Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Synthetically encoded complementary oligomers

Abstract

Creating the next generation of advanced materials will require controlling molecular architecture to a degree typically achieved only in biopolymers. Sequence-defined polymers take inspiration from biology by using chain length and monomer sequence as handles for tuning structure and function. These sequence-defined polymers can assemble into discrete structures, such as molecular duplexes, via reversible interactions between functional groups. Selectivity can be attained by tuning the monomer sequence, thereby creating the need for chemical platforms that can produce sequence-defined polymers at scale. Developing sequence-defined polymers that are specific for their complementary sequence and achieve their desired binding strengths is critical for producing increasingly complex structures for new functional materials. In this Review Article, we discuss synthetic platforms that produce sequence-defined, duplex-forming oligomers of varying length, strength and association mode, and highlight several analytical techniques used to characterize their hybridization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Analytical techniques for detecting oligomer hybridization and measuring binding affinity.
Fig. 2: Molecular duplexes assembled from H-bonding, sequence-defined oligomers.
Fig. 3: Helical duplexes from metal ions and coordinating ligands (helicates).
Fig. 4: Molecular duplexes from sequence-defined oligomers encoded with dynamic covalent recognition sites.

Similar content being viewed by others

References

  1. Lutz, J.-F. Sequence-controlled polymerizations: the next Holy Grail in polymer science? Polym. Chem. 1, 55 (2010).

    Article  CAS  Google Scholar 

  2. Woolfson, D. N. The design of coiled-coil structures and assemblies. Adv. Protein Chem. 70, 79–112 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Zakeri, B. et al. Peptide tag forming a rapid covalent bond to a protein, through engineering a bacterial adhesin. Proc. Natl Acad. Sci. USA 109, E690–E697 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mirkin, C. A., Letsinger, R. L., Mucic, R. C. & Storhoff, J. J. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382, 607–609 (1996).

    Article  CAS  PubMed  Google Scholar 

  5. Park, S.-J., Lazarides, A. A., Storhoff, J. J., Pesce, L. & Mirkin, C. A. The structural characterization of oligonucleotide-modified gold nanoparticle networks formed by DNA hybridization. J. Phys. Chem. A 18, 12375–12380 (2004).

    Google Scholar 

  6. Gartner, Z. J. & Liu, D. R. The generality of DNA-templated synthesis as a basis for evolving non-natural small molecules. J. Am. Chem. Soc. 123, 6961–6963 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gartner, Z. J. et al. DNA-templated organic synthesis and selection of a library of macrocycles. Science 305, 1601–1605 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Breaker, R. R. & Joyce, G. F. A DNA enzyme that cleaves RNA. Chem. Biol. 1, 223–229 (1994).

    Article  CAS  PubMed  Google Scholar 

  9. Li, Y. & Sen, D. A catalytic DNA for porphyrin metallation. Nat. Struct. Biol. 3, 743–747 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Chandra, M. & Silverman, S. K. DNA and RNA can be equally efficient catalysts for carbon-carbon bond formation. J. Am. Chem. Soc. 130, 2936–2937 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Macfarlane, R. J. et al. Nanoparticle superlattice engineering with DNA. Science 334, 204–208 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. Rothemund, P. W. K. Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Mathur, D. & Henderson, E. R. Complex DNA nanostructures from oligonucleotide ensembles. ACS Synth. Biol. 2, 180–185 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. Nie, Z., Wang, P., Tian, C. & Mao, C. Synchronization of two assembly processes to build responsive DNA nanostructures. Angew. Chem. Int. Edn Engl. 53, 8402–8405 (2014).

    Article  CAS  Google Scholar 

  15. Merrifield, R. B. Solid phase peptide synthesis. The synthesis of a tetrapeptide. J. Am. Chem. Soc. 85, 2149–2154 (1963).

    Article  CAS  Google Scholar 

  16. Letsinger, R. L. & Mahadevan, V. Oligonucleotide synthesis on a polymer support. J. Am. Chem. Soc. 87, 3256–3257 (1965).

    Article  Google Scholar 

  17. Al Ouahabi, A., Charles, L. & Lutz, J.-F. O. Synthesis of non-natural sequence-encoded polymers using phosphoramidite chemistry. J. Am. Chem. Soc. 137, 5629–5635 (2015).

    Article  CAS  PubMed  Google Scholar 

  18. Hill, S. A., Gerke, C. & Hartmann, L. Recent developments in solid-phase strategies towards synthetic, sequence-defined macromolecules. Chem. Asian J. 13, 3611–3622 (2018).

    Article  CAS  PubMed  Google Scholar 

  19. Strom, K. R. & Szostak, J. W. Solid-phase synthesis of sequence-defined informational oligomers. J. Org. Chem. 85, 13929–13938 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Knight, A. S. et al. Sequence programmable peptoid polymers for diverse materials applications. Adv. Mater. 27, 5665–5691 (2015).

    Article  CAS  PubMed  Google Scholar 

  21. Ferrand, Y. & Huc, I. Designing helical molecular capsules based on folded aromatic amide oligomers. Acc. Chem. Res. 51, 970–977 (2018).

    Article  CAS  PubMed  Google Scholar 

  22. Reuther, J. F. et al. Dynamic covalent chemistry enables formation of antimicrobial peptide quaternary assemblies in a completely abiotic manner. Nat. Chem. 10, 45–50 (2018).

    Article  CAS  Google Scholar 

  23. Binauld, S., Damiron, D., Connal, L. A., Hawker, C. J. & Drockenmuller, E. Precise synthesis of molecularly defined oligomers and polymers by orthogonal iterative divergent/convergent approaches. Macromol. Rapid Commun. 32, 147–168 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. Barnes, J. C. et al. Iterative exponential growth of stereo- and sequence-controlled polymers. Nat. Chem. 7, 810–815 (2015).

    Article  CAS  PubMed  Google Scholar 

  25. Takizawa, K., Tang, C. & Hawker, C. J. Molecularly defined caprolactone oligomers and polymers: synthesis and characterization. J. Am. Chem. Soc. 130, 1718–1726 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Leibfarth, F. A., Johnson, J. A. & Jamison, T. F. Scalable synthesis of sequence-defined, unimolecular macromolecules by flow-IEG. Proc. Natl Acad. Sci. USA 112, 10617–10622 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lee, J. M. et al. Semiautomated synthesis of sequence-defined polymers for information storage. Sci. Adv. 8, 8614 (2022).

    Article  Google Scholar 

  28. Lee, J. M. et al. High-density information storage in an absolutely defined aperiodic sequence of monodisperse copolyester. Nat. Commun. 11, 56 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Laurent, Q., Sakai, N. & Matile, S. An orthogonal dynamic covalent chemistry tool for ring-opening polymerization of cyclic oligochalcogenides on detachable helical peptide templates. Chem. Eur. J. 28, e202200785 (2022).

    Article  CAS  PubMed  Google Scholar 

  30. Núñez-Villanueva, D. & Hunter, C. A. Replication of a synthetic oligomer using chameleon base-pairs. Chem. Commun. 58, 11005–11008 (2022).

    Article  Google Scholar 

  31. Núñez-Villanueva, D. & Hunter, C. A. H-bond templated oligomer synthesis using a covalent primer. J. Am. Chem. Soc. 144, 17307–17316 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Rosenbaum, D. M. & Liu, D. R. Efficient and sequence-specific DNA-templated polymerization of peptide nucleic acid aldehydes. J. Am. Chem. Soc. 125, 13924–13925 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Xue, C. & Luo, F.-T. Efficient and rapid synthesis of oligo(p-phenylenevinylene) via iterative coherent approach. J. Org. Chem. 68, 4417–4421 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Hoff, E. A., De Hoe, G. X., Mulvaney, C. M., Hillmyer, M. A. & Alabi, C. A. Thiol−ene networks from sequence-defined polyurethane macromers. J. Am. Chem. Soc. 142, 6729–6736 (2020).

    Article  CAS  PubMed  Google Scholar 

  35. Brown, J. S. et al. Synthesis and solution-phase characterization of sulfonated oligothioetheramides. Macromolecules 50, 43 (2017).

    Article  Google Scholar 

  36. Wei, T., Hwan Jung, J. & Scott, T. F. Dynamic covalent assembly of peptoid-based ladder oligomers by vernier templating. J. Am. Chem. Soc. 137, 14 (2015).

    Article  Google Scholar 

  37. Porel, M. & Alabi, C. A. Sequence-defined polymers via orthogonal allyl acrylamide building blocks. J. Am. Chem. Soc. 136, 13162–13165 (2014).

    Article  CAS  PubMed  Google Scholar 

  38. Solleder, S. C. & Meier, M. A. R. Sequence-controlled polymers sequence control in polymer chemistry through the passerini three-component reaction. Angew. Chem. Int. Edn Engl. 53, 711–714 (2014).

    Article  CAS  Google Scholar 

  39. Wang, S., Tao, Y., Wang, J., Tao, Y. & Wang, X. A versatile strategy for the synthesis of sequence-defined peptoids with side-chain and backbone diversity via amino acid building blocks. Chem. Sci. 10, 1531–1538 (2019).

    PubMed  Google Scholar 

  40. Yan, J.-J., Wang, D., Wu, D.-C. & You, Y.-Z. Synthesis of sequence-ordered polymers via sequential addition of monomers in one pot. Chem. Commun. 49, 6057 (2013).

    Article  CAS  Google Scholar 

  41. Tao, Y., Tao, Y., Tao, Y. & Tao, H. Ugi reaction of amino acids: from facile synthesis of polypeptoids to sequence-defined macromolecules. Macromol. Rapid Commun. 42, 2000515 (2021).

    Article  CAS  Google Scholar 

  42. Hoff, E. A., Weigel, R. K., Rangamani, A. & Alabi, C. A. Discrete oligocarbamates exhibit sequence-dependent fluorescence emission and quenching. ACS Polym. Au 3, 276–283 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Elliott, E. L., Hartley, C. S. & Moore, J. S. Covalent ladder formation becomes kinetically trapped beyond four rungs. Chem. Commun. 47, 5028–5030 (2011).

    Article  CAS  Google Scholar 

  44. Mattia, E. & Otto, S. Supramolecular systems chemistry. Nat. Nanotechnol. 10, 111–119 (2015).

    Article  CAS  PubMed  Google Scholar 

  45. Hartley, C. S., Elliott, E. L. & Moore, J. S. Covalent assembly of molecular ladders. J. Am. Chem. Soc. 129, 4512–4513 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Macomber, R. S. An introduction to NMR titration for studying rapid reversible complexation. J. Chem. Educ. 69, 375–378 (1992).

    Article  CAS  Google Scholar 

  47. Zarycz, M. N. C. & Guerra, C. F. NMR 1H-shielding constants of hydrogen-bond donor reflect manifestation of the Pauli principle. J. Phys. Chem. Lett. 9, 3720–3724 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Archer, E. A., Gong, H. & Krische, M. J. Hydrogen bonding in noncovalent synthesis: selectivity and the directed organization of molecular strands. Tetrahedron 57, 1139–1159 (2001).

    Article  CAS  Google Scholar 

  49. Archer, E. A., Cauble, D. F., Lynch, V. & Krische, M. J. Synthetic duplex oligomers: optimizing interstrand affinity through the use of a noncovalent constraint. Tetrahedron 58, 721–725 (2002).

    Article  CAS  Google Scholar 

  50. Chu, W.-J., Yang, Y. & Chen, C.-F. Multiple hydrogen-bond-mediated molecular duplexes based on the self-complementary amidourea motif. Org. Lett. 12, 3156–3159 (2010).

    Article  CAS  PubMed  Google Scholar 

  51. Stross, A. E., Iadevaia, G., Núñez-Villanueva, D. & Hunter, C. A. Sequence-selective formation of synthetic H-bonded duplexes. J. Am. Chem. Soc. 139, 12655–12663 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Iadevaia, G., Stross, A. E., Neumann, A. & Hunter, C. A. Mix and match backbones for the formation of H-bonded duplexes. Chem. Sci. 7, 1760–1767 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Stross, A. E., Iadevaia, G. & Hunter, C. A. Mix and match recognition modules for the formation of H-bonded duplexes. Chem. Sci. 7, 5686–5691 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Núñez-Villanueva, D. et al. H-bond self-assembly: folding versus duplex formation. J. Am. Chem. Soc. 139, 6654–6662 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Swain, J. A., Iadevaia, G. & Hunter, C. A. H-bonded duplexes based on a phenylacetylene backbone. J. Am. Chem. Soc. 140, 11526–11536 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Iadevaia, G., Núñez-Villanueva, D., Stross, A. E. & Hunter, C. A. Backbone conformation affects duplex initiation and duplex propagation in hybridisation of synthetic H-bonding oligomers. Org. Biomol. Chem. 16, 4183–4190 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Szczypinski, F. T. & Hunter, C. A. Building blocks for recognition-encoded oligoesters that form H-bonded duplexes. Chem. Sci. 10, 2444 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Szczypiński, F. T., Gabrielli, L. & Hunter, C. A. Emergent supramolecular assembly properties of a recognition-encoded oligoester. Chem. Sci. 10, 5397–5404 (2019).

    Article  Google Scholar 

  59. Troselj, P., Bolgar, P., Ballester, P. & Hunter, C. A. High-fidelity sequence-selective duplex formation by recognition-encoded melamine oligomers. J. Am. Chem. Soc. 143, 8669–8678 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Iadevaia, G., Swain, J. A., Nunez-Villanueva, D., Bond, A. D. & Hunter, C. A. Folding and duplex formation in mixed sequence recognition-encoded m-phenylene ethynylene polymers. Chem. Sci. 12, 10218–10226 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Stross, A. E., Iadevaia, G. & Hunter, C. A. Cooperative duplex formation by synthetic H-bonding oligomers. Chem. Sci. 7, 94–101 (2016).

    Article  CAS  PubMed  Google Scholar 

  62. Hebel, M. et al. Sequence programming with dynamic boronic acid/catechol binary codes. J. Am. Chem. Soc. 141, 14026–14031 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Groves, P. Diffusion ordered spectroscopy (DOSY) as applied to polymers. Polym. Chem. 8, 6700–6708 (2017).

    Article  CAS  Google Scholar 

  64. Jin, R., Wu, G., Li, Z., Mirkin, C. A. & Schatz, G. C. What controls the melting properties of DNA-linked gold nanoparticle assemblies? J. Am. Chem. Soc. 125, 1643–1654 (2003).

    Article  CAS  PubMed  Google Scholar 

  65. Burge, D. E. Calibration of vapor pressure osmometers for molecular weight measurement. J. Appl. Polym. Sci. 24, 293–299 (1979).

    Article  CAS  Google Scholar 

  66. Bersted, B. H. Molecular weight determination of high polymers by means of vapor pressure osmometry and the solute dependence of the constant of calibration. J. Appl. Polym. Sci. 17, 1415–1430 (1973).

    Article  CAS  Google Scholar 

  67. Archer, E. A. & Krische, M. J. Duplex oligomers defined via covalent casting of a one-dimensional hydrogen-bonding motif. J. Am. Chem. Soc. 124, 5074–5083 (2002).

    Article  CAS  PubMed  Google Scholar 

  68. Lakowicz, J. R. Principles of Fluorescence Spectroscopy (Springer, 2006).

  69. Wei, T., Furgal, J. C., Jung, J. H. & Scott, T. F. Long, self-assembled molecular ladders by cooperative dynamic covalent reactions. Polym. Chem. 8, 520–527 (2017).

    Article  CAS  Google Scholar 

  70. Leguizamon, S. C. & Scott, T. F. Sequence-selective dynamic covalent assembly of information-bearing oligomers. Nat. Commun. 11, 784 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Iadevaia, G. & Hunter, C. A. Recognition-encoded synthetic information molecules. Acc. Chem. Res. 56, 712–727 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Rowan, S. J., Cantril, S. J., Cousins, G. R. L., Sanders, J. K. M. & Stoddart, J. F. Dynamic covalent chemistry. Angew. Chem. Int. Edn Engl. 41, 898–952 (2002).

    Article  Google Scholar 

  73. Nielsen, P. E., Echolm, M., Berg, R. H. & Buchardt, O. Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science 254, 1497–1500 (1990).

    Article  Google Scholar 

  74. Egholm, M., Buchardt, O., Nielsen, P. E. & Berg, R. H. Peptide nucelic acids (PNA). Oligonucleotide analogues with an achiral peptide backbone. J. Am. Chem. Soc. 114, 1895–1897 (1992).

    Article  CAS  Google Scholar 

  75. Simon, R. J. et al. Peptoids: a modular approach to drug discovery. Proc. Natl Acad. Sci. USA 89, 9367–9371 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Fowler, S. A. & Blackwell, H. E. Structure–function relationships in peptoids: recent advances toward deciphering the structural requirements for biological function. Org. Biomol. Chem. 7, 1508–1524 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Robertson, E. J. et al. Molecular engineering of the peptoid nanosheet hydrophobic core. Langmuir 32, 11946–11957 (2016).

    Article  CAS  PubMed  Google Scholar 

  78. Monahan, M. et al. Peptoid-directed assembly of CdSe nanoparticles. Nanoscale 13, 1273–1282 (2021).

    Article  PubMed  Google Scholar 

  79. Li, Z., Cai, B., Yang, W. & Chen, C.-L. Hierarchical nanomaterials assembled from peptoids and other sequence-defined synthetic polymers. Chem. Rev. 121, 14031–14087 (2021).

    Article  CAS  PubMed  Google Scholar 

  80. Mittapalli, G. K. et al. Mapping the landscape of potentially primordial informational oligomers: oligodipeptides and oligodipeptoids tagged with triazines as recognition elements. Angew. Chem. 119, 2522–2529 (2007).

    Article  Google Scholar 

  81. Zarra, R. et al. Design, synthesis, and hybridisation of water-soluble, peptoid nucleic acid oligomers tagged with thymine. Eur. J. Org. Chem. 2009, 6113–6120 (2009).

    Article  Google Scholar 

  82. Archer, E. A., Goldberg, N. T., Lynch, V. & Krische, M. J. Nanostructured polymer duplexes vai the covalent casting of 1-dimensional H-bonding motifs: a new strategy for the self-assembly of macromolecular precursors. J. Angew. Chem. Int. Edn Engl. 28, 5006–5007 (2000).

    Google Scholar 

  83. Archer, E. A., Sochia, A. E. & Krische, M. J. The covalent casting of one-dimensional hydrogen bonding motifs: toward oligomers and polymers of predefined topography. Chem. A Eur. J. 7, 2059–2065 (2001).

    Article  CAS  Google Scholar 

  84. Connors, K. A. Binding Constants: the Measurement of Molecular Complex Stability (Wiley, 1987).

  85. Gong, H. & Krische, M. J. Duplex molecular strands based on the 3,6-diaminopyridazine hydrogen bonding motif: amplifying small-molecule self-assembly preferences through preorganization and iterative arrangement of binding residues. J. Am. Chem. Soc. 127, 1719–1725 (2005).

    Article  CAS  PubMed  Google Scholar 

  86. Rosa-Gastaldo, D., Pečiukėnas, V., Hunter, C. A. & Gabrielli, L. Duplex vs. folding: tuning the self-assembly of synthetic recognition-encoded aniline oligomers. Org. Biomol. Chem. 19, 8947–8954 (2021).

    Article  CAS  PubMed  Google Scholar 

  87. Gabrielli, L. & Hunter, C. A. Supramolecular catalysis by recognition-encoded oligomers: discovery of a synthetic imine polymerase. Chem. Sci. 11, 7408–7414 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Motloch, P. & Hunter, C. A. Thermodynamic effective molarities for supramolecular complexes. Adv. Phys. 50, 77–118 (2016).

    CAS  Google Scholar 

  89. Tanaka, Y., Katagiri, H., Furusho, Y. & Yashima, E. A modular strategy to artificial double helices. Adv. Phys. Org. Chem. 117, 3935–3938 (2005).

    Google Scholar 

  90. Ito, H., Furusho, Y., Hasegawa, T. & Yashima, E. Sequence-and chain-length-specific complementary double-helix formation. J. Am. Chem. Soc. 130, 14008–14015 (2008).

    Article  CAS  PubMed  Google Scholar 

  91. Lehn, J. M. et al. Spontaneous assembly of double-stranded helicates from oligobipyridine ligands and copper(I) cations: structure of an inorganic double helix. Proc. Natl Acad. Sci. USA 84, 2565–2569 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Harding, M. M. et al. Synthesis of unsubstituted and 4,4′‐substituted oligobipyridines as ligand strands for helicate self‐assembly. Helvet. Chim. Acta 74, 594–610 (1991).

    Article  CAS  Google Scholar 

  93. Pfeil, A. & Lehn, J.-M. Helicate self-organisation: positive cooperativity in the self-assembly of double-helical metal complexes. J. Chem. Soc. Chem. Commun. https://doi.org/10.1039/C39920000838 (1992).

  94. Kramer, R., Lehn, J.-M. & Marquis-Rigault, A. Self-recognition in helicate self-assembly: spontaneous formation of helical metal complexes from mixtures of ligands and metal ions (programmed supramolecular systems/polynuclear metal complexes/instructed mixture paradigm). Proc. Natl Acad. Sci. USA 90, 5394–5398 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Hasenknopf, B. & Lehn, J.-M. Trinuclear double helicates of iron(II) and nickel(II): self-assembly and resolution into helical enantiomers. Helvet. Chim. Acta 79, 1643–1650 (1996).

    Article  CAS  Google Scholar 

  96. Hasenknopf, B., Lehn, J. M., Baum, G. & Fenske, D. Self-assembly of a heteroduplex helicate from two different ligand strands and Cu(II) cations. Proc. Natl Acad. Sci. USA 93, 1397–1400 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Smith, V. C. M. & Lehn, J.-M. Helicate self-assembly from heterotopic ligand strands of specific binding site sequence. Chem. Commun. https://doi.org/10.1039/CC9960002733 (1996).

  98. Marquis, A. et al. Messages in molecules: ligand/cation coding and self-recognition in a constitutionally dynamic system of heterometallic double helicates. Chem. Eur. J. 12, 5632–5641 (2006).

    Article  CAS  PubMed  Google Scholar 

  99. Santoro, A., Holub, J., Fik-Jaskółka, M. A., Vantomme, G. & Lehn, J. M. Dynamic helicates self-assembly from homo- and heterotopic dynamic covalent ligand strands. Chem. Eur. J. 26, 15664–15671 (2020).

    Article  CAS  PubMed  Google Scholar 

  100. Huang, S. et al. An overview of dynamic covalent bonds in polymer material and their applications. Eur. Polym. J. 141, 110094 (2020).

    Article  CAS  Google Scholar 

  101. Chakma, P. & Konkolewicz, D. Dynamic covalent bonds in polymeric materials. Angew. Chem. Int. Edn Engl. 58, 9682–9695 (2019).

    Article  CAS  Google Scholar 

  102. Herrmann, A. Dynamic combinatorial/covalent chemistry: a tool to read, generate and modulate the bioactivity of compounds and compound mixtures. Chem. Soc. Rev. 43, 1899–1933 (2014).

    Article  CAS  PubMed  Google Scholar 

  103. Otsuka, H. Reorganization of polymer structures based on dynamic covalent chemistry: polymer reactions by dynamic covalent exchanges of alkoxyamine units. Polym. J. 45, 879–891 (2013).

    Article  CAS  Google Scholar 

  104. Avestro, A. J., Belowich, M. E. & Stoddart, J. F. Cooperative self-assembly: producing synthetic polymers with precise and concise primary structures. Chem. Soc. Rev. 41, 5881–5895 (2012).

    Article  CAS  PubMed  Google Scholar 

  105. Godoy-Alcántar, C., Yatsimirsky, A. K. & Lehn, J. M. Structure–stability correlations for imine formation in aqueous solution. J. Phys. Org. Chem. 18, 979–985 (2005).

    Article  Google Scholar 

  106. Giuseppone, N., Schmitt, J. L. & Lehn, J. M. Driven evolution of a constitutional dynamic library of molecular helices toward the selective generation of [2 × 2] gridlike arrays under the pressure of metal ion coordination. J. Am. Chem. Soc. 128, 16748–16763 (2006).

    Article  CAS  PubMed  Google Scholar 

  107. Giuseppone, N., Schmitt, J. L. & Lehn, J. M. Generation of dynamic constitutional diversity and driven evolution in helical molecular strands under Lewis acid catalyzed component exchange. Angew. Chem. Int. Edn Engl. 43, 4902–4906 (2004).

    Article  CAS  Google Scholar 

  108. Jin, Y., Yu, C., Denman, R. J. & Zhang, W. Recent advances in dynamic covalent chemistry. Chem. Soc. Rev. 42, 6634–6654 (2013).

    Article  CAS  PubMed  Google Scholar 

  109. Reuther, J. F., Dahlhauser, S. D. & Anslyn, E. V. Tunable orthogonal reversible covalent (TORC) bonds: dynamic chemical control over molecular assembly. Angew. Chem. Int. Edn Engl. 58, 74–85 (2019).

    Article  CAS  Google Scholar 

  110. Belowich, M. E. & Stoddart, J. F. Dynamic imine chemistry. Chem. Soc. Rev. 41, 2003–2024 (2012).

    Article  CAS  PubMed  Google Scholar 

  111. Ciaccia, M., Pilati, S., Cacciapaglia, R., Mandolini, L. & Di Stefano, S. Effective catalysis of imine metathesis by means of fast transiminations between aromatic–aromatic or aromatic–aliphatic amines. Org. Biomol. Chem. 12, 3282–3287 (2014).

    Article  CAS  PubMed  Google Scholar 

  112. Giuseppone, N., Schmitt, J. L., Schwartz, E. & Lehn, J. M. Scandium(III) catalysis of transimination reactions. Independent and constitutionally coupled reversible processes. J. Am. Chem. Soc. 127, 5528–5539 (2005).

    Article  CAS  PubMed  Google Scholar 

  113. Strom, K. R., Szostak, J. W. & Prywes, N. Transfer of sequence information and replication of diimine duplexes. J. Org. Chem. 84, 3754–3761 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Dunn, M. F., Wei, T., Zuckermann, R. N. & Scott, T. F. Aqueous dynamic covalent assembly of molecular ladders and grids bearing boronate ester rungs. Polym. Chem. 10, 2337–2343 (2019).

    Article  CAS  Google Scholar 

  115. Christinat, N., Scopelliti, R. & Severin, K. Multicomponent assembly of boronic acid based macrocycles and cages. Angew. Chem. Int. Edn Engl. 47, 1848–1852 (2008).

    Article  CAS  Google Scholar 

  116. Hutin, M., Bernardinelli, G. & Nitschke, J. R. An iminoboronate construction set for subcomponent self-assembly. Chem. Eur. J. 14, 4585–4593 (2008).

    Article  CAS  PubMed  Google Scholar 

  117. Bull, S. D. et al. Exploiting the reversible covalent bonding of boronic acids: recognition, sensing, and assembly. Acc. Chem. Res. 46, 312–326 (2013).

    Article  CAS  PubMed  Google Scholar 

  118. Smith, M. K., Powers-Riggs, N. E. & Northrop, B. H. Discrete, soluble covalent organic boronate ester rectangles. Chem. Commun. 49, 6167–6169 (2013).

    Article  CAS  Google Scholar 

  119. Drogkaris, V. & Northrop, B. H. Discrete boronate ester ladders from the dynamic covalent self-assembly of oligo(phenylene ethynylene) derivatives and phenylenebis(boronic acid). Org. Chem. Front. 7, 1082–1094 (2020).

    Article  CAS  Google Scholar 

  120. Leguizamon, S. C., Dunn, M. F. & Scott, T. F. Sequence-directed dynamic covalent assembly of base-4-encoded oligomers. Chem. Commun. 56, 7817–7820 (2020).

    Article  CAS  Google Scholar 

  121. Discekici, E. H. et al. Endo and exo Diels–Alder adducts: temperature-tunable building blocks for selective chemical functionalization. J. Am. Chem. Soc. 140, 5009–5013 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Froidevaux, V. et al. Study of the Diels–Alder and retro-Diels–Alder reaction between furan derivatives and maleimide for the creation of new materials. RSC Adv. 5, 37742–37754 (2015).

    Article  CAS  Google Scholar 

  123. Adzima, B. J., Aguirre, H. A., Kloxin, C. J., Scott, T. F. & Bowman, C. N. Rheological and chemical analysis of reverse gelation in a covalently cross-linked Diels–Alder polymer network. Macromolecules 41, 9112–9117 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Leguizamon, S. C., Alqubati, A. F. & Scott, T. F. Temperature-mediated molecular ladder self-assembly employing Diels–Alder cycloaddition. Polym. Chem. 11, 7714–7720 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the NSF (grant CHE-2105834) for financial support.

Author information

Authors and Affiliations

Authors

Contributions

R.K.W. and C.A.A. formulated the framework for the review. R.K.W. and A.R. wrote the manuscript. C.A.A. edited the manuscript.

Corresponding author

Correspondence to Christopher A. Alabi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Chemistry thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weigel, R.K., Rangamani, A. & Alabi, C.A. Synthetically encoded complementary oligomers. Nat Rev Chem 7, 875–888 (2023). https://doi.org/10.1038/s41570-023-00556-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-023-00556-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing