosomal RNA have been on the market for decades, the renewed interest in RNA targeting reflects the need to better understand complex intracellular processes involving RNA. In this context, small molecules are privileged tools used to explore the biological functions of RNA and to validate RNAs as therapeutic targets, and they eventually are to become new drugs. Despite recent progress, the rational design of specific RNA binders requires a better understanding of the interactions which occur with the RNA target to reach the desired biological response. In this Review, we discuss the challenges to approaching this underexplored chemical space, together with recent strategies to bind, interact and affect biologically relevant RNAs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Historical view of RNA ligands as marketed drugs.
Fig. 2: RNA binders based on aminoglycoside structure.
Fig. 3: RNA binders targeting secondary structures.
Fig. 4: NMR and SHAPE methodologies for RNA structure determination.
Fig. 5: Achieving RNA binding with additional functionalities.

Similar content being viewed by others

References

  1. Childs-Disney, J. L. et al. Targeting RNA structures with small molecules. Nat. Rev. Drug Discov. 21, 736–762 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Crooke, S. T., Baker, B. F., Crooke, R. M. & Liang, X. H. Antisense technology: an overview and prospectus. Nat. Rev. Drug Discov. 20, 427–453 (2021).

    CAS  PubMed  Google Scholar 

  3. Roberts, T. C., Langer, R. & Wood, M. J. A. Advances in oligonucleotide drug delivery. Nat. Rev. Drug Discov. 19, 673–694 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Falese, J. P., Donlic, A. & Hargrove, A. E. Targeting RNA with small molecules: from fundamental principles towards the clinic. Chem. Soc. Rev. 50, 2224–2243 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Warner, K. D., Hajdin, C. E. & Weeks, K. M. Principles for targeting RNA with drug-like small molecules. Nat. Rev. Drug Discov. 17, 547–558 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Zamani, F. & Suzuki, T. Synthetic RNA modulators in drug discovery. J. Med. Chem. 64, 7110–7155 (2021).

    CAS  PubMed  Google Scholar 

  7. Magnet, S. & Blanchard, J. S. Molecular insights into aminoglycoside action and resistance. Chem. Rev. 105, 477–498 (2005).

    CAS  PubMed  Google Scholar 

  8. Wilson, D. N. Ribosome-targeting antibiotics and mechanisms of bacterial resistance. Nat. Rev. Microbiol. 12, 35–48 (2014).

    CAS  PubMed  Google Scholar 

  9. Thomas, J. R. & Hergenrother, P. J. Targeting RNA with small molecules. Chem. Rev. 108, 1171–1224 (2008).

    CAS  PubMed  Google Scholar 

  10. Ratni, H., Scalco, R. S. & Stephan, A. H. Risdiplam, the first approved small molecule splicing modifier drug as a blueprint for future transformative medicines. ACS Med. Chem. Lett. 12, 874–877 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Di Giorgio, A. & Duca, M. Synthetic small-molecule RNA ligands: future prospects as therapeutic agents. MedChemComm 10, 1242–1255 (2019).

    PubMed  PubMed Central  Google Scholar 

  12. Ganser, L. R. et al. High-performance virtual screening by targeting a high-resolution RNA dynamic ensemble. Nat. Struct. Mol. Biol. 25, 425–434 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Padroni, G., Patwardhan, N. N., Schapira, M. & Hargrove, A. E. Systematic analysis of the interactions driving small molecule-RNA recognition. RSC Med. Chem. 11, 802–813 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang, S., Huber, P. W., Cui, M., Czarnik, A. W. & Mei, H. Y. Binding of neomycin to the TAR element of HIV-1 RNA induces dissociation of Tat protein by an allosteric mechanism. Biochemistry 37, 5549–5557 (1998).

    CAS  PubMed  Google Scholar 

  15. Golkar, T. et al. Structural basis for plazomicin antibiotic action and resistance. Commun. Biol. 4, 729 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Aradi, K., Di Giorgio, A. & Duca, M. Aminoglycoside conjugation for RNA targeting: antimicrobials and beyond. Chem. Eur. J. 26, 12273–12309 (2020).

    CAS  PubMed  Google Scholar 

  17. Bera, S., Mondal, D., Palit, S. & Schweizer, F. Structural modifications of the neomycin class of aminoglycosides. MedChemComm 7, 1499–1534 (2016).

    CAS  Google Scholar 

  18. Ennifar, E. et al. Structure-guided discovery of a novel aminoglycoside conjugate targeting HIV-1 RNA viral genome. ACS Chem. Biol. 8, 2509–2517 (2013).

    CAS  PubMed  Google Scholar 

  19. Blount, K. F. & Tor, Y. A tale of two targets: differential RNA selectivity of nucleobase-aminoglycoside conjugates. ChemBioChem 7, 1612–1621 (2006).

    CAS  PubMed  Google Scholar 

  20. Gebert, L. F. R. & MacRae, I. J. Regulation of microRNA function in animals. Nat. Rev. Mol. Cell. Biol. 20, 21–37 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Maucort, C. et al. Design and implementation of synthetic RNA binders for the inhibition of miR-21 biogenesis. ACS Med. Chem. Lett. 12, 899–906 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Vo, D. D. et al. Building of neomycin-nucleobase-amino acid conjugates for the inhibition of oncogenic miRNAs biogenesis. Org. Biomol. Chem. 16, 6262–6274 (2018).

    CAS  PubMed  Google Scholar 

  23. Vo, D. D. et al. Targeting the production of oncogenic microRNAs with multimodal synthetic small molecules. ACS Chem. Biol. 9, 711–721 (2014).

    CAS  PubMed  Google Scholar 

  24. Vo, D. D. et al. Oncogenic MicroRNAs biogenesis as a drug target: structure-activity relationship studies on new aminoglycoside conjugates. Chem. Eur. J. 22, 5350–5362 (2016).

    MathSciNet  CAS  PubMed  Google Scholar 

  25. Malnuit, V., Duca, M. & Benhida, R. Targeting DNA base pair mismatch with artificial nucleobases. Advances and perspectives in triple helix strategy. Org. Biomol. Chem. 9, 326–336 (2011).

    CAS  PubMed  Google Scholar 

  26. Costales, M. G. et al. Small molecule inhibition of microRNA-210 reprograms an oncogenic hypoxic circuit. J. Am. Chem. Soc. 139, 3446–3455 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Disney, M. D. et al. Two-dimensional combinatorial screening identifies specific aminoglycoside-RNA internal loop partners. J. Am. Chem. Soc. 130, 11185–11194 (2008).

    CAS  PubMed  Google Scholar 

  28. Velagapudi, S. P. & Disney, M. D. Two-dimensional combinatorial screening enables the bottom-up design of a microRNA-10b inhibitor. Chem. Commun. 50, 3027–3029 (2014).

    CAS  Google Scholar 

  29. Davis, B. et al. Rational design of inhibitors of HIV-1 TAR RNA through the stabilisation of electrostatic “hot spots”. J. Mol. Biol. 336, 343–356 (2004).

    CAS  PubMed  Google Scholar 

  30. Patwardhan, N. N. et al. Amiloride as a new RNA-binding scaffold with activity against HIV-1 TAR. MedChemComm 8, 1022–1036 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Davila-Calderon, J. et al. IRES-targeting small molecule inhibits enterovirus 71 replication via allosteric stabilization of a ternary complex. Nat. Commun. 11, 4775 (2020).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  32. Patwardhan, N. N., Cai, Z., Newson, C. N. & Hargrove, A. E. Fluorescent peptide displacement as a general assay for screening small molecule libraries against RNA. Org. Biomol. Chem. 17, 1778–1786 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Zafferani, M. et al. Amilorides inhibit SARS-CoV-2 replication in vitro by targeting RNA structures. Sci. Adv. 7, eabl6096 (2021).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  34. Wilson, L., Gage, P. & Ewart, G. Hexamethylene amiloride blocks E protein ion channels and inhibits coronavirus replication. Virology 353, 294–306 (2006).

    CAS  PubMed  Google Scholar 

  35. Hagler, L. D. et al. Versatile target-guided screen for discovering bidirectional transcription inhibitors of a trinucleotide repeat disease. ACS Med. Chem. Lett. 12, 935–940 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Hagler, L. D. et al. Expanded DNA and RNA trinucleotide repeats in myotonic dystrophy type 1 select their own multitarget, sequence-selective inhibitors. Biochemistry 59, 3463–3472 (2020).

    CAS  PubMed  Google Scholar 

  37. Mirkin, S. M. Expandable DNA repeats and human disease. Nature 447, 932–940 (2007).

    CAS  PubMed  ADS  Google Scholar 

  38. Wong, C. H. et al. Targeting toxic RNAs that cause myotonic dystrophy type 1 (DM1) with a bisamidinium inhibitor. J. Am. Chem. Soc. 136, 6355–6361 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Krueger, S. B., Lanzendorf, A. N., Jeon, H. H. & Zimmerman, S. C. Selective and reversible ligand assembly on the DNA and RNA repeat sequences in myotonic dystrophy. ChemBioChem 23, e202200260 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Pushechnikov, A. et al. Rational design of ligands targeting triplet repeating transcripts that cause RNA dominant disease: application to myotonic muscular dystrophy type 1 and spinocerebellar ataxia type 3. J. Am. Chem. Soc. 131, 9767–9779 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Jahromi, A. H. et al. A novel CUG(exp).MBNL1 inhibitor with therapeutic potential for myotonic dystrophy type 1. ACS Chem. Biol. 8, 1037–1043 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Chien, C. M. et al. Structural basis for targeting T:T mismatch with triaminotriazine-acridine conjugate induces a U-shaped head-to-head four-way junction in CTG repeat DNA. J. Am. Chem. Soc. 142, 11165–11172 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Murata, A., Otabe, T., Zhang, J. & Nakatani, K. BzDANP, a small-molecule modulator of pre-miR-29a maturation by dicer. ACS Chem. Biol. 11, 2790–2796 (2016).

    CAS  PubMed  Google Scholar 

  44. Lombes, T. et al. Investigation of RNA-ligand interactions by 19F NMR spectroscopy using fluorinated probes. Angew. Chem. Int. Ed. Engl. 51, 9530–9534 (2012).

    CAS  PubMed  Google Scholar 

  45. Murata, A., Nakamori, M. & Nakatani, K. Modulating RNA secondary and tertiary structures by mismatch binding ligands. Methods 167, 78–91 (2019).

    CAS  PubMed  Google Scholar 

  46. Murata, A. et al. Small molecule-induced dimerization of hairpin RNA interfered with the Dicer cleavage reaction. Biochemistry 60, 245–249 (2021).

    CAS  PubMed  Google Scholar 

  47. Konieczny, P. et al. Cyclic mismatch binding ligands interact with disease-associated CGG trinucleotide repeats in RNA and suppress their translation. Nucleic Acids Res. 49, 9479–9495 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Mukherjee, S. et al. HT-SELEX-based identification of binding pre-miRNA hairpin-motif for small molecules. Mol. Ther. Nucleic Acids 27, 165–174 (2022).

    CAS  PubMed  Google Scholar 

  49. Howe, J. A. et al. Selective small-molecule inhibition of an RNA structural element. Nature 526, 672–677 (2015).

    CAS  PubMed  ADS  Google Scholar 

  50. Howe, J. A. et al. Atomic resolution mechanistic studies of ribocil: a highly selective unnatural ligand mimic of the E. coli FMN riboswitch. RNA Biol. 13, 946–954 (2016).

    PubMed  PubMed Central  Google Scholar 

  51. Aguilar, R. et al. Targeting Xist with compounds that disrupt RNA structure and X inactivation. Nature 604, 160–166 (2022).

    CAS  PubMed  ADS  Google Scholar 

  52. Carrette, L. L. G. et al. A mixed modality approach towards Xi reactivation for Rett syndrome and other X-linked disorders. Proc. Natl Acad. Sci. USA 115, E668–E675 (2018).

    CAS  PubMed  Google Scholar 

  53. Ursu, A. et al. Design of small molecules targeting RNA structure from sequence. Chem. Soc. Rev. 49, 7252–7270 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Velagapudi, S. P., Seedhouse, S. J. & Disney, M. D. Structure-activity relationships through sequencing (StARTS) defines optimal and suboptimal RNA motif targets for small molecules. Angew. Chem. Int. Ed. Engl. 49, 3816–3818 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Disney, M. D. et al. Inforna 2.0: a platform for the sequence-based design of small molecules targeting structured RNAs. ACS Chem. Biol. 11, 1720–1728 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Velagapudi, S. P., Gallo, S. M. & Disney, M. D. Sequence-based design of bioactive small molecules that target precursor microRNAs. Nat. Chem. Biol. 10, 291–297 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Haniff, H. S. et al. A structure-specific small molecule inhibits a miRNA-200 family member precursor and reverses a type 2 diabetes phenotype. Cell Chem. Biol. 29, 300–311.e10 (2022).

    CAS  PubMed  Google Scholar 

  58. Chen, J. L. et al. Design, optimization, and study of small molecules that target tau pre-mRNA and affect splicing. J. Am. Chem. Soc. 142, 8706–8727 (2020).

    PubMed  PubMed Central  Google Scholar 

  59. Dibrov, S. M. et al. Structure of a hepatitis C virus RNA domain in complex with a translation inhibitor reveals a binding mode reminiscent of riboswitches. Proc. Natl Acad. Sci. USA 109, 5223–5228 (2012).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  60. Shibata, T. et al. Small molecule targeting r(UGGAA)n disrupts RNA foci and alleviates disease phenotype in Drosophila model. Nat. Commun. 12, 236 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Boehr, D. D., Nussinov, R. & Wright, P. E. The role of dynamic conformational ensembles in biomolecular recognition. Nat. Chem. Biol. 5, 789–796 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Nakatani, K. Possibilities and challenges of small molecule organic compounds for the treatment of repeat diseases. Proc. Jpn Acad. Ser. B Phys. Biol. Sci. 98, 30–48 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Vogt, A. D. & Di Cera, E. Conformational selection or induced fit? A critical appraisal of the kinetic mechanism. Biochemistry 51, 5894–5902 (2012).

    CAS  PubMed  Google Scholar 

  64. Bailor, M. H., Mustoe, A. M., Brooks, C. L. III & Al-Hashimi, H. M. Topological constraints: using RNA secondary structure to model 3D conformation, folding pathways, and dynamic adaptation. Curr. Opin. Struct. Biol. 21, 296–305 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Marusic, M., Toplishek, M. & Plavec, J. NMR of RNA — structure and interactions. Curr. Opin. Struct. Biol. 79, 102532 (2023).

    CAS  PubMed  Google Scholar 

  66. Shortridge, M. D. et al. Drug-like small molecules that inhibit expression of the oncogenic microRNA-21. ACS Chem. Biol. 18, 237–250 (2023).

    CAS  PubMed  Google Scholar 

  67. Campagne, S. et al. Structural basis of a small molecule targeting RNA for a specific splicing correction. Nat. Chem. Biol. 15, 1191–1198 (2019).

    CAS  PubMed  Google Scholar 

  68. Moumne, R. et al. Fluorinated diaminocyclopentanes as chiral sensitive NMR probes of RNA. Struct. J. Am. Chem. Soc. 132, 13111–13113 (2010).

    CAS  Google Scholar 

  69. Bevilacqua, P. C., Ritchey, L. E., Su, Z. & Assmann, S. M. Genome-wide analysis of RNA secondary structure. Annu. Rev. Genet. 50, 235–266 (2016).

    CAS  PubMed  Google Scholar 

  70. Deigan, K. E., Li, T. W., Mathews, D. H. & Weeks, K. M. Accurate SHAPE-directed RNA structure determination. Proc. Natl Acad. Sci. USA 106, 97–102 (2009).

    CAS  PubMed  ADS  Google Scholar 

  71. Siegfried, N. A., Busan, S., Rice, G. M., Nelson, J. A. & Weeks, K. M. RNA motif discovery by SHAPE and mutational profiling (SHAPE-MaP). Nat. Methods 11, 959–965 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Weeks, K. M. SHAPE directed discovery of new functions in large RNAs. Acc. Chem. Res. 54, 2502–2517 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Zeller, M. J. et al. SHAPE-enabled fragment-based ligand discovery for RNA. Proc. Natl Acad. Sci. USA 119, e2122660119 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Wang, Y., Parmar, S., Schneekloth, J. S. & Tiwary, P. Interrogating RNA-small molecule interactions with structure probing and artificial intelligence-augmented molecular simulations. ACS Cent. Sci. 8, 741–748 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Velagapudi, S. P., Li, Y. & Disney, M. D. A cross-linking approach to map small molecule-RNA binding sites in cells. Bioorg. Med. Chem. Lett. 29, 1532–1536 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Suresh, B. M. et al. A general fragment-based approach to identify and optimize bioactive ligands targeting RNA. Proc. Natl Acad. Sci. USA 117, 33197–33203 (2020).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  77. Balaratnam, S. et al. A chemical probe based on the PreQ(1) metabolite enables transcriptome-wide mapping of binding sites. Nat. Commun. 12, 5856 (2021).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  78. Tong, Y. et al. Transcriptome-wide mapping of small-molecule RNA-binding sites in cells informs an isoform-specific degrader of QSOX1 mRNA. J. Am. Chem. Soc. 144, 11620–11625 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Vlassov, V. V., Zuber, G., Felden, B., Behr, J. P. & Giege, R. Cleavage of tRNA with imidazole and spermine imidazole constructs: a new approach for probing RNA structure. Nucleic Acids Res. 23, 3161–3167 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Tamkovich, N. et al. Design, RNA cleavage and antiviral activity of new artificial ribonucleases derived from mono-, di- and tripeptides connected by linkers of different hydrophobicity. Bioorg. Med. Chem. 24, 1346–1355 (2016).

    CAS  PubMed  Google Scholar 

  81. Martin, C. et al. Design, synthesis, and evaluation of neomycin-imidazole conjugates for RNA cleavage. ChemPlusChem 87, e202200250 (2022).

    CAS  PubMed  Google Scholar 

  82. Hecht, S. M. Bleomycin: new perspectives on the mechanism of action. J. Nat. Prod. 63, 158–168 (2000).

    CAS  PubMed  Google Scholar 

  83. Angelbello, A. J. & Disney, M. D. Bleomycin can cleave an oncogenic noncoding RNA. ChemBioChem 19, 43–47 (2018).

    CAS  PubMed  Google Scholar 

  84. Li, Y. & Disney, M. D. Precise small molecule degradation of a noncoding RNA identifies cellular binding sites and modulates an oncogenic phenotype. ACS Chem. Biol. 13, 3065–3071 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Angelbello, A. J. et al. Precise small-molecule cleavage of an r(CUG) repeat expansion in a myotonic dystrophy mouse model. Proc. Natl Acad. Sci. USA 116, 7799–7804 (2019).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  86. Liu, X. et al. Targeted degradation of the oncogenic microRNA 17-92 cluster by structure-targeting ligands. J. Am. Chem. Soc. 142, 6970–6982 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Haniff, H. S. et al. Targeting the SARS-CoV-2 RNA genome with small molecule binders and ribonuclease targeting chimera (RIBOTAC) degraders. ACS Cent. Sci. 6, 1713–1721 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Li, K. & Crews, C. M. PROTACs: past, present and future. Chem. Soc. Rev. 51, 5214–5236 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Lovering, F., Bikker, J. & Humblet, C. Escape from flatland: increasing saturation as an approach to improving clinical success. J. Med. Chem. 52, 6752–6756 (2009).

    CAS  PubMed  Google Scholar 

  90. Morgan, B. S. & Hargrove, A. E. Synthetic Receptors for Biomolecules: Design Principles and Applications 253–325 (The Royal Society of Chemistry, 2015).

  91. Kenyon, J., Prestwood, L. & Lever, A. Current perspectives on RNA secondary structure probing. Biochem. Soc. Trans. 42, 1251–1255 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Batey, R. T., Rambo, R. P. & Doudna, J. A. Tertiary motifs in RNA structure and folding. Angew. Chem. Int. Ed. Engl. 38, 2326–2343 (1999).

    CAS  PubMed  Google Scholar 

  93. Butcher, S. E. & Pyle, A. M. The molecular interactions that stabilize RNA tertiary structure: RNA motifs, patterns, and networks. Acc. Chem. Res. 44, 1302–1311 (2011).

    CAS  PubMed  Google Scholar 

  94. Jones, C. P. & Ferré-D’Amaré, A. R. RNA quaternary structure and global symmetry. Trends Biochem. Sci. 40, 211–220 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Donlic, A. et al. R-BIND 2.0: an updated database of bioactive RNA-targeting small molecules and associated RNA secondary structures. ACS Chem. Biol. 17, 1556–1566 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Morgan, B. S., Forte, J. E., Culver, R. N., Zhang, Y. & Hargrove, A. E. Discovery of key physicochemical, structural, and spatial properties of RNA-targeted bioactive ligands. Angew. Chem. Int. Ed. Engl. 56, 13498–13502 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Xie, J. & Frank, A. T. Mining for ligandable cavities in RNA. ACS Med. Chem. Lett. 12, 928–934 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Murray, C. W. & Rees, D. C. The rise of fragment-based drug discovery. Nat. Chem. 1, 187–192 (2009).

    CAS  PubMed  Google Scholar 

  99. Umuhire Juru, A., Cai, Z., Jan, A. & Hargrove, A. E. Template-guided selection of RNA ligands using imine-based dynamic combinatorial chemistry. Chem. Commun. 56, 3555–3558 (2020).

    CAS  Google Scholar 

  100. Rzuczek, S. G., Park, H. & Disney, M. D. A toxic RNA catalyzes the in cellulo synthesis of its own inhibitor. Angew. Chem. Int. Ed. Engl. 53, 10956–10959 (2014).

    CAS  PubMed  Google Scholar 

  101. Benhamou, R. I. et al. DNA-encoded library versus RNA-encoded library selection enables design of an oncogenic noncoding RNA inhibitor. Proc. Natl Acad. Sci. USA 119, e2114971119 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Rizvi, N. F. et al. Discovery of selective RNA-binding small molecules by affinity-selection mass spectrometry. ACS Chem. Biol. 13, 820–831 (2018).

    CAS  PubMed  ADS  Google Scholar 

Download references

Acknowledgements

We thank the Italian Institute of Technology (IIT) and Université Côte d’Azur for the financial support to M.P. as PhD fellowship. We also thank BoostUrCareer COFUND project with Région PACA and European Union’s Horizon 2020 research and innovation programme under grant agreement no. 847581 for PhD fellowship to S.K. and the National Center for Gene Therapy and Drugs based on RNA Technology project (CN00000041) funded by European Union’s NextGenerationEU PNRR MUR - M4C2 – programme (CUP J33C22001130001).

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article. M.D., S.A. and A.D.G. contributed substantially to the discussion of the content. S.K. and M.P. contributed substantially to the illustrations of the article. M.D. wrote the article. All authors reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Maria Duca.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Chemistry thanks Matthew Disney, Jessica Bush and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovachka, S., Panosetti, M., Grimaldi, B. et al. Small molecule approaches to targeting RNA. Nat Rev Chem 8, 120–135 (2024). https://doi.org/10.1038/s41570-023-00569-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-023-00569-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing