Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Expanding the catalytic landscape of metalloenzymes with lytic polysaccharide monooxygenases

A Publisher Correction to this article was published on 22 January 2024

This article has been updated

Abstract

Lytic polysaccharide monooxygenases (LPMOs) have an essential role in global carbon cycle, industrial biomass processing and microbial pathogenicity by catalysing the oxidative cleavage of recalcitrant polysaccharides. Despite initially being considered monooxygenases, experimental and theoretical studies show that LPMOs are essentially peroxygenases, using a single copper ion and H2O2 for C–H bond oxygenation. Here, we examine LPMO catalysis, emphasizing key studies that have shaped our comprehension of their function, and address side and competing reactions that have partially obscured our understanding. Then, we compare this novel copper–peroxygenase reaction with reactions catalysed by haem iron enzymes, highlighting the different chemistries at play. We conclude by addressing some open questions surrounding LPMO catalysis, including the importance of peroxygenase and monooxygenase reactions in biological contexts, how LPMOs modulate copper site reactivity and potential protective mechanisms against oxidative damage.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of the mode of action of LPMOs.
Fig. 2: Overview of enzymatic oxygenation and oxidation reactions.
Fig. 3: Dissecting the chemistry of LPMO catalysis.
Fig. 4: A polysaccharide-bound LPMO.
Fig. 5: Reaction cycles in LPMOs and haem iron peroxygenases.
Fig. 6: Violin plot of reported oxidase or peroxidase and monooxygenase or peroxygenase activities of different types of O2-dependent or H2O2-dependent enzymes.

Similar content being viewed by others

Change history

References

  1. Koshland, D. E. Jr Stereochemistry and the mechanism of enzymatic reactions. Biol. Rev. Camb. Philos. Soc. 28, 416–436 (1953).

    CAS  Google Scholar 

  2. Vuong, T. V. & Wilson, D. B. Glycoside hydrolases: catalytic base/nucleophile diversity. Biotechnol. Bioeng. 107, 195–205 (2010).

    CAS  PubMed  Google Scholar 

  3. Davies, G. & Henrissat, B. Structures and mechanisms of glycosyl hydrolases. Structure 3, 853–859 (1995).

    CAS  PubMed  Google Scholar 

  4. Rye, C. S. & Withers, S. G. Glycosidase mechanisms. Curr. Opin. Chem. Biol. 4, 573–580 (2000).

    CAS  PubMed  Google Scholar 

  5. Bissaro, B., Monsan, P., Fauré, R. & O’Donohue, M. J. Glycosynthesis in a waterworld: new insight into the molecular basis of transglycosylation in retaining glycoside hydrolases. Biochem. J. 467, 17–35 (2015).

    CAS  PubMed  Google Scholar 

  6. Jongkees, S. A. K. & Withers, S. G. Unusual enzymatic glycoside cleavage mechanisms. Acc. Chem. Res. 47, 226–235 (2014).

    CAS  PubMed  Google Scholar 

  7. Vaaje-Kolstad, G., Horn, S. J., Van Aalten, D. M. F., Synstad, B. & Eijsink, V. G. H. The non-catalytic chitin-binding protein CBP21 from Serratia marcescens is essential for chitin degradation. J. Biol. Chem. 280, 28492–29497 (2005).

    CAS  PubMed  Google Scholar 

  8. Vaaje-Kolstad, G. et al. An oxidative enzyme boosting the enzymatic conversion of recalcitrant polysaccharides. Science 330, 219–222 (2010).

    CAS  PubMed  ADS  Google Scholar 

  9. Quinlan, R. J. et al. Insights into the oxidative degradation of cellulose by a copper metalloenzyme that exploits biomass components. Proc. Natl Acad. Sci. USA 108, 15079–15084 (2011).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  10. Aachmann, F. L., Sørlie, M., Skjåk-Bræk, G., Eijsink, V. G. H. & Vaaje-Kolstad, G. NMR structure of a lytic polysaccharide monooxygenase provides insight into copper binding, protein dynamics, and substrate interactions. Proc. Natl Acad. Sci. USA 109, 18779–18784 (2012).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  11. Phillips, C. M., Beeson, W. T., Cate, J. H. & Marletta, M. A. Cellobiose dehydrogenase and a copper-dependent polysaccharide monooxygenase potentiate cellulose degradation by Neurospora crassa. ACS Chem. Biol. 6, 1399–1406 (2011).

    CAS  PubMed  Google Scholar 

  12. Wang, Y., Lan, D., Durrani, R. & Hollmann, F. Peroxygenases en route to becoming dream catalysts. What are the opportunities and challenges? Curr. Opin. Chem. Biol. https://doi.org/10.1016/j.cbpa.2016.10.007 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Denisov, I. G., Makris, T. M., Sligar, S. G. & Schlichting, I. Structure and chemistry of cytochrome P450. Chem. Rev. 105, 2253–2277 (2005).

    CAS  PubMed  Google Scholar 

  14. Johansen, K. S. Discovery and industrial applications of lytic polysaccharide mono-oxygenases. Biochem. Soc. Trans. 44, 143–149 (2016).

    CAS  PubMed  Google Scholar 

  15. Chylenski, P. et al. Lytic polysaccharide monooxygenases in enzymatic processing of lignocellulosic biomass. ACS Catal. 9, 4970–4991 (2019).

    CAS  Google Scholar 

  16. Vandhana, T. M. et al. On the expansion of biological functions of lytic polysaccharides monooxygenases. New Phytol. 233, 2380–2396 (2022).

    CAS  PubMed  Google Scholar 

  17. Garcia-Santamarina, S. et al. A lytic polysaccharide monooxygenase-like protein functions in fungal copper import and meningitis. Nat. Chem. Biol. 16, 337–344 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Martinez-D’Alto, A. et al. Characterization of a unique polysaccharide monooxygenase from the plant pathogen Magnaporthe oryzae. Proc. Natl Acad. Sci. USA 120, e2215426120 (2023).

    PubMed  PubMed Central  Google Scholar 

  19. Drula, E. et al. The carbohydrate-active enzyme database: functions and literature. Nucleic Acids Res. 50, D571–D577 (2022).

    CAS  PubMed  Google Scholar 

  20. Vu, V. V., Beeson, W. T., Span, E. A., Farquhar, E. R. & Marletta, M. A. A family of starch-active polysaccharide monooxygenases. Proc. Natl Acad. Sci. USA 111, 13822–13827 (2014).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  21. Couturier, M. et al. Lytic xylan oxidases from wood-decay fungi unlock biomass degradation. Nat. Chem. Biol. 14, 306–310 (2018).

    CAS  PubMed  Google Scholar 

  22. Sabbadin, F. et al. An ancient family of lytic polysaccharide monooxygenases with roles in arthropod development and biomass digestion. Nat. Commun. 9, 756 (2018).

    PubMed  PubMed Central  ADS  Google Scholar 

  23. Filiatrault-Chastel, C. et al. AA16, a new lytic polysaccharide monooxygenase family identified in fungal secretomes. Biotechnol. Biofuels 12, 55 (2019).

    PubMed  PubMed Central  Google Scholar 

  24. Sabbadin, F. et al. Secreted pectin monooxygenases drive plant infection by pathogenic oomycetes. Science 373, 774–779 (2021).

    CAS  PubMed  ADS  Google Scholar 

  25. Hemsworth, G. R., Henrissat, B., Davies, G. J. & Walton, P. H. Discovery and characterization of a new family of lytic polysaccharide monooxygenases. Nat. Chem. Biol. 10, 122–126 (2014).

    CAS  PubMed  Google Scholar 

  26. Ruscic, B. Active thermochemical tables: sequential bond dissociation enthalpies of methane, ethane, and methanol and the related thermochemistry. J. Phys. Chem. A 119, 7810–7837 (2015).

    CAS  PubMed  Google Scholar 

  27. Gao, J., Thomas, D. A., Sohn, C. H. & Beauchamp, J. L. Biomimetic reagents for the selective free radical and acid-base chemistry of glycans: application to glycan structure determination by mass spectrometry. J. Am. Chem. Soc. 135, 10684–10692 (2013).

    CAS  PubMed  Google Scholar 

  28. Luo, Y. R. Handbook of Bond Dissociation Energies in Organic Compounds 1st edn (CRC, 2002).

  29. Hedegård, E. D. & Ryde, U. Targeting the reactive intermediate in polysaccharide monooxygenases. J. Biol. Inorg. Chem. 22, 1029–1037 (2017).

    PubMed  PubMed Central  Google Scholar 

  30. Bissaro, B. et al. Oxidative cleavage of polysaccharides by monocopper enzymes depends on H2O2. Nat. Chem. Biol. 13, 1123–1128 (2017).

    CAS  PubMed  Google Scholar 

  31. Bissaro, B., Várnai, A., Røhr, Å. K. & Eijsink, V. G. H. Oxidoreductases and reactive oxygen species in conversion of lignocellulosic biomass. Microbiol. Mol. Biol. Rev. 82, e00029 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Meier, K. K. et al. Oxygen activation by Cu LPMOs in recalcitrant carbohydrate polysaccharide conversion to monomer sugars. Chem. Rev. 118, 2593–2635 (2018).

    CAS  PubMed  ADS  Google Scholar 

  33. Kovaleva, E. G. & Lipscomb, J. D. Crystal structures of Fe2+ dioxygenase superoxo, alkylperoxo, and bound product intermediates. Science 316, 453–457 (2007).

    PubMed  PubMed Central  Google Scholar 

  34. Williams, P. A. et al. Crystal structures of human cytochrome P450 3A4 bound to metyrapone and progesterone. Science 305, 683–686 (2004).

    CAS  PubMed  ADS  Google Scholar 

  35. Ramirez-Escudero, M. et al. Structural insights into the substrate promiscuity of a laboratory-evolved peroxygenase. ACS Chem. Biol. 13, 3259–3268 (2018).

    CAS  PubMed  Google Scholar 

  36. Tan, T.-C. et al. Structural basis for cellobiose dehydrogenase action during oxidative cellulose degradation. Nat. Commun. 6, 7542 (2015).

    PubMed  ADS  Google Scholar 

  37. Hecht, H. J., Kalisz, H. M., Hendle, J., Schmid, R. D. & Schomburg, D. Crystal structure of glucose oxidase from Aspergillus niger refined at 2.3 Å resolution. J. Mol. Biol. 229, 153–172 (1993).

    CAS  PubMed  Google Scholar 

  38. Bertrand, T. et al. Crystal structure of a four-copper laccase complexed with an arylamine: insights into substrate recognition and correlation with kinetics. Biochemistry 41, 7325–7333 (2002).

    CAS  PubMed  Google Scholar 

  39. Carlsson, G. H., Nicholls, P., Svistunenko, D., Berglund, G. I. & Hajdu, J. Complexes of horseradish peroxidase with formate, acetate, and carbon monoxide. Biochemistry 44, 635–642 (2005).

    CAS  PubMed  Google Scholar 

  40. Ciano, L., Davies, G. J., Tolman, W. B. & Walton, P. H. Bracing copper for the catalytic oxidation of C–H bonds. Nat. Catal. 1, 571–577 (2018).

    CAS  Google Scholar 

  41. Hagemann, M. M. & Hedegård, E. D. Molecular mechanism of substrate oxidation in lytic polysaccharide monooxygenases: insight from theoretical investigations. Chem. Eur. J. 29, e202202379 (2023).

    CAS  PubMed  Google Scholar 

  42. Bissaro, B., Kommedal, E., Røhr, Å. K. & Eijsink, V. G. H. Controlled depolymerization of cellulose by light-driven lytic polysaccharide oxygenases. Nat. Commun. 11, 890 (2020).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  43. Stepnov, A. A. et al. The impact of reductants on the catalytic efficiency of a lytic polysaccharide monooxygenase and the special role of dehydroascorbic acid. FEBS Lett. 596, 53–70 (2022).

    CAS  PubMed  Google Scholar 

  44. Eijsink, V. G. H. et al. On the functional characterization of lytic polysaccharide monooxygenases (LPMOs). Biotechnol. Biofuels 12, 58 (2019).

    PubMed  PubMed Central  Google Scholar 

  45. Bissaro, B. et al. Fenton-type chemistry by a copper enzyme: molecular mechanism of polysaccharide oxidative cleavage. Preprint at https://doi.org/10.1101/097022 (2016).

  46. Hangasky, J. A., Iavarone, A. T. & Marletta, M. A. Reactivity of O2 versus H2O2 with polysaccharide monooxygenases. Proc. Natl Acad. Sci. USA 115, 4915–4920 (2018).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  47. Jones, S. M. et al. Kinetic analysis of amino acid radicals formed in H2O2-driven CuI LPMO reoxidation implicates dominant homolytic reactivity. Proc. Natl Acad. Sci. USA 117, 11916–11922 (2020).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  48. Hemsworth, G. R. Revisiting the role of electron donors in lytic polysaccharide monooxygenase biochemistry. Essays Biochem. 18, 585–595 (2023).

    Google Scholar 

  49. Chang, H. et al. Investigating lytic polysaccharide monooxygenase-assisted wood cell wall degradation with microsensors. Nat. Commun. 13, 6258 (2022).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  50. Hedison, T. M. et al. Insights into the H2O2-driven catalytic mechanism of fungal lytic polysaccharide monooxygenases. FEBS J. 288, 4115–4128 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Kuusk, S. et al. Kinetic insights into the role of the reductant in H2O2-driven degradation of chitin by a bacterial lytic polysaccharide monooxygenase. J. Biol. Chem. 294, 1516–1528 (2019).

    CAS  PubMed  Google Scholar 

  52. Kracher, D. et al. Extracellular electron transfer systems fuel cellulose oxidative degradation. Science 352, 1098–1101 (2016).

    CAS  PubMed  ADS  Google Scholar 

  53. Cordas, C. M. et al. Electrochemical characterization of a family AA10 LPMO and the impact of residues shaping the copper site on reactivity. J. Inorg. Biochem. 238, 112056 (2023).

    CAS  PubMed  Google Scholar 

  54. Frommhagen, M. et al. Lytic polysaccharide monooxygenases from Myceliophthora thermophila C1 differ in substrate preference and reducing agent specificity. Biotechnol. Biofuels 9, 186 (2016).

    PubMed  PubMed Central  Google Scholar 

  55. Frommhagen, M., Westphal, A. H., van Berkel, W. J. H. & Kabel, M. A. Distinct substrate specificities and electron-donating systems of fungal lytic polysaccharide monooxygenases. Front. Microbiol. 9, 1080 (2018).

    PubMed  PubMed Central  Google Scholar 

  56. Dimarogona, M., Topakas, E. & Christakopoulos, P. Cellulose degradation by oxidative enzymes. Comput. Struct. Biotechnol. J. 2, e201209015 (2012).

    PubMed  PubMed Central  Google Scholar 

  57. Garajova, S. et al. Single-domain flavoenzymes trigger lytic polysaccharide monooxygenases for oxidative degradation of cellulose. Sci. Rep. 6, 28276 (2016).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  58. Haddad Momeni, M. et al. Discovery of fungal oligosaccharide-oxidising flavo-enzymes with previously unknown substrates, redox-activity profiles and interplay with LPMOs. Nat. Commun. 12, 2132 (2021).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  59. Langston, J. A. et al. Oxidoreductive cellulose depolymerization by the enzymes cellobiose dehydrogenase and glycoside hydrolase 61. Appl. Environ. Microbiol. 77, 7007–7015 (2011).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  60. Várnai, A., Umezawa, K., Yoshida, M. & Eijsink, V. G. H. The pyrroloquinoline–quinone-dependent pyranose dehydrogenase from Coprinopsis cinerea drives lytic polysaccharide monooxygenase action. Appl. Environ. Microbiol. 84, e00156–e00618 (2018).

    PubMed  PubMed Central  ADS  Google Scholar 

  61. Cannella, D. et al. Light-driven oxidation of polysaccharides by photosynthetic pigments and a metalloenzyme. Nat. Commun. 7, 11134 (2016).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  62. Kommedal, E. G., Sæther, F., Hahn, T. & Eijsink, V. G. H. Natural photoredox catalysts promote light-driven lytic polysaccharide monooxygenase reactions and enzymatic turnover of biomass. Proc. Natl Acad. Sci. USA 119, e2204510119 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Kracher, D. et al. Polysaccharide oxidation by lytic polysaccharide monooxygenase is enhanced by engineered cellobiose dehydrogenase. FEBS J. 287, 897–908 (2020).

    CAS  PubMed  Google Scholar 

  64. Branch, J. et al. C-type cytochrome-initiated reduction of bacterial lytic polysaccharide monooxygenases. Biochem. J. 478, 2927 (2021).

    CAS  PubMed  Google Scholar 

  65. Loose, J. S. M. et al. Activation of bacterial lytic polysaccharide monooxygenases with cellobiose dehydrogenase. Protein Sci. 25, 2175–2186 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Bissaro, B. et al. Molecular mechanism of the chitinolytic peroxygenase reaction. Proc. Natl Acad. Sci. USA 117, 1504–1513 (2020).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  67. Rieder, L., Stepnov, A. A., Sørlie, M. & Eijsink, V. G. H. Fast and specific peroxygenase reactions catalyzed by fungal mono-copper enzymes. Biochemistry 60, 3633–3643 (2021).

    CAS  PubMed  Google Scholar 

  68. Golten, O. et al. Reductants fuel lytic polysaccharide monooxygenase activity in a pH-dependent manner. FEBS Lett. 597, 1363–1374 (2023).

    CAS  PubMed  Google Scholar 

  69. Forsberg, Z. & Courtade, G. On the impact of carbohydrate-binding modules (CBMs) in lytic polysaccharide monooxygenases (LPMOs). Essays Biochem. 67, 561–574 (2022).

    Google Scholar 

  70. Forsberg, Z. et al. Structural and functional characterization of a conserved pair of bacterial cellulose-oxidizing lytic polysaccharide monooxygenases. Proc. Natl Acad. Sci. USA 111, 8446–8451 (2014).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  71. Frandsen, K. E. H. & Lo Leggio, L. Lytic polysaccharide monooxygenases: a crystallographer’s view on a new class of biomass-degrading enzymes. IUCrJ 3, 448–467 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Tandrup, T., Frandsen, K. E. H., Johansen, K. S., Berrin, J. G. & Leggio, L. L. Recent insights into lytic polysaccharide monooxygenases (LPMOs). Biochem. Soc. Trans. 46, 1431–1447 (2018).

    CAS  PubMed  Google Scholar 

  73. Borisova, A. S. et al. Structural and functional characterization of a lytic polysaccharide monooxygenase with broad substrate specificity. J. Biol. Chem. 290, 22955–22969 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Forsberg, Z. et al. Comparative study of two chitin-active and two cellulose-active AA10-type lytic polysaccharide monooxygenases. Biochemistry 53, 1647–1656 (2014).

    CAS  PubMed  Google Scholar 

  75. Courtade, G. et al. Mechanistic basis of substrate-O2 coupling within a chitin-active lytic polysaccharide monooxygenase: an integrated NMR/EPR study. Proc. Natl Acad. Sci. USA 117, 19178–19189 (2020).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  76. Bissaro, B., Isaksen, I., Vaaje-Kolstad, G., Eijsink, V. G. H. & Røhr, Å. K. How a lytic polysaccharide monooxygenase binds crystalline chitin. Biochemistry 57, 1893–1906 (2018).

    CAS  PubMed  Google Scholar 

  77. Wu, M. et al. Crystal structure and computational characterization of the lytic polysaccharide monooxygenase GH61D from the Basidiomycota fungus Phanerochaete chrysosporium. J. Biol. Chem. 57, 12828–12839 (2013).

    MathSciNet  Google Scholar 

  78. Vaaje-Kolstad, G., Houston, D. R., Riemen, A. H. K., Eijsink, V. G. H. & Van Aalten, D. M. F. Crystal structure and binding properties of the Serratia marcescens chitin-binding protein CBP2. J. Biol. Chem. 280, 11313–11319 (2005).

    CAS  PubMed  Google Scholar 

  79. Harris, P. V. et al. Stimulation of lignocellulosic biomass hydrolysis by proteins of glycoside hydrolase family 61: structure and function of a large, enigmatic family. Biochemistry 49, 3305–3316 (2010).

    CAS  PubMed  Google Scholar 

  80. Danneels, B., Tanghe, M. & Desmet, T. Structural features on the substrate-binding surface of fungal lytic polysaccharide monooxygenases determine their oxidative regioselectivity. Biotechnol. J. 14, 1800211 (2019).

    Google Scholar 

  81. Forsberg, Z. et al. Structural determinants of bacterial lytic polysaccharide monooxygenase functionality. J. Biol. Chem. 293, 1397–1412 (2018).

    CAS  PubMed  Google Scholar 

  82. Frandsen, K. E. H. et al. Identification of the molecular determinants driving the substrate specificity of fungal lytic polysaccharide monooxygenases (LPMOs). J. Biol. Chem. 296, 100086 (2021).

    CAS  PubMed  Google Scholar 

  83. Jensen, M. S. et al. Engineering chitinolytic activity into a cellulose-active lytic polysaccharide monooxygenase provides insights into substrate specificity. J. Biol. Chem. 294, 19349–19364 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Isaksen, T. et al. A C4-oxidizing lytic polysaccharide monooxygenase cleaving both cellulose and cello-oligosaccharides. J. Biol. Chem. 289, 2632–2642 (2014).

    CAS  PubMed  Google Scholar 

  85. Agger, J. W. et al. Discovery of LPMO activity on hemicelluloses shows the importance of oxidative processes in plant cell wall degradation. Proc. Natl Acad. Sci. USA 111, 6287–6292 (2014).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  86. Frandsen, K. E. H. et al. The molecular basis of polysaccharide cleavage by lytic polysaccharide monooxygenases. Nat. Chem. Biol. 12, 298–303 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Bennati-Granier, C. et al. Substrate specificity and regioselectivity of fungal AA9 lytic polysaccharide monooxygenases secreted by Podospora anserina. Biotechnol. Biofuels 8, 90 (2015).

    PubMed  PubMed Central  Google Scholar 

  88. Kracher, D., Andlar, M., Furtmüller, P. G. & Ludwig, R. Active-site copper reduction promotes substrate binding of fungal lytic polysaccharide monooxygenase and reduces stability. J. Biol. Chem. 293, 1676–1687 (2018).

    CAS  PubMed  Google Scholar 

  89. Kuusk, S. et al. Kinetics of H2O2-driven degradation of chitin by a bacterial lytic polysaccharide monooxygenase. J. Biol. Chem. 293, 523–531 (2018).

    CAS  PubMed  Google Scholar 

  90. Rieder, L., Petrović, D., Väljamäe, P., Eijsink, V. G. H. & Sørlie, M. Kinetic characterization of a putatively chitin-active LPMO reveals a preference for soluble substrates and absence of monooxygenase activity. ACS Catal. 11, 11685–11695 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Li, X., Beeson, W. T., Phillips, C. M., Marletta, M. A. & Cate, J. H. D. Structural basis for substrate targeting and catalysis by fungal polysaccharide monooxygenases. Structure 20, 1051–1061 (2012).

    PubMed  PubMed Central  Google Scholar 

  92. Hangasky, J. A. & Marletta, M. A. A random-sequential kinetic mechanism for polysaccharide monooxygenases. Biochemistry 57, 3191–3199 (2018).

    CAS  PubMed  Google Scholar 

  93. Schröder, G. C., O’Dell, W. B., Webb, S. P., Agarwal, P. K. & Meilleur, F. Capture of activated dioxygen intermediates at the copper-active site of a lytic polysaccharide monooxygenase. Chem. Sci. 13, 13303–13320 (2022).

    PubMed  PubMed Central  Google Scholar 

  94. O’Dell, W. B., Agarwal, P. K. & Meilleur, F. Oxygen activation at the active site of a fungal lytic polysaccharide monooxygenase. Angew. Chem. Int. Ed. Engl. 56, 767–770 (2017).

    PubMed  Google Scholar 

  95. Kjaergaard, C. H. et al. Spectroscopic and computational insight into the activation of O2 by the mononuclear Cu center in polysaccharide monooxygenases. Proc. Natl Acad. Sci. USA 111, 8797–8802 (2014).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  96. Kuusk, S. & Väljamäe, P. Kinetics of H2O2-driven catalysis by a lytic polysaccharide monooxygenase from the fungus Trichoderma reesei. J. Biol. Chem. 297, 101256 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Beeson, W. T., Phillips, C. M., Cate, J. H. D. & Marletta, M. A. Oxidative cleavage of cellulose by fungal copper-dependent polysaccharide monooxygenases. J. Am. Chem. Soc. 134, 890–892 (2012).

    CAS  PubMed  Google Scholar 

  98. Kittl, R., Kracher, D., Burgstaller, D., Haltrich, D. & Ludwig, R. Production of four Neurospora crassa lytic polysaccharide monooxygenases in Pichia pastoris monitored by a fluorimetric assay. Biotechnol. Biofuels 5, 79 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Hegnar, O. A. et al. pH-dependent relationship between catalytic activity and hydrogen peroxide production shown via characterization of a lytic polysaccharide monooxygenase from Gloeophyllum trabeum. Appl. Environ. Microbiol. 85, e02612–e02618 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Kont, R., Bissaro, B., Eijsink, V. G. H. & Väljamäe, P. Kinetic insights into the peroxygenase activity of cellulose-active lytic polysaccharide monooxygenases (LPMOs). Nat. Commun. 11, 5786 (2020).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  101. Filandr, F. et al. The H2O2-dependent activity of a fungal lytic polysaccharide monooxygenase investigated with a turbidimetric assay. Biotechnol. Biofuels 13, 37 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Wang, B. et al. QM/MM studies into the H2O2-dependent activity of lytic polysaccharide monooxygenases: evidence for the formation of a caged hydroxyl radical intermediate. ACS Catal. 8, 1346–1351 (2018).

    CAS  Google Scholar 

  103. Hedegård, E. D. & Ryde, U. Molecular mechanism of lytic polysaccharide monooxygenases. Chem. Sci. 9, 3866–3880 (2018).

    PubMed  PubMed Central  Google Scholar 

  104. Kim, S., Ståhlberg, J., Sandgren, M., Paton, R. S. & Beckham, G. T. Quantum mechanical calculations suggest that lytic polysaccharide monooxygenases use a copper-oxyl, oxygen-rebound mechanism. Proc. Natl Acad. Sci. USA 111, 149–154 (2014).

    CAS  PubMed  ADS  Google Scholar 

  105. Wang, B., Wang, Z., Davies, G. J., Walton, P. H. & Rovira, C. Activation of O2 and H2O2 by lytic polysaccharide monooxygenases. ACS Catal. 10, 12760–12769 (2020).

    CAS  Google Scholar 

  106. Kim, B. et al. Fenton-like chemistry by a copper(I) complex and H2O2 relevant to enzyme peroxygenase C–H hydroxylation. J. Am. Chem. Soc. 145, 11735–11744 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Bertini, L. et al. Catalytic mechanism of fungal lytic polysaccharide monooxygenases investigated by first-principles calculations. Inorg. Chem. 57, 86–97 (2018).

    MathSciNet  CAS  PubMed  Google Scholar 

  108. Wang, B., Walton, P. H. & Rovira, C. Molecular mechanisms of oxygen activation and hydrogen peroxide formation in lytic polysaccharide monooxygenases. ACS Catal. 9, 4958–4969 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Singh, R. K. et al. Detection and characterization of a novel copper-dependent intermediate in a lytic polysaccharide monooxygenase. Chem. Eur. J. 26, 454–463 (2020).

    CAS  PubMed  Google Scholar 

  110. Paradisi, A. et al. Formation of a copper(II)-tyrosyl complex at the active site of lytic polysaccharide monooxygenases following oxidation by H2O2. J. Am. Chem. Soc. 141, 18585–18599 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Mcevoy, A. et al. The role of the active site tyrosine in the mechanism of lytic polysaccharide monooxygenase. Chem. Sci. 12, 352 (2021).

    CAS  Google Scholar 

  112. Gray, H. B. & Winkler, J. R. Hole hopping through tyrosine/tryptophan chains protects proteins from oxidative damage. Proc. Natl Acad. Sci. USA 112, 10920–10925 (2015).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  113. Bissaro, B. & Eijsink, V. G. H. Lytic polysaccharide monooxygenases: enzymes for controlled and site-specific Fenton-like chemistry. Essays Biochem. 18, 575–584 (2023).

    Google Scholar 

  114. Beeson, W. T., Vu, V. V., Span, E. A., Phillips, C. M. & Marletta, M. A. Cellulose degradation by polysaccharide monooxygenases. Annu. Rev. Biochem. 84, 923–946 (2015).

    CAS  PubMed  Google Scholar 

  115. Westereng, B. et al. Simultaneous analysis of C1 and C4 oxidized oligosaccharides, the products of lytic polysaccharide monooxygenases acting on cellulose. J. Chromatogr. A 1445, 46–54 (2016).

    CAS  PubMed  Google Scholar 

  116. Kojima, Y. et al. A lytic polysaccharide monooxygenase with broad xyloglucan specificity from the brown-rot fungus Gloeophyllum trabeum and its action on cellulose-xyloglucan complexes. Appl. Environ. Microbiol. 82, 6557–6572 (2016).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  117. Vu, V. V., Beeson, W. T., Phillips, C. M., Cate, J. H. D. & Marletta, M. A. Determinants of regioselective hydroxylation in the fungal polysaccharide monooxygenases. J. Am. Chem. Soc. 136, 562–565 (2014).

    CAS  PubMed  Google Scholar 

  118. Caldararu, O., Oksanen, E., Ryde, U. & Hedegård, E. D. Mechanism of hydrogen peroxide formation by lytic polysaccharide monooxygenase. Chem. Sci. 10, 576–586 (2019).

    CAS  PubMed  Google Scholar 

  119. Span, E. A., Suess, D. L. M., Deller, M. C., Britt, R. D. & Marletta, M. A. The role of the secondary coordination sphere in a fungal polysaccharide monooxygenase. ACS Chem. Biol. 12, 1095–1103 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Sun, P. et al. AA16 oxidoreductases boost cellulose-active AA9 lytic polysaccharide monooxygenases from Myceliophthora thermophila. ACS Catal. 13, 4454–4467 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Li, F. et al. A lytic polysaccharide monooxygenase from a white-rot fungus drives the degradation of lignin by a versatile peroxidase. Appl. Environ. Microbiol. 85, e02803–e02818 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Breslmayr, E. et al. A fast and sensitive activity assay for lytic polysaccharide monooxygenase. Biotechnol. Biofuels 11, 79 (2018).

    PubMed  PubMed Central  Google Scholar 

  123. Loose, J. S. M. et al. Multipoint precision binding of substrate protects lytic polysaccharide monooxygenases from self-destructive off-pathway processes. Biochemistry 57, 4114–4124 (2018).

    CAS  PubMed  Google Scholar 

  124. Petrović, D. M. et al. Methylation of the N-terminal histidine protects a lytic polysaccharide monooxygenase from auto-oxidative inactivation. Protein Sci. 27, 1636–1650 (2018).

    PubMed  PubMed Central  Google Scholar 

  125. Torbjörnsson, M., Hagemann, M. M., Ryde, U. & Donovan, H. E. Histidine oxidation in lytic polysaccharide monooxygenase. J. Biol. Inorg. Chem. 28, 317–328 (2023).

    PubMed  PubMed Central  Google Scholar 

  126. Winterbourn, C. C. & Metodiewa, D. Reactivity of biologically important thiol compounds with superoxide and hydrogen peroxide. Free Radic. Biol. Med. 27, 322–328 (1999).

    CAS  PubMed  Google Scholar 

  127. Winterbourn, C. C. The biological chemistry of hydrogen peroxide. Methods Enzymol. 528, 3–25 (2013).

    CAS  PubMed  Google Scholar 

  128. Fenton, H. J. H. Oxidation of tartaric acid in presence of iron. J. Chem. Soc. Trans. 65, 899–910 (1894).

    CAS  Google Scholar 

  129. Haber, F. & Weiss, J. Über die katalyse des hydroperoxydes. Naturwissenschaften 20, 948–950 (1932).

    CAS  ADS  Google Scholar 

  130. Hussain, S., Aneggi, E., Trovarelli, A. & Goi, D. Heterogeneous Fenton-like oxidation of ibuprofen over zirconia-supported iron and copper catalysts: effect of process variables. J. Water Process Eng. 44, 102343 (2021).

    Google Scholar 

  131. Burek, B. O., Bormann, S., Hollmann, F., Bloh, J. Z. & Holtmann, D. Hydrogen peroxide driven biocatalysis. Green Chem. 21, 3232–3249 (2019).

    CAS  Google Scholar 

  132. Picard, M. et al. Metal-free bacterial haloperoxidases as unusual hydrolases: activation of H2O2 by the formation of peracetic acid. Angew. Chem. Int. Ed. Engl. 36, 1196–1199 (1997).

    CAS  Google Scholar 

  133. Holtmann, D. & Hollmann, F. The oxygen dilemma: a severe challenge for the application of monooxygenases? ChemBioChem 17, 1391–1398 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Krest, C. M. et al. Reactive intermediates in cytochrome P450 catalysis. J. Biol. Chem. 288, 17074 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Hobisch, M. et al. Recent developments in the use of peroxygenases — exploring their high potential in selective oxyfunctionalisations. Biotechnol. Adv. 51, 107615 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Dawson, J. H. Probing structure-function relations in heme-containing oxygenases and peroxidases. Science 240, 433–439 (1988).

    CAS  PubMed  ADS  Google Scholar 

  137. Matsunaga, I. & Shiro, Y. Peroxide-utilizing biocatalysts: structural and functional diversity of heme-containing enzymes. Curr. Opin. Chem. Biol. 8, 127–132 (2004).

    CAS  PubMed  Google Scholar 

  138. Rydberg, P., Sigfridsson, E. & Ryde, U. On the role of the axial ligand in heme proteins: a theoretical study. J. Biol. Inorg. Chem. 9, 203–223 (2004).

    CAS  PubMed  Google Scholar 

  139. Faiza, M., Huang, S., Lan, D. & Wang, Y. New insights on unspecific peroxygenases: superfamily reclassification and evolution. BMC Evol. Biol. 19, 76 (2019).

    PubMed  PubMed Central  Google Scholar 

  140. De Montellano, P. R. O. (ed.) Cytochrome P450: Structure, Mechanism, and Biochemistry 3rd edn (Springer, 2005).

  141. Munro, A. W., Girvan, H. M., Mason, A. E., Dunford, A. J. & McLean, K. J. What makes a P450 tick? Trends Biochem. Sci. 38, 140–150 (2013).

    CAS  PubMed  Google Scholar 

  142. Cirino, P. C. & Arnold, F. H. Regioselectivity and activity of cytochrome P450 BM-3 and mutant F87A in reactions driven by hydrogen peroxide. Adv. Synth. Catal. 344, 932–937 (2002).

    CAS  Google Scholar 

  143. Matsumura, H. et al. Modulation of redox potential and alteration in reactivity via the peroxide shunt pathway by mutation of cytochrome P450 around the proximal heme ligand. Biochemistry 47, 4834–4842 (2008).

    CAS  PubMed  Google Scholar 

  144. Renneberg, R., Scheller, F., Ruckpaul, K., Pirrwitz, J. & Mohr, P. NADPH and H2O2-dependent reactions of cytochrome P-450LM compared with peroxidase catalysis. FEBS Lett. 96, 349–353 (1978).

    CAS  PubMed  Google Scholar 

  145. Shumyantseva, V. V. et al. N-Terminal truncated cytochrome P450 2B4: catalytic activities and reduction with alternative electron sources. Biochem. Biophys. Res. Commun. 263, 678–680 (1999).

    CAS  PubMed  Google Scholar 

  146. Walton, P. H., Davies, G. J., Diaz, D. E. & Franco-Cairo, J. P. The histidine brace: nature’s copper alternative to haem? FEBS Lett. 597, 485–494 (2023).

    CAS  PubMed  Google Scholar 

  147. Poulos, T. L. & Kraut, J. The stereochemistry of peroxidase catalysis. J. Biol. Chem. 255, 8199–8205 (1980).

    CAS  PubMed  Google Scholar 

  148. Derat, E. & Shaik, S. The Poulos–Kraut mechanism of compound I formation in horseradish peroxidase: a QM/MM. J. Phys. Chem. B 110, 10526–10533 (2006).

    CAS  PubMed  Google Scholar 

  149. Wang, B., Zhang, X., Fang, W., Rovira, C. & Shaik, S. How do metalloproteins tame the Fenton reaction and utilize •OH radicals in constructive manners? Acc. Chem. Res. 55, 2280–2290 (2022).

    CAS  PubMed  Google Scholar 

  150. Wang, B., Li, C., Dubey, K. D. & Shaik, S. Quantum mechanical/molecular mechanical calculated reactivity networks reveal how cytochrome P450cam and its T252A mutant select their oxidation pathways. J. Am. Chem. Soc. 137, 7379–7390 (2015).

    CAS  PubMed  Google Scholar 

  151. Wang, B. et al. How do enzymes utilize reactive OH radicals? lessons from nonheme HppE and Fenton systems. J. Am. Chem. Soc. 138, 8489–8496 (2016).

    CAS  PubMed  Google Scholar 

  152. Wang, C. et al. Evidence that the fosfomycin-producing epoxidase, HppE, is a non-heme-iron peroxidase. Science 342, 991–995 (2013).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  153. Brander, S. et al. Biochemical evidence of both copper chelation and oxygenase activity at the histidine brace. Sci. Rep. 10, 16369 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Ipsen, J. et al. Copper binding and reactivity at the histidine brace motif: insights from mutational analysis of the Pseudomonas fluorescens copper chaperone CopC. FEBS Lett. 595, 1708–1720 (2021).

    CAS  PubMed  Google Scholar 

  155. Quist, D. A., Diaz, D. E., Liu, J. J. & Karlin, K. D. Activation of dioxygen by copper metalloproteins and insights from model complexes. J. Biol. Inorg. Chem. 22, 253–288 (2017).

    CAS  PubMed  Google Scholar 

  156. Castillo, I. et al. Cellulose depolymerization with LPMO-inspired Cu complexes. ChemCatChem 13, 4700–4704 (2021).

    CAS  Google Scholar 

  157. Bouchey, C. J., Shopov, D. Y., Gruen, A. D. & Tolman, W. B. Mimicking the Cu active site of lytic polysaccharide monooxygenase using monoanionic tridentate N-donor ligands. ACS Omega 7, 35217–35232 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Concia, A. L. et al. Copper complexes as bioinspired models for lytic polysaccharide monooxygenases. Inorg. Chem. 56, 1023–1026 (2017).

    CAS  PubMed  Google Scholar 

  159. Costa, T. H. F. et al. Demonstration-scale enzymatic saccharification of sulfite-pulped spruce with addition of hydrogen peroxide for LPMO activation. Biofuels Bioprod. Bioref. 14, 734–745 (2020).

    CAS  Google Scholar 

  160. Kommedal, E. G. et al. Visible light-exposed lignin facilitates cellulose solubilization by lytic polysaccharide monooxygenases. Nat. Commun. 14, 1063 (2023).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  161. Askarian, F. et al. The lytic polysaccharide monooxygenase CbpD promotes Pseudomonas aeruginosa virulence in systemic infection. Nat. Commun. 12, 1230 (2021).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

Download references

Acknowledgements

We thank the current and past members of our research groups that have contributed to LPMO research. We also thank our colleagues from the LPMO community. We apologize in advance to all investigators whose research cannot be appropriately discussed and cited owing to space limitations. A.M. and B.B. disclose support for the research of this work from INRAE (EvoFun project PAF_02). V.G.H.E. discloses support for the research of this work from the European Research Council (grant number 856446).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed substantially to discussion of the content. A.M. and B.B. wrote the first draft of the article. All authors reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Bastien Bissaro.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Chemistry thanks William DeGrado, Erik Hedegård and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Munzone, A., Eijsink, V.G.H., Berrin, JG. et al. Expanding the catalytic landscape of metalloenzymes with lytic polysaccharide monooxygenases. Nat Rev Chem 8, 106–119 (2024). https://doi.org/10.1038/s41570-023-00565-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-023-00565-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing