Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Roadmap
  • Published:

A framework for multiexcitonic logic

Abstract

Exciton science sits at the intersection of chemical, optical and spin-based implementations of information processing, but using excitons to conduct logical operations remains relatively unexplored. Excitons encoding information could be read optically (photoexcitation–photoemission) or electrically (charge recombination–separation), travel through materials via exciton energy transfer, and interact with one another in stimuli-responsive molecular excitonic devices. Excitonic logic offers the potential to mediate electrical, optical and chemical information. Additionally, high-spin triplet and quintet (multi)excitons offer access to well defined spin states of relevance to magnetic field effects, classical spintronics and spin-based quantum information science. In this Roadmap, we propose a framework for developing excitonic computing based on singlet fission (SF) and triplet–triplet annihilation (TTA). Various molecular components capable of modulating SF/TTA for logical operations are suggested, including molecular photo-switching and multi-colour photoexcitation. We then outline a pathway for constructing excitonic logic devices, considering aspects of circuit assembly, logical operation synchronization, and exciton transport and amplification. Promising future directions and challenges are identified, and the potential for realizing excitonic computing in the near future is discussed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Excitonic materials can host logical operations.
Fig. 2: Triplet–triplet annihilation on a tetracene dimer as an excitonic AND gate.
Fig. 3: Methods of exerting logical control over multiexcitonic processes.
Fig. 4: Model architecture for multiexcitonic logic in a mixed singlet/triplet exciton basis.
Fig. 5: Directional ‘excitonic wires’ could conduct excitons from an output of one device to an input of another device.

Similar content being viewed by others

References

  1. Xiong, Z. H., Wu, D., Valy Vardeny, Z. & Shi, J. Giant magnetoresistance in organic spin-valves. Nature 427, 821–824 (2004).

    CAS  PubMed  ADS  Google Scholar 

  2. Maeda, K. et al. Chemical compass model of avian magnetoreception. Nature 453, 387–390 (2008).

    CAS  PubMed  ADS  Google Scholar 

  3. de Silva, P. A., Gunaratne, N. H. Q. & McCoy, C. P. A molecular photoionic AND gate based on fluorescent signalling. Nature 364, 42–44 (1993).

    ADS  Google Scholar 

  4. Andréasson, J., Straight, S. D., Moore, T. A., Moore, A. L. & Gust, D. Molecular all-photonic encoder–decoder. J. Am. Chem. Soc. 130, 11122–11128 (2008).

    PubMed  Google Scholar 

  5. Wang, J., Sun, J. & Sun, Q. Proposal for all-optical switchable OR/XOR logic gates using sum-frequency generation. IEEE Photon. Technol. Lett. 19, 541–543 (2007).

    ADS  Google Scholar 

  6. Schirhagl, R., Chang, K., Loretz, M. & Degen, C. L. Nitrogen-vacancy centers in diamond: nanoscale sensors for physics and biology. Annu. Rev. Phys. Chem. 65, 83–105 (2014).

    CAS  PubMed  ADS  Google Scholar 

  7. Frenkel, J. On the transformation of light into heat in solids. II. Phys. Rev. 37, 1276–1294 (1931).

    ADS  Google Scholar 

  8. Frenkel, J. On the transformation of light into heat in solids. I. Phys. Rev. 37, 17–44 (1931).

    CAS  ADS  Google Scholar 

  9. Wannier, G. H. The structure of electronic excitation levels in insulating crystals. Phys. Rev. 52, 191–197 (1937).

    CAS  ADS  Google Scholar 

  10. Englman, R. & Jortner, J. The energy gap law for radiationless transitions in large molecules. Mol. Phys. 18, 145–164 (1970).

    CAS  ADS  Google Scholar 

  11. Englman, R. & Jortner, J. The energy gap law for non-radiative decay in large molecules. J. Lumin. 1–2, 134–142 (1970).

    Google Scholar 

  12. Yang, Z. et al. Recent advances in organic thermally activated delayed fluorescence materials. Chem. Soc. Rev. 46, 915–1016 (2017).

    CAS  PubMed  Google Scholar 

  13. Grosso, G. et al. Excitonic switches operating at around 100 K. Nat. Photon. 3, 577–580 (2009).

    CAS  ADS  Google Scholar 

  14. High, A. A., Hammack, A. T., Butov, L. V., Hanson, M. & Gossard, A. C. Exciton optoelectronic transistor. Opt. Lett. 32, 2466–2468 (2007).

    CAS  PubMed  ADS  Google Scholar 

  15. Ye, T. et al. Room-temperature exciton-based optoelectronic switch. Small 17, 2005918 (2021).

    CAS  Google Scholar 

  16. Erbas-Cakmak, S. et al. Molecular logic gates: the past, present and future. Chem. Soc. Rev. 47, 2228–2248 (2018).

    CAS  PubMed  Google Scholar 

  17. Andréasson, J. & Pischel, U. Light-stimulated molecular and supramolecular systems for information processing and beyond. Coord. Chem. Rev. 429, 213695 (2021).

    Google Scholar 

  18. Kim, D., Kwon, J. E. & Park, S. Y. Fully reversible multistate fluorescence switching: organogel system consisting of luminescent cyanostilbene and turn-on diarylethene. Adv. Funct. Mater. 28, 1706213 (2018).

    Google Scholar 

  19. Margulies, D., Melman, G. & Shanzer, A. Fluorescein as a model molecular calculator with reset capability. Nat. Mater. 4, 768–771 (2005).

    CAS  PubMed  ADS  Google Scholar 

  20. Uchacz, T. et al. Photophysical properties of 1-pyridine-3-phenylpyrazoloquinoline and molecular logic gate implementation. Dyes Pigm. 166, 490–501 (2019).

    CAS  Google Scholar 

  21. Margulies, D., Melman, G., Felder, C. E., Arad-Yellin, R. & Shanzer, A. Chemical input multiplicity facilitates arithmetical processing. J. Am. Chem. Soc. 126, 15400–15401 (2004).

    CAS  PubMed  Google Scholar 

  22. Andréasson, J. et al. All-photonic multifunctional molecular logic device. J. Am. Chem. Soc. 133, 11641–11648 (2011).

    PubMed  PubMed Central  Google Scholar 

  23. Wagner, R. W. & Lindsey, J. S. A molecular photonic wire. J. Am. Chem. Soc. 116, 9759–9760 (1994).

    CAS  Google Scholar 

  24. Jensen, K. K., van Berlekom, S. B., Kajanus, J., Mårtensson, J. & Albinsson, B. Mediated energy transfer in covalently linked porphyrin dimers. J. Phys. Chem. A 101, 2218–2220 (1997).

    CAS  Google Scholar 

  25. Tan, Z., Kote, R., Samaniego, W. N., Weininger, S. J. & McGimpsey, W. G. Intramolecular singlet–singlet and triplet–triplet energy transfer in adamantyl-linked trichromophores. J. Phys. Chem. A 103, 7612–7620 (1999).

    CAS  Google Scholar 

  26. Peskin, U., Abu-Hilu, M. & Speiser, S. Approaches to molecular devices based on controlled intramolecular electronic energy and electron transfer. Electron transfer rates through flexible molecular bridges by a time-dependent super exchange model. Opt. Mater. 24, 23–29 (2003).

    CAS  ADS  Google Scholar 

  27. Delor, M. et al. On the mechanism of vibrational control of light-induced charge transfer in donor–bridge–acceptor assemblies. Nat. Chem. 7, 689–695 (2015).

    CAS  PubMed  Google Scholar 

  28. McGimpsey, W. G., Samaniego, W. N., Chen, L. & Wang, F. Singlet–singlet, triplet–triplet, and “optically-controlled” energy transfer in polychromophores. Preliminary models for a molecular scale shift register. J. Phys. Chem. A 102, 8679–8689 (1998).

    CAS  Google Scholar 

  29. Budyka, M. F. & Li, V. M. Multifunctional photonic molecular logic gate based on a biphotochromic dyad with reduced energy transfer. ChemPhysChem 18, 260–264 (2017).

    CAS  PubMed  Google Scholar 

  30. Cannon, B. L. et al. Excitonic AND logic gates on DNA brick nanobreadboards. ACS Photon. 2, 398–404 (2015).

    CAS  Google Scholar 

  31. Massey, M., Medintz, I. L., Ancona, M. G. & Algar, W. R. Time-gated FRET and DNA-based photonic molecular logic gates: AND, OR, NAND, and NOR. ACS Sens. 2, 1205–1214 2017).

    CAS  PubMed  Google Scholar 

  32. Nishimura, T., Fujii, R., Ogura, Y. & Tanida, J. Optically controllable molecular logic circuits. Appl. Phys. Lett. 107, 013701 (2015).

    ADS  Google Scholar 

  33. LaBoda, C. D., Lebeck, A. R. & Dwyer, C. L. An optically modulated self-assembled resonance energy transfer pass gate. Nano Lett. 17, 3775–3781 (2017).

    CAS  PubMed  ADS  Google Scholar 

  34. Sawaya, N. P. D., Rappoport, D., Tabor, D. P. & Aspuru-Guzik, A. Excitonics: a set of gates for molecular exciton processing and signaling. ACS Nano 12, 6410–6420 (2018).

    CAS  PubMed  Google Scholar 

  35. Kasha, M. Characterization of electronic transitions in complex molecules. Disc. Faraday Soc. 9, 14–19 (1950).

    Google Scholar 

  36. del Valle, J. C. & Catalán, J. Kasha’s rule: a reappraisal. Phys. Chem. Chem. Phys. 21, 10061–10069 (2019).

    PubMed  Google Scholar 

  37. Remacle, F., Speiser, S. & Levine, R. D. Intermolecular and intramolecular logic gates. J. Phys. Chem. B 105, 5589–5591 (2001).

    CAS  Google Scholar 

  38. Kuznetz, O., Davis, D., Salman, H., Eichen, Y. & Speiser, S. Intramolecular electronic energy transfer in rhodamine–azulene bichromophoric molecule. J. Photochem. Photobiol. A 191, 176–181 (2007).

    CAS  Google Scholar 

  39. Kuznetz, O. et al. All optical full adder based on intramolecular electronic energy transfer in the rhodamine–azulene bichromophoric system. J. Phys. Chem. C 112, 15880–15885 (2008).

    CAS  Google Scholar 

  40. Bearpark, M. J. et al. The azulene S1 state decays via a conical intersection: a CASSCF study with MMVB dynamics. J. Am. Chem. Soc. 118, 169–175 (1996).

    CAS  Google Scholar 

  41. Tittelbach-Helmrich, D., Wagner, B. D. & Steer, R. P. Subpicosecond vibrational relaxation of the S1 states of azulene and guaiazulene in solution. Can. J. Chem. 73, 303–306 (1995).

    CAS  Google Scholar 

  42. Amo, A. et al. Exciton-polariton spin switches. Nat. Photon. 4, 361–366 (2010).

    CAS  ADS  Google Scholar 

  43. Wang, Y.-T. et al. Ultrafast multi-level logic gates with spin-valley coupled polarization anisotropy in monolayer MoS2. Sci. Rep. 5, 8289 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Su, R. et al. Room temperature long-range coherent exciton polariton condensate flow in lead halide perovskites. Sci. Adv. 4, eaau0244 (2018).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  45. Su, R. et al. Observation of exciton polariton condensation in a perovskite lattice at room temperature. Nat. Phys. 16, 301–306 (2020).

    CAS  Google Scholar 

  46. Smith, M. B. & Michl, J. Singlet fission. Chem. Rev. 110, 6891–6936 (2010).

    CAS  PubMed  Google Scholar 

  47. Smith, M. B. & Michl, J. Recent advances in singlet fission. Annu. Rev. Phys. Chem. 64, 361–386 (2013).

    CAS  PubMed  ADS  Google Scholar 

  48. Singh-Rachford, T. N. & Castellano, F. N. Photon upconversion based on sensitized triplet–triplet annihilation. Coord. Chem. Rev. 254, 2560–2573 (2010).

    CAS  Google Scholar 

  49. Feng, J., Alves, J., de Clercq, D. M. & Schmidt, T. W. Photochemical upconversion. Annu. Rev. Phys. Chem. 74, 145–168 (2023).

    CAS  PubMed  ADS  Google Scholar 

  50. Hudson, R. J., Stuart, A. N., Huang, D. M. & Kee, T. W. What next for singlet fission in photovoltaics? The fate of triplet and triplet-pair excitons. J. Phys. Chem. C 126, 5369–5377 (2022).

    CAS  Google Scholar 

  51. Baldacchino, A. J. et al. Singlet fission photovoltaics: progress and promising pathways. Chem. Phys. Rev. 3, 021304 (2022).

    CAS  Google Scholar 

  52. Beery, D., Schmidt, T. W. & Hanson, K. Harnessing sunlight via molecular photon upconversion. ACS Appl. Mater. Interf. 13, 32601–32605 (2021).

    CAS  Google Scholar 

  53. Cunningham, P. D., Díaz, S. A., Yurke, B., Medintz, I. L. & Melinger, J. S. Delocalized two-exciton states in DNA scaffolded cyanine dimers. J. Phys. Chem. B 124, 8042–8049 (2020).

    CAS  PubMed  Google Scholar 

  54. Lee, J. U. Single exciton quantum logic circuits. IEEE J. Quantum Electron. 48, 1158–1164 (2012).

    CAS  ADS  Google Scholar 

  55. Marcus, R. A. On the theory of oxidation–reduction reactions involving electron transfer. I. J. Chem. Phys. 24, 966–978 (1956).

    CAS  ADS  Google Scholar 

  56. Hush, N. S. Adiabatic theory of outer sphere electron-transfer reactions in solution. Trans. Faraday Soc. 57, 557–580 (1961).

    CAS  Google Scholar 

  57. Yost, S. R. et al. A transferable model for singlet-fission kinetics. Nat. Chem. 6, 492–497 (2014).

    CAS  PubMed  Google Scholar 

  58. Schmidt, T. W. A Marcus–Hush perspective on adiabatic singlet fission. J. Chem. Phys. 151, 054305 (2019).

    ADS  Google Scholar 

  59. Buchanan, E. A. & Michl, J. Packing guidelines for optimizing singlet fission matrix elements in noncovalent dimers. J. Am. Chem. Soc. 139, 15572–15575 (2017).

    CAS  PubMed  Google Scholar 

  60. Havlas, Z. & Michl, J. Guidance for mutual disposition of chromophores for singlet fission. Isr. J. Chem. 56, 96–106 (2016).

    CAS  Google Scholar 

  61. Lijina, M. P., Benny, A., Ramakrishnan, R., Nair, N. G. & Hariharan, M. Exciton isolation in cross-pentacene architecture. J. Am. Chem. Soc. 142, 17393–17402 (2020).

    CAS  PubMed  Google Scholar 

  62. Cui, X., Zhao, J., Zhou, Y., Ma, J. & Zhao, Y. Reversible photoswitching of triplet–triplet annihilation upconversion using dithienylethene photochromic switches. J. Am. Chem. Soc. 136, 9256–9259 (2014).

    CAS  PubMed  Google Scholar 

  63. Ma, J. et al. Photoswitching of the triplet excited state of diiodobodipy-dithienylethene triads and application in photo-controllable triplet–triplet annihilation upconversion. J. Org. Chem. 79, 10855–10866 (2014).

    CAS  PubMed  Google Scholar 

  64. Xu, K., Zhao, J., Cui, X. & Ma, J. Photoswitching of triplet–triplet annihilation upconversion showing large emission shifts using a photochromic fluorescent dithienylethene-bodipy triad as a triplet acceptor/emitter. Chem. Commun. 51, 1803–1806 (2015).

    CAS  Google Scholar 

  65. Xu, K., Zhao, J., Cui, X. & Ma, J. Switching of the triplet–triplet-annihilation upconversion with photoresponsive triplet energy acceptor: photocontrollable singlet/triplet energy transfer and electron transfer. J. Phys. Chem. A 119, 468–481 (2015).

    CAS  PubMed  Google Scholar 

  66. Mahmood, Z., Toffoletti, A., Zhao, J. & Barbon, A. Photoswitching of triplet–triplet annihilation upconversion with photo-generated radical from hexaphenylbiimidazole. J. Lumin. 183, 507–512 (2017).

    CAS  Google Scholar 

  67. Xu, R., Zhang, C. & Xiao, M. Magnetic field effects on singlet fission dynamics. Trends Chem. 4, 528–539 (2022).

    CAS  Google Scholar 

  68. Collins, M. I., McCamey, D. R. & Tayebjee, M. J. Y. Fluctuating exchange interactions enable quintet multiexciton formation in singlet fission. J. Chem. Phys. 151, 164104 (2019).

    PubMed  ADS  Google Scholar 

  69. MacDonald, T. S. C. et al. Anisotropic multiexciton quintet and triplet dynamics in singlet fission via pulsed electron spin resonance. J. Am. Chem. Soc. 145, 15275–15283 (2023).

  70. Kobori, Y., Fuki, M., Nakamura, S. & Hasobe, T. Geometries and terahertz motions driving quintet multiexcitons and ultimate triplet-triplet dissociations via the intramolecular singlet fissions. J. Phys. Chem. B 124, 9411–9419 (2020).

    CAS  PubMed  Google Scholar 

  71. Sanders, S. N. et al. Intramolecular singlet fission in oligoacene heterodimers. Angew. Chem. Int. Edn Engl. 55, 3373–3377 (2016).

    CAS  Google Scholar 

  72. Sanders, S. N. et al. Exciton correlations in intramolecular singlet fission. J. Am. Chem. Soc. 138, 7289–7297 (2016).

    CAS  PubMed  Google Scholar 

  73. Ni, W. et al. Singlet fission from upper excited electronic states of cofacial perylene dimer. J. Phys. Chem. Lett. 10, 2428–2433 (2019).

    CAS  PubMed  Google Scholar 

  74. Ponterini, G., Serpone, N., Bergkamp, M. A. & Netzel, T. L. Comparison of radiationless decay processes in osmium and platinum porphyrins. J. Am. Chem. Soc. 105, 4639–4645 (1983).

    CAS  Google Scholar 

  75. Ha-Thi, M.-H., Shafizadeh, N., Poisson, L. & Soep, B. An efficient indirect mechanism for the ultrafast intersystem crossing in copper porphyrins. J. Phys. Chem. A 117, 8111–8118 (2013).

    CAS  PubMed  Google Scholar 

  76. Roberts, S. T. et al. Observation of triplet exciton formation in a platinum-sensitized organic photovoltaic device. J. Phys. Chem. Lett. 2, 48–54 (2011).

    CAS  PubMed  Google Scholar 

  77. Lupton, J. M., McCamey, D. R. & Boehme, C. Coherent spin manipulation in molecular semiconductors: getting a handle on organic spintronics. ChemPhysChem 11, 3040–3058 (2010).

    CAS  PubMed  Google Scholar 

  78. Dexter, D. L. A theory of sensitized luminescence in solids. J. Chem. Phys. 21, 836–850 (1953).

    CAS  ADS  Google Scholar 

  79. Akselrod, G. M. et al. Visualization of exciton transport in ordered and disordered molecular solids. Nat. Commun. 5, 3646 (2014).

    CAS  PubMed  ADS  Google Scholar 

  80. Hudson, R. J., Huang, D. M. & Kee, T. W. Anisotropic triplet exciton diffusion in crystalline functionalized pentacene. J. Phys. Chem. C 124, 23541–23550 (2020).

    CAS  Google Scholar 

  81. Han, J. et al. Anisotropic geminate and non-geminate recombination of triplet excitons in singlet fission of single crystalline hexacene. J. Phys. Chem. Lett. 11, 1261–1267 (2020).

    CAS  PubMed  Google Scholar 

  82. Suna, A. Kinematics of exciton–exciton annihilation in molecular crystals. Phys. Rev. B 1, 1716–1739 (1970).

    ADS  Google Scholar 

  83. Brédas, J.-L., Beljonne, D., Coropceanu, V. & Cornil, J. Charge-transfer and energy-transfer processes in π-conjugated oligomers and polymers: a molecular picture. Chem. Rev. 104, 4971–5004 (2004).

    PubMed  Google Scholar 

  84. Chaudhuri, D. et al. Enhancing long-range exciton guiding in molecular nanowires by H-aggregation lifetime engineering. Nano Lett. 11, 488–492 (2011).

    CAS  PubMed  ADS  Google Scholar 

  85. Aida, T., Meijer, E. W. & Stupp, S. I. Functional supramolecular polymers. Science 335, 813–817 (2012).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  86. Stefik, M., Guldin, S., Vignolini, S., Wiesner, U. & Steiner, U. Block copolymer self-assembly for nanophotonics. Chem. Soc. Rev. 44, 5076–5091 (2015).

    CAS  PubMed  Google Scholar 

  87. Hannestad, J. K., Sandin, P. & Albinsson, B. Self-assembled DNA photonic wire for long-range energy transfer. J. Am. Chem. Soc. 130, 15889–15895 (2008).

    CAS  PubMed  Google Scholar 

  88. Dutta, P. K. et al. DNA-directed artificial light-harvesting antenna. J. Am. Chem. Soc. 133, 11985–11993 (2011).

    CAS  PubMed  Google Scholar 

  89. Graugnard, E. et al. DNA-controlled excitonic switches. Nano Lett. 12, 2117–2122 (2012).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  90. Vybornyi, M., Nussbaumer, A. L., Langenegger, S. M. & Häner, R. Assembling multiporphyrin stacks inside the DNA double helix. Bioconjug. Chem. 25, 1785–1793 (2014).

    CAS  PubMed  Google Scholar 

  91. Buckhout-White, S. et al. Assembling programmable FRET-based photonic networks using designer DNA scaffolds. Nat. Commun. 5, 5615 (2014).

    CAS  PubMed  ADS  Google Scholar 

  92. Boulais, E. et al. Programmed coherent coupling in a synthetic DNA-based excitonic circuit. Nat. Mater. 17, 159–166 (2018).

    CAS  PubMed  ADS  Google Scholar 

  93. Zhou, X. et al. DNA-templated programmable excitonic wires for micron-scale exciton transport. Chem 8, 2442–2459 (2022).

    CAS  Google Scholar 

  94. Spillmann, C. M. et al. Extending FRET cascades on linear DNA photonic wires. Chem. Commun. 50, 7246–7249 (2014).

    CAS  Google Scholar 

  95. Park, H. et al. Enhanced energy transport in genetically engineered excitonic networks. Nat. Mater. 15, 211–216 (2016).

    CAS  PubMed  ADS  Google Scholar 

  96. Son, H.-J. et al. Light-harvesting and ultrafast energy migration in porphyrin-based metal–organic frameworks. J. Am. Chem. Soc. 135, 862–869 (2013).

    CAS  PubMed  Google Scholar 

  97. Fassioli, F., Dinshaw, R., Arpin, P. C. & Scholes, G. D. Photosynthetic light harvesting: excitons and coherence. J. R. Soc. Interf. 11, 20130901 (2014).

    Google Scholar 

  98. Díaz, S. A. et al. Extending DNA-based molecular photonic wires with homogeneous förster resonance energy transfer. Adv. Opt. Mater. 4, 399–412 (2016).

    Google Scholar 

  99. Díaz, S. A., Oliver, S. M., Hastman, D. A., Medintz, I. L. & Vora, P. M. Increased transfer efficiency from molecular photonic wires on solid substrates and cryogenic conditions. J. Phys. Chem. Lett. 9, 3654–3659 (2018).

    PubMed  Google Scholar 

  100. Klein, W. P. et al. DNA origami chromophore scaffold exploiting homoFRET energy transport to create molecular photonic wires. ACS Appl. Nano Mater. 3, 3323–3336 (2020).

    CAS  Google Scholar 

  101. Melinger, J. S. et al. FRET from multiple pathways in fluorophore-labeled DNA. ACS Photon. 3, 659–669 (2016).

    CAS  Google Scholar 

  102. Alexander, W. The ternary computer. Electron. Power 10, 36–39 (1964).

    Google Scholar 

  103. Wang, X.-Y., Dong, C.-T., Wu, Z.-R. & Cheng, Z.-Q. A review on the design of ternary logic circuits. Chin. Phys. B 30, 128402 (2021).

    CAS  ADS  Google Scholar 

  104. Frieder, G. Ternary computers: Part I: Motivation for ternary computers. In Conf. Record 5th Ann. Worksh. on Microprogramming (MICRO 5) 83–86 (Association for Computing Machinery, 1972).

  105. Klimenko, S. V. Computer science in Russia: a personal view. IEEE Ann. Hist. Comput. 21, 16–30 (1999).

    Google Scholar 

  106. Toulabinejad, M., Taheri, M., Navi, K. & Bagherzadeh, N. Toward efficient implementation of basic balanced ternary arithmetic operations in CNFET technology. Microelectron. J. 90, 267–277 (2019).

    CAS  Google Scholar 

  107. Kumar, S. et al. Exciton annihilation in molecular aggregates suppressed through quantum interference. Nat. Chem. 15,1118–1126 (2023).

  108. Lloyd, S. A potentially realizable quantum computer. Science 261, 1569–1571 (1993).

    CAS  PubMed  ADS  Google Scholar 

  109. Cory, D. G., Price, M. D. & Havel, T. F. Nuclear magnetic resonance spectroscopy: an experimentally accessible paradigm for quantum computing. Phys. D 120, 82–101 (1998).

    CAS  ADS  Google Scholar 

  110. Warren, W. S. The usefulness of NMR quantum computing. Science 277, 1688–1690 (1997).

    CAS  Google Scholar 

  111. Menicucci, N. C. & Caves, C. M. Local realistic model for the dynamics of bulk-ensemble NMR information processing. Phys. Rev. Lett. 88, 167901 (2002).

    CAS  PubMed  ADS  Google Scholar 

  112. Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information 1st edn (Cambridge Univ. Press, 2010).

  113. Wong, T. G. Introduction to Classical and Quantum Computing (Rooted Grove, 2022).

  114. DiVincenzo, D. P. The physical implementation of quantum computation. Fortschr. Phys. 48, 771–783 (2000).

    Google Scholar 

  115. Devitt, S. J., Munro, W. J. & Nemoto, K. Quantum error correction for beginners. Rep. Prog. Phys. 76, 076001 (2013).

    PubMed  ADS  Google Scholar 

  116. Rajak, A., Suzuki, S., Dutta, A. & Chakrabarti, B. K. Quantum annealing: an overview. Phil. Trans. R. Soc. A 381, 20210417 (2022).

    PubMed  ADS  Google Scholar 

  117. Hauke, P., Katzgraber, H. G., Lechner, W., Nishimori, H. & Oliver, W. D. Perspectives of quantum annealing: methods and implementations. Rep. Prog. Phys. 83, 054401 (2020).

    CAS  PubMed  ADS  Google Scholar 

  118. Yarkoni, S., Raponi, E., Bäck, T. & Schmitt, S. Quantum annealing for industry applications: introduction and review. Rep. Prog. Phys. 85, 104001 (2022).

    MathSciNet  ADS  Google Scholar 

  119. Harankahage, D. et al. Quantum computing with exciton qubits in colloidal semiconductor nanocrystals. J. Phys. Chem. C 125, 22195–22203 (2021).

    CAS  Google Scholar 

  120. Heindel, T. et al. Accessing the dark exciton spin in deterministic quantum-dot microlenses. APL Photon. 2, 121303 (2017).

    ADS  Google Scholar 

  121. Lovett, B. W. et al. Quantum computing with spin qubits interacting through delocalized excitons: overcoming hole mixing. Phys. Rev. B 72, 115324 (2005).

    ADS  Google Scholar 

  122. Chen, P., Piermarocchi, C. & Sham, L. J. Control of exciton dynamics in nanodots for quantum operations. Phys. Rev. Lett. 87, 067401 (2001).

    CAS  PubMed  ADS  Google Scholar 

  123. Stievater, T. H. et al. Rabi oscillations of excitons in single quantum dots. Phys. Rev. Lett. 87, 133603 (2001).

    CAS  PubMed  ADS  Google Scholar 

  124. Michler, P. (ed.) Quantum Dots for Quantum Information Technologies. Nano-Optics and Nanophotonics (Springer International Publishing, 2017).

  125. Trotta, R., Wildmann, J. S., Zallo, E., Schmidt, O. G. & Rastelli, A. Highly entangled photons from hybrid piezoelectric-semiconductor quantum dot devices. Nano Lett. 14, 3439–3444 (2014).

    CAS  PubMed  ADS  Google Scholar 

  126. Ghali, M., Ohtani, K., Ohno, Y. & Ohno, H. Generation and control of polarization-entangled photons from GaAs island quantum dots by an electric field. Nat. Commun. 3, 661 (2012).

    PubMed  ADS  Google Scholar 

  127. Müller, M., Bounouar, S., Jöns, K. D., Glässl, M. & Michler, P. On-demand generation of indistinguishable polarization-entangled photon pairs. Nat. Photon. 8, 224–228 (2014).

    ADS  Google Scholar 

  128. Chen, Y. et al. Wavelength-tunable entangled photons from silicon-integrated III–V quantum dots. Nat. Commun. 7, 10387 (2016).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  129. Castellanos, M. A., Dodin, A. & Willard, A. P. On the design of molecular excitonic circuits for quantum computing: the universal quantum gates. Phys. Chem. Chem. Phys. 22, 3048–3057 (2020).

    CAS  PubMed  Google Scholar 

  130. Castellanos, M. A. & Willard, A. P. Designing excitonic circuits for the Deutsch–Jozsa algorithm: mitigating fidelity loss by merging gate operations. Phys. Chem. Chem. Phys. 23, 15196–15208 (2021).

    CAS  PubMed  Google Scholar 

  131. Jacobberger, R. M., Qiu, Y., Williams, M. L., Krzyaniak, M. D. & Wasielewski, M. R. Using molecular design to enhance the coherence time of quintet multiexcitons generated by singlet fission in single crystals. J. Am. Chem. Soc. 144, 2276–2283 (2022).

    CAS  PubMed  Google Scholar 

  132. Smyser, K. E. & Eaves, J. D. Singlet fission for quantum information and quantum computing: the parallel JDE model. Sci. Rep. 10, 18480 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Yonetani, Y. Exciton quantum dynamics in the molecular logic gates for quantum computing. Chem. Phys. 570, 111860 (2023).

    CAS  Google Scholar 

  134. Wang, M., Zhang, Y. & Zhang, W. Bioinspired molecular qubits and nanoparticle ensembles that could be initialized, manipulated, and read out under mild conditions. J. Phys. Chem. Lett. 13, 508–513 (2022).

    PubMed  Google Scholar 

  135. Benjamin, S. C. Schemes for parallel quantum computation without local control of qubits. Phys. Rev. A 61, 020301 (2000).

    ADS  Google Scholar 

  136. Li, Y. & Benjamin, S. C. One-dimensional quantum computing with a ‘segmented chain’ is feasible with today’s gate fidelities. npj Quantum Inf. 4, 25 (2018).

    ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Australian Research Council Centre of Excellence in Exciton Science (CE170100026). R.J.H. thanks N. Ekins-Daukes, K. Ghiggino and A. Manian for discussions that contributed to the development of this work.

Author information

Authors and Affiliations

Authors

Contributions

T.S.C.M., J.H.C., T.W.S., T.A.S. and D.R.McC. conceived the initial ideas for this work. R.J.H., T.S.C.M. and J.H.C. conducted research and wrote the article. All authors contributed to discussion of content, reviewing and editing of the article.

Corresponding author

Correspondence to Dane R. McCamey.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Chemistry thank the anonymous referees for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hudson, R.J., MacDonald, T.S.C., Cole, J.H. et al. A framework for multiexcitonic logic. Nat Rev Chem 8, 136–151 (2024). https://doi.org/10.1038/s41570-023-00566-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-023-00566-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing