Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Phosphorescence resonance energy transfer from purely organic supramolecular assembly

Abstract

Phosphorescence energy transfer systems have been applied in encryption, biomedical imaging and chemical sensing. These systems exhibit ultra-large Stokes shifts, high quantum yields and are colour-tuneable with long-wavelength afterglow fluorescence (particularly in the near-infrared) under ambient conditions. This review discusses triplet-to-singlet PRET or triplet-to-singlet-to-singlet cascaded PRET systems based on macrocyclic or assembly-confined purely organic phosphorescence introducing the critical toles of supramolecular noncovalent interactions in the process. These interactions promote intersystem crossing, restricting the motion of phosphors, minimizing non-radiative decay and organizing donor–acceptor pairs in close proximity. We discuss the applications of these systems and focus on the challenges ahead in facilitating their further development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Simplified Jablonski diagram illustrating the PRET or cascaded PRET process owing to macrocyclic confinement and assembly confinement.
Fig. 2: Polyvinyl alcohol (PVA)-mediated solid-state supramolecular assemblies for PRET by direct doping.
Fig. 3: Polyvinyl alcohol (PVA)-mediated solid-state supramolecular assemblies for PRET through covalent B–O bonds.
Fig. 4: Alternate rigid polymer matrix-mediated solid-state supramolecular assemblies for PRET.
Fig. 5: Copolymerization-constructed solid-state supramolecular assemblies for PRET.
Fig. 6: Amphiphilic macrocyclic cascaded assemblies for PRET.
Fig. 7: Polymer-based co-assemblies for PRET.
Fig. 8: Supramolecular hydrogels for PRET.

Similar content being viewed by others

References

  1. Guo, J., Yang, C. & Zhao, Y. Long-lived organic room-temperature phosphorescence from amorphous polymer systems. Acc. Chem. Res. 55, 1160–1170 (2022).

    Article  CAS  PubMed  Google Scholar 

  2. Shi, H. et al. Ultralong organic phosphorescence: from material design to applications. Acc. Chem. Res. 55, 3445–3459 (2022).

    Article  CAS  PubMed  Google Scholar 

  3. Zhang, T. et al. Molecular engineering for metal-free amorphous materials with room-temperature phosphorescence. Angew. Chem. Int. Ed. Engl. 59, 11206–11216 (2020).

    Article  CAS  PubMed  Google Scholar 

  4. Yang, J., Fang, M. & Li, Z. Stimulus-responsive room temperature phosphorescence materials: internal mechanism, design strategy, and potential application. Acc. Mater. Res. 2, 644–654 (2021).

    Article  CAS  Google Scholar 

  5. Garain, S. et al. Arylene diimide phosphors: aggregation modulated twin room temperature phosphorescence from pyromellitic diimides. Angew. Chem. Int. Ed. Engl. 60, 12323–12327 (2021).

    Article  CAS  PubMed  Google Scholar 

  6. Xie, Z. et al. Wide-range lifetime-tunable and responsive ultralong organic phosphorescent multi-host/guest system. Nat. Commun. 12, 3522 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Li, W. et al. A dish-like molecular architecture for dynamic ultralong room-temperature phosphorescence through reversible guest accommodation. Nat. Commun. 13, 7423 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Liu, X. Q. et al. Monochromophore-based phosphorescence and fluorescence from pure organic assemblies for ratiometric hypoxia detection. Angew. Chem. Int. Ed. Engl. 59, 23456–23460 (2020).

    Article  CAS  PubMed  Google Scholar 

  9. He, Z. et al. Achieving persistent, efficient, and robust room-temperature phosphorescence from pure organics for versatile applications. Adv. Mater. 31, e1807222 (2019).

    Article  PubMed  Google Scholar 

  10. Ma, Y. J., Fang, X., Xiao, G. & Yan, D. Dynamic manipulating space-resolved persistent luminescence in core-shell MOFs heterostructures via reversible photochromism. Angew. Chem. Int. Ed. 61, e202114100 (2022).

    Article  CAS  Google Scholar 

  11. Wang, Z. et al. Four-in-one stimulus-responsive long-lived luminescent systems based on pyrene-doped amorphous polymers. Angew. Chem. Int. Ed. 61, e202203254 (2022).

    Article  CAS  Google Scholar 

  12. Yang, Y. et al. Tunable photoresponsive behaviors based on triphenylamine derivatives: the pivotal role of π-conjugated structure and corresponding application. Adv. Mater. 33, e2104002 (2021).

    Article  PubMed  Google Scholar 

  13. Cai, S. et al. Ultralong organic phosphorescent foams with high mechanical strength. J. Am. Chem. Soc. 143, 16256–16263 (2021).

    Article  CAS  PubMed  Google Scholar 

  14. Wang, T. et al. Aggregation-induced dual-phosphorescence from organic molecules for nondoped light-emitting diodes. Adv. Mater. 31, 1904273 (2019).

    Article  CAS  Google Scholar 

  15. Gong, Y. et al. Achieving persistent room temperature phosphorescence and remarkable mechanochromism from pure organic luminogens. Adv. Mater. 27, 6195–6201 (2015).

    Article  CAS  PubMed  Google Scholar 

  16. Wang, H. et al. Visualization and manipulation of solid-state molecular motions in cocrystallization processes. J. Am. Chem. Soc. 143, 9468–9477 (2021).

    Article  CAS  PubMed  Google Scholar 

  17. Wang, X. F. et al. Pure organic room temperature phosphorescence from unique micelle-assisted assembly of nanocrystals in water. Adv. Funct. Mater. 30, 1907282 (2020).

    Article  CAS  Google Scholar 

  18. Yang, J. et al. The influence of the molecular packing on the room temperature phosphorescence of purely organic luminogens. Nat. Commun. 9, 840 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Bolton, O., Lee, K., Kim, H. J., Lin, K. Y. & Kim, J. Activating efficient phosphorescence from purely organic materials by crystal design. Nat. Chem. 3, 205–210 (2011).

    Article  CAS  PubMed  Google Scholar 

  20. Yuan, W. Z. et al. Crystallization-induced phosphorescence of pure organic luminogens at room temperature. J. Phys. Chem. C 114, 6090–6099 (2010).

    Article  CAS  Google Scholar 

  21. Gu, L. et al. Color-tunable ultralong organic room temperature phosphorescence from a multicomponent copolymer. Nat. Commun. 11, 944 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gu, L. et al. Circularly polarized organic room temperature phosphorescence from amorphous copolymers. J. Am. Chem. Soc. 143, 18527–18535 (2021).

    Article  CAS  PubMed  Google Scholar 

  23. Zhang, Z. Y. et al. A synergistic enhancement strategy for realizing ultralong and efficient room-temperature phosphorescence. Angew. Chem. Int. Ed. Engl. 59, 18748–18754 (2020).

    Article  CAS  PubMed  Google Scholar 

  24. Wu, H. et al. Molecular phosphorescence in polymer matrix with reversible sensitivity. ACS Appl. Mater. Interfaces 12, 20765–20774 (2020).

    Article  CAS  PubMed  Google Scholar 

  25. Zhang, Y. et al. Ultraviolet irradiation-responsive dynamic ultralong organic phosphorescence in polymeric systems. Nat. Commun. 12, 2297 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Su, Y. et al. Excitation-dependent long-life luminescent polymeric systems under ambient conditions. Angew. Chem. Int. Ed. Engl. 59, 9967–9971 (2020).

    Article  CAS  PubMed  Google Scholar 

  27. Wang, Z. et al. Accessing excitation- and time-responsive afterglows from aqueous processable amorphous polymer films through doping and energy transfer. Adv. Mater. 34, 2202182 (2022).

    Article  CAS  Google Scholar 

  28. Wu, H. et al. Tailoring noncovalent interactions to activate persistent room-temperature phosphorescence from doped polyacrylonitrile films. Adv. Funct. Mater. 31, 2101656 (2021).

    Article  CAS  Google Scholar 

  29. Ding, B. et al. Engendering persistent organic room temperature phosphorescence by trace ingredient incorporation. Sci. Adv. 7, eabf9668 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhou, W. L. et al. Ultralong purely organic aqueous phosphorescence supramolecular polymer for targeted tumor cell imaging. Nat. Commun. 11, 4655 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhu, W., Xing, H., Li, E., Zhu, H. & Huang, F. Room-temperature phosphorescence in the amorphous state enhanced by copolymerization and host–guest complexation. Macromolecules 55, 9802–9809 (2022).

    Article  CAS  Google Scholar 

  32. Wang, J., Huang, Z., Ma, X. & Tian, H. Visible-light-excited room-temperature phosphorescence in water by cucurbit[8]uril-mediated supramolecular assembly. Angew. Chem. Int. Ed. Engl. 59, 9928–9933 (2020).

    Article  CAS  PubMed  Google Scholar 

  33. Zhang, X. et al. Ultralong UV/mechano-excited room temperature phosphorescence from purely organic cluster excitons. Nat. Commun. 10, 5161 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Li, D. et al. Amorphous metal-free room-temperature phosphorescent small molecules with multicolor photoluminescence via a host-guest and dual-emission strategy. J. Am. Chem. Soc. 140, 1916–1923 (2018).

    Article  CAS  PubMed  Google Scholar 

  35. Zhang, Z. Y., Chen, Y. & Liu, Y. Efficient room-temperature phosphorescence of a solid-state supramolecule enhanced by cucurbit[6]uril. Angew. Chem. Int. Ed. Engl. 58, 6028–6032 (2019).

    Article  CAS  PubMed  Google Scholar 

  36. Yu, X. et al. Room-temperature phosphorescent gamma-cyclodextrin-cucurbit[6]uril-cowheeled [4]rotaxanes for specific sensing of tryptophan. Chem. Commun. 55, 3156–3159 (2019).

    Article  CAS  Google Scholar 

  37. Dou, X. et al. Color-tunable, excitation-dependent, and time-dependent afterglows from pure organic amorphous polymers. Adv. Mater. 32, e2004768 (2020).

    Article  PubMed  Google Scholar 

  38. Li, D., Yang, J., Fang, M., Tang, B. Z. & Li, Z. Stimulus-responsive room temperature phosphorescence materials with full-color tunability from pure organic amorphous polymers. Sci. Adv. 8, eabl8392 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Fan, Y. et al. Mobile phone flashlight-excited red afterglow bioimaging. Adv. Mater. 34, 2201280 (2022).

    Article  CAS  Google Scholar 

  40. Sun, S., Ma, L., Wang, J., Ma, X. & Tian, H. Red-light excited efficient metal-free near-infrared room-temperature phosphorescent films. Natl Sci. Rev. 9, nwab085 (2022).

    Article  CAS  PubMed  Google Scholar 

  41. Xiao, F. et al. Guest-host doped strategy for constructing ultralong-lifetime near-infrared organic phosphorescence materials for bioimaging. Nat. Commun. 13, 186 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Pan, Y. et al. Highly efficient TADF-type organic afterglow of long emission wavelengths. Adv. Funct. Mater. 32, 2110207 (2022).

    Article  CAS  Google Scholar 

  43. Li, Z., Han, Y. & Wang, F. Compartmentalization-induced phosphorescent emission enhancement and triplet energy transfer in aqueous medium. Nat. Commun. 10, 3735 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Katsurada, Y., Hirata, S., Totani, K., Watanabe, T. & Vacha, M. Photoreversible on-off recording of persistent room-temperature phosphorescence. Adv. Opt. Mater. 3, 1726–1737 (2015).

    Article  CAS  Google Scholar 

  45. Hoshi, M., Nishiyabu, R., Hayashi, Y., Yagi, S. & Kubo, Y. Room-temperature phosphorescence-active boronate particles: characterization and ratiometric afterglow-sensing behavior by surface grafting of Rhodamine B. Chem. Asian J. 15, 787–795 (2020).

    Article  CAS  PubMed  Google Scholar 

  46. Ning, Y. et al. Ultralong organic room-temperature phosphorescence of electron-donating and commercially available host and guest molecules through efficient Förster resonance energy transfer. Sci. China Chem. 64, 739–744 (2021).

    Article  CAS  Google Scholar 

  47. Mu, Y. et al. Reversible and continuous color-tunable persistent luminescence of metal-free organic materials by “self”-interface energy transfer. ACS Appl. Mater. Interfaces 12, 5073–5080 (2020).

    Article  CAS  PubMed  Google Scholar 

  48. Peng, H. Q. et al. Biological applications of supramolecular assemblies designed for excitation energy transfer. Chem. Rev. 115, 7502–7542 (2015).

    Article  CAS  PubMed  Google Scholar 

  49. Bennett, R. G. Radiationless intermolecular energy transfer. I. Singlet→singlet transfer. J. Chem. Phys. 41, 3037–3040 (1964).

    Article  CAS  Google Scholar 

  50. Scholes, G. D. Long-range resonance energy transfer in molecular systems. Annu. Rev. Phys. Chem. 54, 57–87 (2003).

    Article  CAS  PubMed  Google Scholar 

  51. Főrster, T. 10th Spiers Memorial Lecture. Transfer mechanisms of electronic excitation. Discuss. Faraday Soc. 27, 7–17 (1959).

    Article  Google Scholar 

  52. Gao, R., Mei, X., Yan, D., Liang, R. & Wei, M. Nano-photosensitizer based on layered double hydroxide and isophthalic acid for singlet oxygenation and photodynamic therapy. Nat. Commun. 9, 2798 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Tanner, P. A., Zhou, L., Duan, C. & Wong, K. L. Misconceptions in electronic energy transfer: bridging the gap between chemistry and physics. Chem. Soc. Rev. 47, 5234–5265 (2018).

    Article  CAS  PubMed  Google Scholar 

  54. Zhao, W. et al. Boosting the efficiency of organic persistent room-temperature phosphorescence by intramolecular triplet-triplet energy transfer. Nat. Commun. 10, 1595 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Li, G. et al. Organic supramolecular zippers with ultralong organic phosphorescence by a Dexter energy transfer mechanism. Angew. Chem. Int. Ed. Engl. 61, e202113425 (2022).

    Article  CAS  PubMed  Google Scholar 

  56. Kislov, D. A. & Kucherenko, M. G. Nonradiative triplet-singlet transfer of electronic excitation energy between dye molecules in the vicinity of the silver-film surface. Opt. Spectrosc. 117, 784–791 (2014).

    Article  CAS  Google Scholar 

  57. Ermolaev, V. L. Energy transfer in organic systems involving the triplet state III. Rigid solutions and crystals. Sov. Phys. Uspekhi 6, 333–358 (1963).

    Article  Google Scholar 

  58. Wasserberg, D., Meskers, S. J. & Janssen, R. J. Phosphorescent resonant energy transfer between iridium complexes. J. Phys. Chem. A 111, 1381–1388 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Volyniuk, D. et al. Highly efficient blue organic light-emitting diodes based on intermolecular triplet–singlet energy transfer. J. Phys. Chem. C 117, 22538–22544 (2013).

    Article  CAS  Google Scholar 

  60. Ma, X., Wang, J. & Tian, H. Assembling-induced emission: an efficient approach for amorphous metal-free organic emitting materials with room-temperature phosphorescence. Acc. Chem. Res. 52, 738–748 (2019).

    Article  CAS  PubMed  Google Scholar 

  61. Ma, X. K. & Liu, Y. Supramolecular purely organic room-temperature phosphorescence. Acc. Chem. Res. 54, 3403–3414 (2021).

    Article  CAS  PubMed  Google Scholar 

  62. Zhu, X., Wang, J.-X., Niu, L.-Y. & Yang, Q.-Z. Aggregation-induced emission materials with narrowed emission band by light-harvesting strategy: fluorescence and chemiluminescence imaging. Chem. Mater. 31, 3573–3581 (2019).

    Article  CAS  Google Scholar 

  63. Guo, S., Song, Y., He, Y., Hu, X. Y. & Wang, L. Highly efficient artificial light-harvesting systems constructed in aqueous solution based on supramolecular self-assembly. Angew. Chem. Int. Ed. Engl. 57, 3163–3167 (2018).

    Article  CAS  PubMed  Google Scholar 

  64. Hao, M. et al. A supramolecular artificial light-harvesting system with two-step sequential energy transfer for photochemical catalysis. Angew. Chem. Int. Ed. Engl. 59, 10095–10100 (2020).

    Article  CAS  PubMed  Google Scholar 

  65. Song, Q. et al. Efficient artificial light-harvesting system based on supramolecular peptide nanotubes in water. J. Am. Chem. Soc. 143, 382–389 (2021).

    Article  CAS  PubMed  Google Scholar 

  66. Zhao, W., He, Z. & Tang, B. Z. Room-temperature phosphorescence from organic aggregates. Nat. Rev. Mater. 5, 869–885 (2020).

    Article  CAS  Google Scholar 

  67. Barman, D. et al. Review on recent trends and prospects in π-conjugated luminescent aggregates for biomedical applications. Aggregate 3, e172 (2022).

    Article  CAS  Google Scholar 

  68. Börjesson, K. et al. Multiplicity conversion based on intramolecular triplet-to-singlet energy transfer. Sci. Adv. 5, eaaw5978 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Cravcenco, A., Ye, C., Grafenstein, J. & Borjesson, K. Interplay between Förster and Dexter energy transfer rates in isomeric donor-bridge-acceptor systems. J. Phys. Chem. A 124, 7219–7227 (2020).

    Article  CAS  PubMed  Google Scholar 

  70. Maliwal, B. P., Gryczynski, Z. & Lakowicz, J. R. Long-wavelength long-lifetime luminophores. Anal. Chem. 73, 4277–4285 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. D’Andrade, B. W. et al. High-efficiency yellow double-doped organic light-emitting devices based on phosphor-sensitized fluorescence. Appl. Phys. Lett. 79, 1045–1047 (2001).

    Article  Google Scholar 

  72. Chidirala, S. et al. Pyrene-oxadiazoles for organic light-emitting diodes: triplet to singlet energy transfer and role of hole-injection/hole-blocking materials. J. Org. Chem. 81, 603–614 (2016).

    Article  CAS  PubMed  Google Scholar 

  73. Sun, Y. et al. Management of singlet and triplet excitons for efficient white organic light-emitting devices. Nature 440, 908–912 (2006).

    Article  CAS  PubMed  Google Scholar 

  74. Tavares, I. G., Enkvist, E., Kaimre, J., Uri, A. & Dias, F. B. Intramolecular interchromophore singlet-singlet and triplet-singlet energy transfer in a metal-free donor-acceptor emitter. J. Lumin. 237, 118183 (2021).

    Article  CAS  Google Scholar 

  75. Ibrayev, N., Seliverstova, E., Temirbayeva, D. & Ishchenko, A. Plasmon effect on simultaneous singlet-singlet and triplet-singlet energy transfer. J. Lumin. 251, 119203 (2022).

    Article  CAS  Google Scholar 

  76. Baldo, M. A., Thompson, M. E. & Forrest, S. R. High-efficiency fluorescent organic light-emitting devices using a phosphorescent sensitizer. Nature 403, 750–753 (2000).

    Article  CAS  PubMed  Google Scholar 

  77. Xia, D. et al. Functional supramolecular polymeric networks: the marriage of covalent polymers and macrocycle-based host-guest interactions. Chem. Rev. 120, 6070–6123 (2020).

    Article  CAS  PubMed  Google Scholar 

  78. Liu, Z. & Liu, Y. Multicharged cyclodextrin supramolecular assemblies. Chem. Soc. Rev. 51, 4786–4827 (2022).

    Article  CAS  PubMed  Google Scholar 

  79. Nie, H., Wei, Z., Ni, X. L. & Liu, Y. Assembly and applications of macrocyclic-confinement-derived supramolecular organic luminescent emissions from cucurbiturils. Chem. Rev. 122, 9032–9077 (2022).

    Article  CAS  PubMed  Google Scholar 

  80. Gao, R., Yan, D. & Duan, X. Layered double hydroxides-based smart luminescent materials and the tuning of their excited states. Cell Rep. Phys. Sci. 2, 100536 (2021).

    Article  CAS  Google Scholar 

  81. Yan, X. et al. Recent advances on host-guest material systems toward organic room temperature phosphorescence. Small 18, e2104073 (2022).

    Article  PubMed  Google Scholar 

  82. Zhou, W. L., Lin, W., Chen, Y. & Liu, Y. Supramolecular assembly confined purely organic room temperature phosphorescence and its biological imaging. Chem. Sci. 13, 7976–7989 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Guo, S. et al. Recent progress in pure organic room temperature phosphorescence of small molecular host–guest systems. ACS Mater. Lett. 3, 379–397 (2021).

    Article  CAS  Google Scholar 

  84. Sun, H., Shen, S. & Zhu, L. Photo-stimuli-responsive organic room-temperature phosphorescent materials. ACS Mater. Lett. 4, 1599–1615 (2022).

    Article  CAS  Google Scholar 

  85. Sun, H. & Zhu, L. Achieving purely organic room temperature phosphorescence in aqueous solution. Aggregate 4, e253 (2022).

    Article  Google Scholar 

  86. Zhang, Y. et al. Cross-linked polyphosphazene nanospheres boosting long-lived organic room-temperature phosphorescence. J. Am. Chem. Soc. 144, 6107–6117 (2022).

    Article  CAS  PubMed  Google Scholar 

  87. Li, J. J., Chen, Y., Yu, J., Cheng, N. & Liu, Y. A supramolecular artificial light-harvesting system with an ultrahigh antenna effect. Adv. Mater. 29, 1701905 (2017).

    Article  Google Scholar 

  88. Su, Y. et al. Ultralong room temperature phosphorescence from amorphous organic materials toward confidential information encryption and decryption. Sci. Adv. 4, eaas9732 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Wu, H. et al. Achieving amorphous ultralong room temperature phosphorescence by coassembling planar small organic molecules with polyvinyl alcohol. Adv. Funct. Mater. 29, 1807243 (2019).

    Article  Google Scholar 

  90. Zhang, Y. et al. Large-area, flexible, transparent, and long-lived polymer-based phosphorescence films. J. Am. Chem. Soc. 143, 13675–13685 (2021).

    Article  CAS  PubMed  Google Scholar 

  91. Kuila, S. & George, S. J. Phosphorescence energy transfer: ambient afterglow fluorescence from water-processable and purely organic dyes via delayed sensitization. Angew. Chem. Int. Ed. Engl. 59, 9393–9397 (2020). This work reports the ambient red afterglow in water-processable and flexible poly(vinylalcohol) films via a delayed sensitization process.

    Article  CAS  PubMed  Google Scholar 

  92. Wang, D. et al. Achieving color-tunable and time-dependent organic long persistent luminescence via phosphorescence energy transfer for advanced anti-counterfeiting. Adv. Funct. Mater. 33, 2208895 (2023). This study establishes the structure–property relationship between similar isomers and phosphorescence performance, and presents tunable solid-state long persistent luminescence via phosphorescence energy transfer.

    Article  CAS  Google Scholar 

  93. Sun, W., Shi, B., Xia, Z. & Lv, C. Visible-light-excited long-lived organic room-temperature phosphorescence of phenanthroline derivatives in PVA matrix by H-bonding interaction for security applications. Mater. Today Chem. 27, 101297 (2023).

    Article  CAS  Google Scholar 

  94. Xiong, S. et al. Achieving tunable organic afterglow and UV irradiation-responsive ultralong room-temperature phosphorescence from pyridine-substituted triphenylamine derivatives. Adv. Mater. 35, 2301874 (2023).

    Article  CAS  Google Scholar 

  95. Wei, P. et al. New wine in old bottles: prolonging room-temperature phosphorescence of crown ethers by supramolecular interactions. Angew. Chem. Int. Ed. Engl. 59, 9293–9298 (2020).

    Article  CAS  PubMed  Google Scholar 

  96. Wang, H. J. et al. Noncovalent bridged bis(coumarin-24-crown-8) phosphorescent supramolecular switch. Adv. Opt. Mater. 10, 2201903 (2022).

    Article  CAS  Google Scholar 

  97. Kanakubo, M., Yamamoto, Y. & Kubo, Y. Room-temperature phosphorescence of thiophene boronate ester-cross linked polyvinyl alcohol; a triplet-to-singlet FRET-induced multi-color afterglow luminescence with Sulforhodamine B. Bull. Chem. Soc. Jpn 94, 1204–1209 (2021).

    Article  CAS  Google Scholar 

  98. Tian, R. et al. Large-scale preparation for efficient polymer-based room-temperature phosphorescence via click chemistry. Sci. Adv. 6, eaaz6107 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Li, D. et al. Completely aqueous processable stimulus responsive organic room temperature phosphorescence materials with tunable afterglow color. Nat. Commun. 13, 347 (2022). This work introduces B–O covalent bond into poly(vinylalcohol) matrix to facilitate phosphorescence emission and realizes stimulus-responsive tunable afterglow.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Lin, F. et al. Stepwise energy transfer: near-infrared persistent luminescence from doped polymeric systems. Adv. Mater. 34, e2108333 (2022). This paper describes a universal method to realize near-infrared persistent luminescence via stepwise energy transfer.

    Article  PubMed  Google Scholar 

  101. Kirch, A., Gmelch, M. & Reineke, S. Simultaneous singlet-singlet and triplet-singlet Förster resonance energy transfer from a single donor material. J. Phys. Chem. Lett. 10, 310–315 (2019). This work reports the simultaneous singlet-to-singlet and triplet-to-singlet Förster resonance energy transfer from a biluminescent donor molecule in an amorphous polymeric film.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Wang, X. et al. Reversible photoswitching between fluorescence and room temperature phosphorescence by manipulating excited state dynamics in molecular aggregates. Angew. Chem. Int. Ed. Engl. 61, e202114264 (2022). This work demonstrates a photoreversible fluorescence and room-temperature phosphorescence switching based on a photo-controlled triplet-to-singlet Förster resonance energy transfer.

    Article  CAS  PubMed  Google Scholar 

  103. Zhao, Y. et al. Visible light activated organic room-temperature phosphorescence based on triplet-to-singlet Förster-resonance energy transfer. Adv. Opt. Mater. 10, 2102701 (2022).

    Article  CAS  Google Scholar 

  104. Zheng, X. et al. A processable, scalable, and stable full-color ultralong afterglow system based on heteroatom-free hydrocarbon doped polymers. Mater. Horiz. 10, 197–208 (2023).

    Article  CAS  PubMed  Google Scholar 

  105. Wang, C. et al. Photo-induced dynamic room temperature phosphorescence based on triphenyl phosphonium containing polymers. Adv. Funct. Mater. 32, 2111941 (2022).

    Article  CAS  Google Scholar 

  106. Wu, M. et al. Two-component design strategy: achieving intense organic afterglow and diverse functions in coronene-matrix systems. J. Phys. Chem. C 125, 26986–26998 (2021).

    Article  CAS  Google Scholar 

  107. Hayashi, K., Fukasawa, K., Yamashita, T. & Hirata, S. Rational design of a triplet afterglow sensitizer allowing for bright long-wavelength afterglow room-temperature emission. Chem. Mater. 34, 1627–1637 (2022).

    Article  CAS  Google Scholar 

  108. Gao, R. & Yan, D. Layered host-guest long-afterglow ultrathin nanosheets: high-efficiency phosphorescence energy transfer at 2D confined interface. Chem. Sci. 8, 590–599 (2017).

    Article  CAS  PubMed  Google Scholar 

  109. Ma, X., Xu, C., Wang, J. & Tian, H. Amorphous pure organic polymers for heavy-atom-free efficient room-temperature phosphorescence emission. Angew. Chem. Int. Ed. Engl. 57, 10854–10858 (2018).

    Article  CAS  PubMed  Google Scholar 

  110. Lin, X., Wang, J., Ding, B., Ma, X. & Tian, H. Tunable-emission amorphous room-temperature phosphorescent polymers based on thermoreversible dynamic covalent bonds. Angew. Chem. Int. Ed. Engl. 60, 3459–3463 (2021).

    Article  CAS  PubMed  Google Scholar 

  111. Peng, H. et al. On-demand modulating afterglow color of water-soluble polymers through phosphorescence FRET for multicolor security printing. Sci. Adv. 8, eabk2925 (2022). This study develops a full-colour organic ultralong phosphorescence materials with multicolour-emitting afterglow which are successfully used for multicolour security printing.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Zhang, X. et al. Multicolor hyperafterglow from isolated fluorescence chromophores. Nat. Commun. 14, 475 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Xu, W. W. et al. Tunable second-level room-temperature phosphorescence of solid supramolecules between acrylamide-phenylpyridium copolymers and cucurbit[7]uril. Angew. Chem. Int. Ed. Engl. 61, e202115265 (2022). This work reports tunable second-level phosphorescence based on acrylamide copolymerization and host–guest interaction.

    Article  CAS  PubMed  Google Scholar 

  114. Gui, H., Huang, Z., Yuan, Z. & Ma, X. Ambient white-light afterglow emission based on triplet-to-singlet Förster resonance energy transfer. CCS Chem. 4, 173–181 (2022). This work reports the tunable luminescent copolymers based on two simple single-benzene-based molecules which show multicolour afterglow including ambient white afterglow.

    Article  CAS  Google Scholar 

  115. Gu, F., Ding, B., Ma, X. & Tian, H. Tunable fluorescence and room-temperature phosphorescence from multiresponsive pure organic copolymers. Ind. Eng. Chem. Res. 59, 1578–1583 (2020).

    Article  CAS  Google Scholar 

  116. Hu, Y. Y., Dai, X. Y., Dong, X., Huo, M. & Liu, Y. Generation of tunable ultrastrong white-light emission by activation of a solid supramolecule through bromonaphthylpyridinium polymerization. Angew. Chem. Int. Ed. Engl. 61, e202213097 (2022).

    Article  CAS  PubMed  Google Scholar 

  117. Ma, L. & Ma, X. Recent advances in room-temperature phosphorescent materials by manipulating intermolecular interactions. Sci. China Chem. 66, 304–314 (2022).

    Article  Google Scholar 

  118. Huang, Q., Lin, Z. & Yan, D. Tuning organic room-temperature phosphorescence through the confinement effect of inorganic micro/nanostructures. Small Struct. 2, 2100044 (2021).

    Article  CAS  Google Scholar 

  119. Ye, W. et al. Confining isolated chromophores for highly efficient blue phosphorescence. Nat. Mater. 20, 1539–1544 (2021).

    Article  CAS  PubMed  Google Scholar 

  120. Wang, C., Liu, Y. H. & Liu, Y. Near-infrared phosphorescent switch of diarylethene phenylpyridinium derivative and cucurbit[8]uril for cell imaging. Small 18, e2201821 (2022).

    Article  PubMed  Google Scholar 

  121. Yu, H. J. et al. A tunable full-color lanthanide noncovalent polymer based on cucurbituril-mediated supramolecular dimerization. Chem. Sci. 13, 8187–8192 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Ma, X. K., Zhou, X., Wu, J., Shen, F. F. & Liu, Y. Two-photon excited near-infrared phosphorescence based on secondary supramolecular confinement. Adv. Sci. 9, e2201182 (2022).

    Article  Google Scholar 

  123. Huo, M., Dai, X. Y. & Liu, Y. Uncommon supramolecular phosphorescence-capturing assembly based on cucurbit[8]uril-mediated molecular folding for near-infrared lysosome imaging. Small 18, e2104514 (2022).

    Article  PubMed  Google Scholar 

  124. Huo, M., Dai, X. Y. & Liu, Y. Ultrahigh supramolecular cascaded room-temperature phosphorescence capturing system. Angew. Chem. Int. Ed. Engl. 60, 27171–27177 (2021). This study describes a cascaded phosphorescence-capturing system in aqueous medium using cucurbit[7]uril and sulfonatocalix[4]arene.

    Article  CAS  PubMed  Google Scholar 

  125. Huo, M., Dai, X. Y. & Liu, Y. Ultralarge Stokes shift phosphorescence artificial harvesting supramolecular system with near-infrared emission. Adv. Sci. 9, e2201523 (2022).

    Article  Google Scholar 

  126. Dai, X. Y. et al. A highly efficient phosphorescence/fluorescence supramolecular switch based on a bromoisoquinoline cascaded assembly in aqueous solution. Adv. Sci. 9, e2200524 (2022).

    Article  Google Scholar 

  127. Wang, C. et al. Highly reversible supramolecular light switch for NIR phosphorescence resonance energy transfer. Adv. Sci. 9, e2103041 (2022).

    Article  Google Scholar 

  128. Wang, H. J., Xing, W. W., Zhang, H. Y., Xu, W. W. & Liu, Y. Cucurbit[8]uril confined 6–bromoisoquinoline derivative dicationic phosphorescent energy transfer supramolecular switch for lysosome targeted imaging. Adv. Opt. Mater. 10, 2201178 (2022).

    Article  CAS  Google Scholar 

  129. Dang, Q. et al. Room-temperature phosphorescence resonance energy transfer for construction of near-infrared afterglow imaging agents. Adv. Mater. 32, e2006752 (2020).

    Article  PubMed  Google Scholar 

  130. Liu, Z., Lin, W. & Liu, Y. Macrocyclic supramolecular assemblies based on hyaluronic acid and their biological applications. Acc. Chem. Res. 55, 3417–3429 (2022).

    Article  CAS  PubMed  Google Scholar 

  131. Shen, F. F. et al. Purely organic light-harvesting phosphorescence energy transfer by β-cyclodextrin pseudorotaxane for mitochondria targeted imaging. Chem. Sci. 12, 1851–1857 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Dai, X. Y., Huo, M., Dong, X., Hu, Y. Y. & Liu, Y. Noncovalent polymerization-activated ultrastrong near-infrared room-temperature phosphorescence energy transfer assembly in aqueous solution. Adv. Mater. 34, e2203534 (2022). This work reports the noncovalent polymerization-activated near-infrared phosphorescence-harvesting system in aqueous solution for targeted tumour cell imaging.

    Article  PubMed  Google Scholar 

  133. Liu, Y. H. & Liu, Y. Highly efficient discrimination of cancer cells based on in situ-activated phosphorescence energy transfer for targeted cell imaging. J. Mater. Chem. B 10, 8058–8063 (2022).

    Article  CAS  PubMed  Google Scholar 

  134. Zhou, W. L. et al. Multivalent supramolecular assembly with ultralong organic room temperature phosphorescence, high transfer efficiency and ultrahigh antenna effect in water. Chem. Sci. 13, 573–579 (2022).

    Article  PubMed  Google Scholar 

  135. Shi, H., Wu, Y., Xu, J., Shi, H. & An, Z. Recent advances of carbon dots with afterglow emission. Small 19, 2207104 (2023).

    Article  CAS  Google Scholar 

  136. Teng, X., Sun, X., Pan, W., Song, Z. & Wang, J. Carbon dots confined in silica nanoparticles for triplet-to-singlet Föster resonance energy-transfer-induced delayed fluorescence. ACS Appl. Nano Mater. 5, 5168–5175 (2022).

    Article  CAS  Google Scholar 

  137. Liang, Y. C. et al. Phosphorescent carbon-nanodots-assisted Forster resonant energy transfer for achieving red afterglow in an aqueous solution. ACS Nano 15, 16242–16254 (2021).

    Article  CAS  PubMed  Google Scholar 

  138. Mo, L. et al. Cascade resonance energy transfer for the construction of nanoparticles with multicolor long afterglow in aqueous solutions for information encryption and bioimaging. Adv. Opt. Mater. 10, 2102666 (2022).

    Article  CAS  Google Scholar 

  139. Li, T. et al. Phosphorescent carbon dots as long-lived donors to develop an energy transfer-based sensing platform. Anal. Chem. 95, 2445–2451 (2023).

    Article  CAS  PubMed  Google Scholar 

  140. Voorhaar, L. & Hoogenboom, R. Supramolecular polymer networks: hydrogels and bulk materials. Chem. Soc. Rev. 45, 4013–4031 (2016).

    Article  CAS  PubMed  Google Scholar 

  141. Lu, W., Le, X., Zhang, J., Huang, Y. & Chen, T. Supramolecular shape memory hydrogels: a new bridge between stimuli-responsive polymers and supramolecular chemistry. Chem. Soc. Rev. 46, 1284–1294 (2017).

    Article  CAS  PubMed  Google Scholar 

  142. Chen, H., Ma, X., Wu, S. & Tian, H. A rapidly self-healing supramolecular polymer hydrogel with photostimulated room-temperature phosphorescence responsiveness. Angew. Chem. Int. Ed. Engl. 53, 14149–14152 (2014).

    Article  CAS  PubMed  Google Scholar 

  143. Yuan, J. et al. Tunable dual emission of fluorescence-phosphorescence at room temperature based on pure organic supramolecular gels. Dye. Pigment. 181, 108506 (2020).

    Article  CAS  Google Scholar 

  144. Wang, H., Wang, H., Yang, X., Wang, Q. & Yang, Y. Ion-unquenchable and thermally “on-off” reversible room temperature phosphorescence of 3-bromoquinoline induced by supramolecular gels. Langmuir 31, 486–491 (2015).

    Article  CAS  PubMed  Google Scholar 

  145. Chen, H., Xu, L., Ma, X. & Tian, H. Room temperature phosphorescence of 4-bromo-1,8-naphthalic anhydride derivative-based polyacrylamide copolymer with photo-stimulated responsiveness. Polym. Chem. 7, 3989–3992 (2016).

    Article  CAS  Google Scholar 

  146. Sun, X. R. et al. Supramolecular room-temperature phosphorescent hydrogel based on hexamethyl cucurbit[5]uril for cell imaging. ACS Appl. Mater. Interfaces 15, 4668–4676 (2023).

    Article  CAS  PubMed  Google Scholar 

  147. Wei, L. et al. Triplet-triplet annihilation upconversion in LAPONITE®/PVP nanocomposites: absolute quantum yields of up to 23.8% in the solid state and application to anti-counterfeiting. Mater. Horiz. 9, 3048–3056 (2022).

    Article  CAS  PubMed  Google Scholar 

  148. Kuila, S. et al. Aqueous phase phosphorescence: ambient triplet harvesting of purely organic phosphors via supramolecular scaffolding. Angew. Chem. Int. Ed. Engl. 57, 17115–17119 (2018).

    Article  CAS  PubMed  Google Scholar 

  149. Garain, S., Garain, B. C., Eswaramoorthy, M., Pati, S. K. & George, S. J. Light-harvesting supramolecular phosphors: highly efficient room temperature phosphorescence in solution and hydrogels. Angew. Chem. Int. Ed. Engl. 60, 19720–19724 (2021). This work reports the high quantum yield solution-state phosphorescence which acts as light-harvesting scaffold to achieve delayed fluorescence in solution.

    Article  CAS  PubMed  Google Scholar 

  150. Li, J. J., Zhang, H. Y., Zhang, Y., Zhou, W. L. & Liu, Y. Room-temperature phosphorescence and reversible white light switch based on a cyclodextrin polypseudorotaxane xerogel. Adv. Opt. Mater. 7, 1900589 (2019).

    Article  CAS  Google Scholar 

  151. Zhang, Y. et al. Photo-controlled reversible multicolor room-temperature phosphorescent solid supramolecular pseudopolyrotaxane. Adv. Opt. Mater. 10, 2102169 (2022).

    Article  CAS  Google Scholar 

  152. Zhou, Y. et al. Cucurbit[8]uril mediated ultralong purely organic phosphorescence and excellent mechanical strength performance in double-network supramolecular hydrogels. Dye. Pigment. 195, 109725 (2021).

    Article  CAS  Google Scholar 

  153. Zhang, T., Ma, X. & Tian, H. A facile way to obtain near-infrared room-temperature phosphorescent soft materials based on Bodipy dyes. Chem. Sci. 11, 482–487 (2020).

    Article  CAS  PubMed  Google Scholar 

  154. Yu, J., Wang, H. & Liu, Y. Double-network confined supramolecular phosphorescence light-harvesting boosting photocatalysis. Adv. Opt. Mater. 10, 2201761 (2022).

    Article  CAS  Google Scholar 

  155. Hamzehpoor, E. et al. Efficient room-temperature phosphorescence of covalent organic frameworks through covalent halogen doping. Nat. Chem. 15, 83–90 (2023).

    Article  CAS  PubMed  Google Scholar 

  156. Li, Y., Sui, J., Cui, L. S. & Jiang, H. L. Hydrogen bonding regulated flexibility and disorder in hydrazone-linked covalent organic frameworks. J. Am. Chem. Soc. 145, 1359–1366 (2023).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank National Natural Science Foundation of China (22131008) for the financial support.

Author information

Authors and Affiliations

Authors

Contributions

X.-Y.D. and M.H. contributed equally to this work. Y.L. revised the manuscript and conceived the overall orientation of the manuscript. All authors contributed to the discussion and editing of the manuscript before submission.

Corresponding author

Correspondence to Yu Liu.

Ethics declarations

Competing interest

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Chemistry thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, XY., Huo, M. & Liu, Y. Phosphorescence resonance energy transfer from purely organic supramolecular assembly. Nat Rev Chem 7, 854–874 (2023). https://doi.org/10.1038/s41570-023-00555-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-023-00555-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing