Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Halogen chemistry of solid electrolytes in all-solid-state batteries

Subjects

Abstract

All-solid-state batteries (ASSBs) using solid-state electrolytes, replacing flammable liquid electrolytes, are considered one of the most promising next-generation electrochemical energy storage devices because of their improved, inherent safety and energy density. A family of solid electrolytes incorporating halogens has attracted attention because of their potentially high ionic conductivity, good deformability and wide electrochemical windows. Although progress has been made for halogen-containing solid electrolytes (HSEs) in ASSBs, challenges in the preparations, characterizations and low-cost industrial scalability remain. In this Review, we focus on the development of halide battery chemistry, the preparation, modification and properties of HSEs, and issues with HSEs in ASSBs. The chemical action of halogen and ion transport mechanisms are discussed. Moreover, the main challenges and future development directions of halide-based ASSBs are discussed to pave the way for practical applications of HSEs for next-generation rechargeable batteries.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Monumental developments of HSEs over the years.
Fig. 2: Chemical properties and applications of halogens.
Fig. 3: Liquid-phase preparation procedures, typical structures and ion transport mechanisms in the Li–M–X system.
Fig. 4: Main preparation procedures, crystallography and ion transport pathways of LPSX-type HSEs (Li2S–P2S5–LiX system).
Fig. 5: Action mechanism of halogen-atomic substitution strategy in Li2S–P2S5 system.
Fig. 6: Performance analysis of experimentally assembled cells based on halogen-containing solid electrolytes.
Fig. 7: Interfacial composition and chemical stability of HSEs.

Similar content being viewed by others

References

  1. Marinaro, M. et al. Bringing forward the development of battery cells for automotive applications: perspective of R&D activities in China, Japan, the EU and the USA. J. Power Sources 459, 228073 (2020).

    Article  CAS  Google Scholar 

  2. Armand, M. & Tarascon, J. M. Building better batteries. Nature 451, 652–657 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Zhao, L., Lakraychi, A. E., Chen, Z., Liang, Y. & Yao, Y. Roadmap of solid-state lithium-organic batteries toward 500 Wh kg−1. ACS Energy Lett. 6, 3287–3306 (2021).

    Article  CAS  Google Scholar 

  4. Cano, Z. P. et al. Batteries and fuel cells for emerging electric vehicle markets. Nat. Energy 3, 279–289 (2018).

    Article  Google Scholar 

  5. Goodenough, J. B. & Park, K. The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc. 135, 1167–1176 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. Gao, Z. et al. Promises, challenges, and recent progress of inorganic solid-state electrolytes for all-solid-state lithium batteries. Adv. Mater. 30, 1705702 (2018).

    Article  Google Scholar 

  7. Zhou, Q., Ma, J., Dong, S., Li, X. & Cui, G. Intermolecular chemistry in solid polymer electrolytes for high-energy-density lithium batteries. Adv. Mater. 31, 1902029 (2019).

    Article  CAS  Google Scholar 

  8. Ma, Z. et al. Expanding the low-temperature and high-voltage limits of aqueous lithium-ion battery. Energy Storage Mater. 45, 903–910 (2022).

    Article  Google Scholar 

  9. Cheng, X., Zhang, R., Zhao, C. & Zhang, Q. Toward safe lithium metal anode in rechargeable batteries: a review. Chem. Rev. 117, 10403–10473 (2017).

    Article  CAS  PubMed  Google Scholar 

  10. Chen, L. et al. Excellent Li/garnet interface wettability achieved by porous hard carbon layer for solid state Li metal battery. Small 18, 2106142 (2022).

    Article  CAS  Google Scholar 

  11. Bachman, J. C. et al. Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction. Chem. Rev. 116, 140–162 (2016).

    Article  CAS  PubMed  Google Scholar 

  12. Fu, X. et al. A high-performance carbonate-free lithium|garnet interface enabled by a trace amount of sodium. Adv. Mater. 32, 2000575 (2020).

    Article  CAS  Google Scholar 

  13. Kendall, J., Crittenden, E. D. & Miller, H. K. A study of the factors influencing compound formation and solubility in fused salt mixtures. J. Am. Chem. Soc. 45, 963–996 (1923).

    Article  CAS  Google Scholar 

  14. Weppner, W. & Huggins, R. A. Ionic conductivity of solid and liquid LiAlCl4. J. Electrochem. Soc. 124, 35–38 (1977).

    Article  CAS  Google Scholar 

  15. Ginnings, D. C. & Phipps, T. E. Temperature-conductance curves of solid salts. III. Halides lithium. J. Am. Chem. Soc. 52, 1340–1345 (1930).

    Article  CAS  Google Scholar 

  16. Asano, T. et al. Solid halide electrolytes with high lithium-ion conductivity for application in 4 V class bulk-type all-solid-state batteries. Adv. Mater. 30, 1803075 (2018). This paper demonstrates halide electrolytes as being suitable for bulk ASSBs in terms of electrochemical and mechanical properties, as well as chemical stability, and that owing to the high oxidative stability, high-voltage cathodes can be created without any extra coating.

    Article  Google Scholar 

  17. Wang, K. et al. A cost-effective and humidity-tolerant chloride solid electrolyte for lithium batteries. Nat. Commun. 12, 4410 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Peng, L., Yu, C., Cheng, S. & Xie, J. Halogen-rich lithium argyrodite solid-state electrolytes: a review. Batteries Supercaps 6, e202200553 (2023).

    Article  CAS  Google Scholar 

  19. Stadler, F. & Fietzek, C. Crystalline halide substituted Li-argyrodites as solid electrolytes for lithium secondary batteries. ECS Trans. 25, 177–183 (2010).

    Article  CAS  Google Scholar 

  20. Rangasamy, E. et al. An iodide-based Li7P2S8I superionic conductor. J. Am. Chem. Soc. 137, 1384–1387 (2015).

    Article  CAS  PubMed  Google Scholar 

  21. Luo, X. et al. A novel ethanol-mediated synthesis of superionic halide electrolytes for high-voltage all-solid-state lithium-metal batteries. ACS Appl. Mater. Interfaces 14, 29844–29855 (2022).

    Article  CAS  PubMed  Google Scholar 

  22. Kwak, H. et al. Emerging halide superionic conductors for all-solid-state batteries: design, synthesis, and practical applications. ACS Energy Lett. 7, 1776–1805 (2022).

    Article  CAS  Google Scholar 

  23. Yu, T. et al. Superionic fluorinated halide solid electrolytes for highly stable Li-metal in all-solid-state Li batteries. Adv. Energy Mater. 11, 2101915 (2021).

    Article  CAS  Google Scholar 

  24. Kwak, H. et al. New cost-effective halide solid electrolytes for all-solid-state batteries: mechanochemically prepared Fe3+-substituted Li2ZrCl6. Adv. Energy Mater. 11, 2003190 (2021).

    Article  CAS  Google Scholar 

  25. Li, X. et al. Origin of superionic Li3Y1−xInxCl6 halide solid electrolytes with high humidity tolerance. Nano Lett. 20, 4384–4392 (2020).

    Article  CAS  PubMed  Google Scholar 

  26. Zhao, Y. & Byon, H. R. High-performance lithium-iodine flow battery. Adv. Energy Mater. 3, 1630–1635 (2013).

    Article  CAS  Google Scholar 

  27. Zhao, Y., Wang, L. & Byon, H. R. High-performance rechargeable lithium-iodine batteries using triiodide/iodide redox couples in an aqueous cathode. Nat. Commun. 4, 1896 (2013).

    Article  PubMed  Google Scholar 

  28. Zhao, Y. et al. A 3.5 V lithium-iodine hybrid redox battery with vertically aligned carbon nanotube current collector. Nano Lett. 14, 1085–1092 (2014).

    Article  CAS  PubMed  Google Scholar 

  29. Wang, Y. L., Sun, Q. L., Zhao, Q. Q., Cao, J. S. & Ye, S. H. Rechargeable lithium/iodine battery with superior high-rate capability by using iodine-carbon composite as cathode. Energy Environ. Sci. 4, 3947–3950 (2011).

    Article  CAS  Google Scholar 

  30. Liu, F., Liu, W., Zhan, M., Fu, Z. & Li, H. An all solid-state rechargeable lithium-iodine thin film battery using LiI(3-hydroxypropionitrile)2 as an I ion electrolyte. Energy Environ. Sci. 4, 1261–1264 (2011).

    Article  CAS  Google Scholar 

  31. Gong, D. et al. An iodine quantum dots based rechargeable sodium-iodine battery. Adv. Energy Mater. 7, 1601885 (2017).

    Article  Google Scholar 

  32. Tian, H. et al. Ultra-stable sodium metal-iodine batteries enabled by an in-situ solid electrolyte interphase. Nano Energy 57, 692–702 (2019).

    Article  CAS  Google Scholar 

  33. Tian, H. et al. High power rechargeable magnesium/iodine battery chemistry. Nat. Commun. 8, 14083 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tian, H., Zhang, S., Meng, Z., He, W. & Han, W. Rechargeable aluminum/iodine battery redox chemistry in ionic liquid electrolyte. ACS Energy Lett. 2, 1170–1176 (2017).

    Article  CAS  Google Scholar 

  35. Li, B. et al. Ambipolar zinc-polyiodide electrolyte for a high-energy density aqueous redox flow battery. Nat. Commun. 6, 6303 (2015).

    Article  CAS  PubMed  Google Scholar 

  36. Shang, W. et al. Establishing high-performance quasi-solid Zn/I2 batteries with alginate-based hydrogel electrolytes. ACS Appl. Mater. Interfaces 13, 24756–24764 (2021).

    Article  CAS  PubMed  Google Scholar 

  37. Reddy, M. A. & Fichtner, M. Batteries based on fluoride shuttle. J. Mater. Chem. 21, 17059 (2011).

    Article  Google Scholar 

  38. Nowroozi, M. A. et al. Fluoride ion batteries — past, present, and future. J. Mater. Chem. A 9, 5980–6012 (2021).

    Article  CAS  Google Scholar 

  39. Lim, H. S., Lackner, A. M. & Knechtli, R. C. Zinc-bromine secondary battery. J. Electrochem. Soc. 124, 1154–1157 (1977).

    Article  CAS  Google Scholar 

  40. Lai, Q., Zhang, H., Li, X., Zhang, L. & Cheng, Y. A novel single flow zinc-bromine battery with improved energy density. J. Power Sources 235, 1–4 (2013).

    Article  CAS  Google Scholar 

  41. Yeo, R. S. & Chin, D. T. A hydrogen-bromine cell for energy storage applications. J. Electrochem. Soc. 127, 549 (1980).

    Article  CAS  Google Scholar 

  42. Cho, K. T. et al. High performance hydrogen/bromine redox flow battery for grid-scale energy storage. J. Electrochem. Soc. 159, A1806 (2012).

    Article  CAS  Google Scholar 

  43. Skyllas-Kazacos, M. Novel vanadium chloride/polyhalide redox flow battery. J. Power Sources 124, 299–302 (2003).

    Article  CAS  Google Scholar 

  44. Zeng, Y., Yang, Z., Lu, F. & Xie, Y. A novel tin-bromine redox flow battery for large-scale energy storage. Appl. Energy 255, 113756 (2019).

    Article  CAS  Google Scholar 

  45. Soloveichik, G. L. Flow batteries: current status and trends. Chem. Rev. 115, 11533–11558 (2015).

    Article  CAS  PubMed  Google Scholar 

  46. Zhao, X., Ren, S., Bruns, M. & Fichtner, M. Chloride ion battery: a new member in the rechargeable battery family. J. Power Sources 245, 706–711 (2014).

    Article  CAS  Google Scholar 

  47. Chen, F., Leong, Z. Y. & Yang, H. Y. An aqueous rechargeable chloride ion battery. Energy Storage Mater. 7, 189–194 (2017).

    Article  Google Scholar 

  48. Yu, T. et al. Nanoconfined iron oxychloride material as a high-performance cathode for rechargeable chloride ion batteries. ACS Energy Lett. 2, 2341–2348 (2017).

    Article  CAS  Google Scholar 

  49. Gao, P. et al. VOCl as a cathode for rechargeable chloride ion batteries. Angew. Chem. Int. Ed. Engl. 128, 4357–4362 (2016).

    Article  Google Scholar 

  50. Yin, Q. et al. CoFe-Cl layered double hydroxide: a new cathode material for high-performance chloride ion batteries. Adv. Funct. Mater. 29, 1900983 (2019).

    Article  Google Scholar 

  51. Bai, Y. et al. 3D hierarchical nano-flake/micro-flower iron fluoride with hydration water induced tunnels for secondary lithium battery cathodes. Nano Energy 32, 10–18 (2017).

    Article  CAS  Google Scholar 

  52. Wu, F., Borodin, O. & Yushin, G. In situ surface protection for enhancing stability and performance of conversion-type cathodes. MRS Energy Sustain. 4, e9 (2017).

    Article  Google Scholar 

  53. Li, C., Gu, L., Tsukimoto, S., van Aken, P. A. & Maier, J. Low-temperature ionic-liquid-based synthesis of nanostructured iron-based fluoride cathodes for lithium batteries. Adv. Mater. 22, 3650–3654 (2010).

    Article  CAS  PubMed  Google Scholar 

  54. Badway, F., Cosandey, F., Pereira, N. & Amatucci, G. G. Carbon metal fluoride nanocomposites: high-capacity reversible metal fluoride conversion materials as rechargeable positive electrodes for Li batteries. J. Electrochem. Soc. 150, A1318 (2003).

    Article  CAS  Google Scholar 

  55. Badway, F., Pereira, N., Cosandey, F. & Amatucci, G. G. Carbon-metal fluoride nanocomposites: structure and electrochemistry of FeF3:C. J. Electrochem. Soc. 150, A1209 (2003).

    Article  CAS  Google Scholar 

  56. Chu, Q. et al. Facile preparation of porous FeF3 nanospheres as cathode materials for rechargeable lithium-ion batteries. J. Power Sources 236, 188–191 (2013).

    Article  CAS  Google Scholar 

  57. Arai, H., Okada, S., Sakurai, Y. & Yamaki, J. Cathode performance and voltage estimation of metal trihalides. J. Power Sources 68, 716–719 (1997).

    Article  CAS  Google Scholar 

  58. Zhan, Y. et al. Iodine doped graphene as anode material for lithium ion battery. Carbon 94, 1–8 (2015).

    Article  CAS  Google Scholar 

  59. Schlaikjer, C. R. & Liang, C. C. Ionic conduction in calcium doped polycrystalline lithium iodide. J. Electrochem. Soc. 118, 1447 (1971).

    Article  CAS  Google Scholar 

  60. Liang, C. C. & Bro, P. A high-voltage, solid-state battery system: I. Design considerations. J. Electrochem. Soc. 116, 1326 (1969).

    Article  Google Scholar 

  61. Liang, C. C., Epstein, J. & Boyle, G. H. A high-voltage, solid-state battery system II. Fabrication thin-film cells. J. Electrochem. Soc. 3, 1452 (1969).

    Article  Google Scholar 

  62. Li, X. et al. Water-mediated synthesis of a superionic halide solid electrolyte. Angew. Chem. Int. Ed. Engl. 131, 16579–16584 (2019). This paper proposes a halide-based superionic conductor, Li3InCl6, prepared by a facile and scalable water-mediated synthesis route, which facilitates practical manufacturing.

    Article  Google Scholar 

  63. Wang, C. et al. A universal wet-chemistry synthesis of solid-state halide electrolytes for all-solid-state lithium-metal batteries. Sci. Adv. 7, eabh1896 (2021). This paper proposes a universal ammonium-assisted wet chemistry method for the synthesis of Li3MX6 electrolytes and reports halide-based ASSBs with excellent electrochemical performance, which effectively solves the interfacial compatibility problem with the anode side.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Van der Ven, A., Bhattacharya, J. & Belak, A. A. Understanding Li diffusion in Li-intercalation compounds. Acc. Chem. Res. 46, 1216–1225 (2013).

    Article  PubMed  Google Scholar 

  65. Liang, J., Li, X., Adair, K. R. & Sun, X. Metal halide superionic conductors for all-solid-state batteries. Acc. Chem. Res. 54, 1023–1033 (2021).

    Article  CAS  PubMed  Google Scholar 

  66. Plichta, E. J., Behl, W. K., Vujic, D., Chang, W. H. S. & Schleich, D. M. The rechargeable LixTiS2/LiAlCl4/Li1-xCoO2 solid-state cell. J. Electrochem. Soc. 139, 1509 (1992).

    Article  CAS  Google Scholar 

  67. Van Loon, C. J. J. & De Jong, J. Some chlorides with the inverse spinel structure. Acta Crystallogr. B 31, 2549–2550 (1975).

    Article  Google Scholar 

  68. Lutz, H. D., Schmidt, W. & Haeuseler, H. About the chloride spinels. Li2MgCl4, Li2MnCl4, Li2FeCl4, Li2CdCl4. Z. Anorg. Allg. Chem. 453, 121–126 (1979).

    Article  CAS  Google Scholar 

  69. Kanno, R., Takeda, Y. & Yamamoto, O. Ionic conductivity of solid lithium ion conductors with the spinel structure: Li2MCl4 (M = Mg, Mn, Fe, Cd). Mater. Res. Bull. 16, 999–1005 (1981).

    Article  Google Scholar 

  70. Lutz, H. D., Schmidt, W. & Haeuseler, H. Chloride spinels: a new group of solid lithium electrolytes. J. Phys. Chem. Solids 42, 287–289 (1981).

    Article  CAS  Google Scholar 

  71. Cros, C., Hanebali, L., Latie, L., Villeneuve, G. R. & Gang, W. Structure, ionic motion and conductivity in some solid-solutions of the LiCl-MCl2 systems (M = Mg, V, Mn). Solid State Ion. 910, 139–147 (1983).

    Article  Google Scholar 

  72. Ryoji, K., Takeda, Y., Takada, K. & Yamamoto, O. Ionic conductivity and phase transition of the spinel system Li2-2xM1+xCl4 (M = Mg, Mn, Cd). J. Electrochem. Soc. 131, 469 (1984).

    Article  Google Scholar 

  73. Lutz, H. D., Pfitzner, A. & Cockcroft, J. K. Structural phase transition and nonstoichiometry of Li2FeCl4 — neutron diffraction studies. J. Solid State Chem. 107, 245–249 (1993).

    Article  CAS  Google Scholar 

  74. Kanno, R. et al. Phase transition of the solid lithium ion conductor with the spinel structure: Li2−2xM1+xCl4 (M = Mg, Mn). Solid State Ion. 20, 99–103 (1986).

    Article  CAS  Google Scholar 

  75. Wickel, C., Zhang, Z. & Lutz, H. D. Crystal structure and electric conductivity of spinel-type Li2−2xMn1+xCl4 solid solutions. Z. Anorg. Allg. Chem. 620, 1537–1542 (1994).

    Article  CAS  Google Scholar 

  76. Partik, M., Schneider, M. & Lutz, H. D. Crystal structures of MgCr2O4-type Li2VCl4 and spinel-type Li2MgCl4 and Li2CdCl4. Z. Anorg. Allg. Chem. 620, 791–795 (1994).

    Article  CAS  Google Scholar 

  77. Kanno, R., Takeda, Y. & Yamamoto, O. Structure, ionic conductivity and phase transformation of double chloride spinels. Solid State Ion. 2830, 1276–1281 (1988).

    Article  Google Scholar 

  78. Lutz, H. D. & Pfitzner, A. Li2ZnI4, the first olivine type iodide. Z. Naturforsch B 44b, 1047–1049 (1989).

    Article  Google Scholar 

  79. Kanno, R., Takeda, Y., Takada, K. & Yamamoto, O. Phase diagram and ionic conductivity of the lithium chloride-iron(II) chloride system. Solid State Ion. 910, 153–156 (1983).

    Article  Google Scholar 

  80. Zhou, L. et al. A new halospinel superionic conductor for high-voltage all solid state lithium batteries. Energy Environ. Sci. 13, 2056–2063 (2020). This article presents spinel-structured superionic conductor with high room-temperature lithium ion conductivity.

    Article  CAS  Google Scholar 

  81. Yasumasa, T., Aya, F., Hiroshi, O., Koji, Y. & Tsutomu, O. New lithium ion conductor Li3InBr6 studied by 7Li NMR. Chem. Lett. 27, 223–224 (1998).

    Article  Google Scholar 

  82. Okuda, T. & Yamada, K. Structure and ionic conductivity of halocomplexes of main group metallic elements studied by NMR and NQR. Hyperfine Interact. 159, 95–102 (2005).

    Article  Google Scholar 

  83. Yu, C. et al. Tuning ionic conductivity and electrode compatibility of Li3YBr6 for high-performance all solid-state Li batteries. Nano Energy 77, 105097 (2020).

    Article  CAS  Google Scholar 

  84. Esaka, T., Okuyama, R. & Iwahara, H. Ionic conduction in sintered fluorocomplexes LimMF6, M = Al, Ti. Solid State Ion. 34, 201–205 (1989).

    Article  CAS  Google Scholar 

  85. Hu, J., Chen, K. & Li, C. Nanostructured Li-rich fluoride coated by ionic liquid as high ion-conductivity solid electrolyte additive to suppress dendrite growth at Li metal anode. ACS Appl. Mater. Interfaces 10, 34322–34331 (2018).

    Article  CAS  PubMed  Google Scholar 

  86. Schlem, R. et al. Lattice dynamical approach for finding the lithium superionic conductor Li3ErI6. ACS Appl. Energy Mater. 3, 3684–3691 (2020).

    Article  CAS  Google Scholar 

  87. Wang, S. et al. Lithium chlorides and bromides as promising solid-state chemistries for fast ion conductors with good electrochemical stability. Angew. Chem. Int. Ed. Engl. 58, 8039–8043 (2019).

    Article  CAS  PubMed  Google Scholar 

  88. Wang, C., Liang, J., Kim, J. T. & Sun, X. Prospects of halide-based all-solid-state batteries: from material design to practical application. Sci. Adv. 8, eadc9516 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Liang, J. et al. Site-occupation-tuned superionic LixScCl3+x halide solid electrolytes for all-solid-state batteries. J. Am. Chem. Soc. 142, 7012–7022 (2020).

    Article  CAS  PubMed  Google Scholar 

  90. Li, X. et al. Air-stable Li3InCl6 electrolyte with high voltage compatibility for all-solid-state batteries. Energy Environ. Sci. 12, 2665–2671 (2019).

    Article  CAS  Google Scholar 

  91. Schmidt, M. O., Wickleder, M. S. & Meyer, G. Ternary halides of the A3MX6 type. VIII on the crystal structure of Li3InCl6. Z. Anorg. Allg. Chem. 625, 539–540 (1999).

    Article  CAS  Google Scholar 

  92. Bohnsack, A., Balzer, G., Güdel, H., Wickleder, M. S. & Meyer, G. Ternary halides of the A3MX6 type. VII. The bromides Li3MBr6 (M = Sm-Lu, Y): synthesis, crystal structure, and ionic mobility. Z. Anorg. Allg. Chem. 623, 1352–1356 (1997).

    Article  CAS  Google Scholar 

  93. Combs, S. R., Todd, P. K., Gora, P. & Maughan, A. E. Designing defects and diffusion through substitutions in metal halide solid electrolytes. J. Electrochem. Soc. 169, 040551 (2022).

    Article  CAS  Google Scholar 

  94. Muy, S. et al. High-throughput screening of solid-state Li-ion conductors using lattice-dynamics descriptors. iScience 16, 270–282 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Bohnsack, A. et al. Ternary halides of the A3MX6 type. VI. Ternary chlorides of the rare-earth elements with lithium, Li3MCl6 (M = Tb-Lu, Y, Sc): synthesis, crystal structures, and ionic motion. Z. Anorg. Allg. Chem. 623, 1067–1073 (1997).

    Article  CAS  Google Scholar 

  96. Kim, S. Y. et al. Lithium ytterbium-based halide solid electrolytes for high voltage all-solid-state batteries. ACS Mater. Lett. 3, 930–938 (2021).

    Article  CAS  Google Scholar 

  97. Liang, J. et al. A series of ternary metal chloride superionic conductors for high-performance all-solid-state lithium batteries. Adv. Energy Mater. 12, 2103921 (2022).

    Article  CAS  Google Scholar 

  98. Li, X. et al. Highly stable halide-electrolyte-based all-solid-state Li-Se batteries. Adv. Mater. 34, 2200856 (2022).

    Article  CAS  Google Scholar 

  99. Steiner, H. J., Lutz, H. D. & Anorg, Z. Novel fast ion conductors of the type MI3MIIICl6 (MI = Li, Na, Ag; MIII = In, Y). Z. Anorg. Allg. Chem. 613, 26–30 (1992).

    Article  CAS  Google Scholar 

  100. Park, K. et al. High-voltage superionic halide solid electrolytes for all-solid-state Li-ion batteries. ACS Energy Lett. 5, 533–539 (2020).

    Article  CAS  Google Scholar 

  101. Park, J. et al. Heat treatment protocol for modulating ionic conductivity via structural evolution of Li3−xYb1xMxCl6 (M = Hf4+, Zr4+) new halide superionic conductors for all-solid-state batteries. Chem. Eng. J. 425, 130630 (2021).

    Article  CAS  Google Scholar 

  102. Zhou, L. et al. High areal capacity, long cycle life 4 V ceramic all-solid-state Li-ion batteries enabled by chloride solid electrolytes. Nat. Energy 7, 83–93 (2022).

    Article  CAS  Google Scholar 

  103. Wang, H. et al. Electrochemically stable Li3-xIn1-xHfxCl6 halide solid electrolytes for all-solid-state batteries. ACS Appl. Mater. Interfaces 15, 5504–5511 (2023).

    Article  CAS  PubMed  Google Scholar 

  104. Tomita, Y., Yonekura, H., Yamauchi, Y., Yamada, K. & Kobayashi, K. Substitution effect in the ion conductor Li3InBr6, studied by nuclear magnetic resonance. Z. Naturforsch A 57, 447–450 (2002).

    Article  CAS  Google Scholar 

  105. Tomita, Y. et al. Li ion conductivity of solid electrolyte, Li3−2xMxInBr6 (M = Mg, Ca, Sr, Ba). Solid State Ion. 174, 35–39 (2004).

    Article  CAS  Google Scholar 

  106. Tomita, Y., Matsushita, H., Kobayashi, K. & Yamada, K. in Solid State Ionics: the Science and Technology of Ions in MotionProceedings of the 9th Asian Conference (eds Chowdari, B. V. R. et al.), 985–990. (World Scientific, 2004).

  107. Tomita, Y., Ohki, H., Yamada, K. & Okuda, T. Ionic conductivity and structure of halocomplex salts of group 13 elements. Solid State Ion. 136137, 351–355 (2000).

    Article  Google Scholar 

  108. Jeon, T. & Jung, S. C. High conductivity enabled by concerted Li ion diffusion in Li3Y(Br3Cl3) solid electrolytes for all-solid-state batteries. J. Mater. Chem. A 11, 4334–4344 (2023).

    Article  CAS  Google Scholar 

  109. Tomita, Y., Matsushita, H., Kobayashi, K., Maeda, Y. & Yamada, K. Substitution effect of ionic conductivity in lithium ion conductor, Li3InBr6-xClx. Solid State Ion. 179, 867–870 (2008).

    Article  CAS  Google Scholar 

  110. Tomita, Y. et al. Substitution effect for Br on the lithium ion conductivity of lithium indium bromide. ECS Trans. 16, 137 (2009).

    Article  CAS  Google Scholar 

  111. Zhang, S. et al. Advanced high-voltage all-solid-state Li-ion batteries enabled by a dual-halogen solid electrolyte. Adv. Energy Mater. 11, 2100836 (2021).

    Article  CAS  Google Scholar 

  112. Chen, X. et al. Improved stability against moisture and lithium metal by doping F into Li3InCl6. J. Power Sources 545, 231939 (2022).

    Article  CAS  Google Scholar 

  113. Kamaya, N. et al. A lithium superionic conductor. Nat. Mater. 10, 682–686 (2011).

    Article  CAS  PubMed  Google Scholar 

  114. Seino, Y., Ota, T., Takada, K., Hayashi, A. & Tatsumisago, M. A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries. Energy Environ. Sci. 7, 627–631 (2014).

    Article  CAS  Google Scholar 

  115. Deiseroth, H. et al. Li6PS5X: a class of crystalline Li-rich solids with an unusually high Li+ mobility. Angew. Chem. Int. Ed. Engl. 47, 755–758 (2008).

    Article  CAS  PubMed  Google Scholar 

  116. Rao, R. P. & Adams, S. Studies of lithium argyrodite solid electrolytes for all-solid-state batteries. Phys. Status Solidi A 208, 1804–1807 (2011).

    Article  CAS  Google Scholar 

  117. Boulineau, S., Courty, M., Tarascon, J. & Viallet, V. Mechanochemical synthesis of Li-argyrodite Li6PS5X (X = Cl, Br, I) as sulfur-based solid electrolytes for all solid state batteries application. Solid State Ion. 221, 1–5 (2012).

    Article  CAS  Google Scholar 

  118. Boulineau, S., Tarascon, J., Leriche, J. & Viallet, V. Electrochemical properties of all-solid-state lithium secondary batteries using Li-argyrodite Li6PS5Cl as solid electrolyte. Solid State Ion. 242, 45–48 (2013).

    Article  CAS  Google Scholar 

  119. Yu, C., van Eijck, L., Ganapathy, S. & Wagemaker, M. Synthesis, structure and electrochemical performance of the argyrodite Li6PS5Cl solid electrolyte for Li-ion solid state batteries. Electrochim. Acta 215, 93–99 (2016).

    Article  CAS  Google Scholar 

  120. Chen, M., Rao, R. P. & Adams, S. High capacity all-solid-state Cu-Li2S/Li6PS5Br/In batteries. Solid State Ion. 262, 183–187 (2014).

    Article  CAS  Google Scholar 

  121. Chen, M., Prasada Rao, R. & Adams, S. The unusual role of Li6PS5Br in all-solid-state CuS/Li6PS5Br/In-Li batteries. Solid State Ion. 268, 300–304 (2014).

    Article  CAS  Google Scholar 

  122. Chen, M. & Adams, S. High performance all-solid-state lithium/sulfur batteries using lithium argyrodite electrolyte. J. Solid State Electrochem. 19, 697–702 (2015).

    Article  CAS  Google Scholar 

  123. Chen, M., Yin, X., Reddy, M. V. & Adams, S. All-solid-state MoS2/Li6PS5Br/In-Li batteries as a novel type of Li/S battery. J. Mater. Chem. A 3, 10698–10702 (2015).

    Article  CAS  Google Scholar 

  124. Yubuchi, S. et al. Preparation of high lithium-ion conducting Li6PS5Cl solid electrolyte from ethanol solution for all-solid-state lithium batteries. J. Power Sources 293, 941–945 (2015).

    Article  CAS  Google Scholar 

  125. Yubuchi, S. et al. An argyrodite sulfide-based superionic conductor synthesized by a liquid-phase technique with tetrahydrofuran and ethanol. J. Mater. Chem. A 7, 558–566 (2019).

    Article  CAS  Google Scholar 

  126. Yubuchi, S., Uematsu, M., Deguchi, M., Hayashi, A. & Tatsumisago, M. Lithium-ion-conducting argyrodite-type Li6PS5X (X = Cl, Br, I) solid electrolytes prepared by a liquid-phase technique using ethanol as a solvent. ACS Appl. Energy Mater. 1, 3622–3629 (2018).

    Article  CAS  Google Scholar 

  127. Zhou, L. et al. Solvent-engineered design of argyrodite Li6PS5X (X = Cl, Br, I) solid electrolytes with high ionic conductivity. ACS Energy Lett. 4, 265–270 (2019).

    Article  CAS  Google Scholar 

  128. Arnold, W. et al. Halide doping effect on solvent-synthesized lithium argyrodites Li6PS5X (X = Cl, Br, I) superionic conductors. J. Power Sources 464, 228158 (2020).

    Article  CAS  Google Scholar 

  129. Muy, S. et al. Tuning mobility and stability of lithium ion conductors based on lattice dynamics. Energy Environ. Sci. 11, 850–859 (2018).

    Article  CAS  Google Scholar 

  130. Hayashi, K., Nemoto, Y., Tobishima, S. & Yamaki, J. Mixed solvent electrolyte for high voltage lithium metal secondary cells. Electrochim. Acta 44, 2337–2344 (1999).

    Article  CAS  Google Scholar 

  131. Rayavarapu, P. R., Sharma, N., Peterson, V. K. & Adams, S. Variation in structure and Li+-ion migration in argyrodite-type Li6PS5X (X = Cl, Br, I) solid electrolytes. J. Solid State Electrochem. 16, 1807–1813 (2012). This paper visualizes the cage structure of lithium ions in argyrodite-type solid electrolytes, clearly illustrating the reasons for the difference in ionic conductivity among different electrolyte compositions.

    Article  CAS  Google Scholar 

  132. Kraft, M. A. et al. Influence of lattice polarizability on the ionic conductivity in the lithium superionic argyrodites Li6PS5X (X = Cl, Br, I). J. Am. Chem. Soc. 139, 10909–10918 (2017). This paper systematically investigates the effect of lattice polarity on ion transport by adjusting the occupancy of halogen ions in Li6PS5X (X = Cl, Br, I) and incorporating advanced detection techniques.

    Article  CAS  PubMed  Google Scholar 

  133. Zhang, Z. et al. Enhancing ionic conductivity of solid electrolyte by lithium substitution in halogenated Li-argyrodite. J. Power Sources 450, 227601 (2020).

    Article  CAS  Google Scholar 

  134. Kraft, M. A. et al. Inducing high ionic conductivity in the lithium superionic argyrodites Li6+xP1−xS5I for all-solid-state batteries. J. Am. Chem. Soc. 140, 16330–16339 (2018).

    Article  CAS  PubMed  Google Scholar 

  135. de Klerk, N. J. J., Rosłon, I. & Wagemaker, M. Diffusion mechanism of Li argyrodite solid electrolytes for Li-ion batteries and prediction of optimized halogen doping: the effect of Li vacancies, halogens, and halogen disorder. Chem. Mater. 28, 7955–7963 (2016). This paper investigates the lithium-ion diffusion in argyrodites using density functional theory molecular dynamics. The impacts of Cl and Br doping on lithium ion conductivity are rationalized and the role of halogen disorder is revealed.

    Article  Google Scholar 

  136. Ohno, S. et al. Further evidence for energy landscape flattening in the superionic argyrodites Li6+xP1−xMxS5I (M = Si, Ge, Sn). Chem. Mater. 31, 4936–4944 (2019).

    Article  CAS  Google Scholar 

  137. Zheng, J. & Hu, Y. New insights into the compositional dependence of Li-ion transport in polymer-ceramic composite electrolytes. ACS Appl. Mater. Interfaces 10, 4113–4120 (2018).

    Article  CAS  PubMed  Google Scholar 

  138. Wang, P. et al. Fast ion conduction and its origin in Li6−xPS5xBr1+x. Chem. Mater. 32, 3833–3840 (2020).

    Article  CAS  Google Scholar 

  139. Yu, C. et al. Tailoring Li6PS5Br ionic conductivity and understanding of its role in cathode mixtures for high performance all-solid-state Li-S batteries. J. Mater. Chem. A 7, 10412–10421 (2019).

    Article  CAS  Google Scholar 

  140. Kang, J. & Han, B. First-principles characterization of the unknown crystal structure and ionic conductivity of Li7P2S8I as a solid electrolyte for high-voltage Li ion batteries. J. Phys. Chem. Lett. 7, 2671–2675 (2016).

    Article  CAS  PubMed  Google Scholar 

  141. Wu, L., Liu, G., Wan, H., Weng, W. & Yao, X. Superior lithium-stable Li7P2S8I solid electrolyte for all-solid-state lithium batteries. J. Power Sources 491, 229565 (2021).

    Article  CAS  Google Scholar 

  142. Wang, Y. et al. Superionic conduction and interfacial properties of the low temperature phase Li7P2S8Br0.5I0.5. Energy Storage Mater. 19, 80–87 (2019).

    Article  Google Scholar 

  143. Choi, S. et al. Synthesis and electrochemical characterization of a glass-ceramic Li7P2S8I solid electrolyte for all-solid-state Li-ion batteries. J. Electrochem. Soc. 165, A957 (2018).

    Article  CAS  Google Scholar 

  144. Bui, A. D. et al. Origin of the outstanding performance of dual halide doped Li7P2S8X (X = I, Br) solid electrolytes for all-solid-state lithium batteries. ACS Appl. Energy Mater. 4, 1–8 (2021). This paper systematically investigates the crystal phase evolution in glassy matrix and the corresponding ionic conductivity variation.

    Article  CAS  Google Scholar 

  145. Ujiie, S., Hayashi, A. & Tatsumisago, M. Preparation and ionic conductivity of (100−x)(0.8Li2S·0.2P2S5xLiI glass-ceramic electrolytes. J. Solid State Electrochem. 17, 675–680 (2013).

    Article  CAS  Google Scholar 

  146. Ong, S. P. et al. Phase stability, electrochemical stability and ionic conductivity of the Li10±1MP2X12 (M = Ge, Si, Sn, Al or P, and X = O, S or Se) family of superionic conductors. Energy Environ. Sci. 6, 148–156 (2013).

    Article  CAS  Google Scholar 

  147. Choi, S. et al. LiI-doped sulfide solid electrolyte: enabling a high-capacity slurry-cast electrode by low-temperature post-sintering for practical all-solid-state lithium batteries. ACS Appl. Mater. Interfaces 10, 31404–31412 (2018).

    Article  CAS  PubMed  Google Scholar 

  148. Bintang, H. M. et al. Elucidation of the role of lithium iodide as an additive for the liquid-based synthesis of Li7P2S8I solid electrolyte. Int. J. Energy Res. 44, 11542–11549 (2020).

    Article  CAS  Google Scholar 

  149. Adeli, P., Bazak, J. D., Huq, A., Goward, G. R. & Nazar, L. F. Influence of aliovalent cation substitution and mechanical compression on Li-ion conductivity and diffusivity in argyrodite solid electrolytes. Chem. Mater. 33, 146–157 (2021).

    Article  CAS  Google Scholar 

  150. Zhang, J. et al. Silicon-doped argyrodite solid electrolyte Li6PS5I with improved ionic conductivity and interfacial compatibility for high performance all-solid-state lithium batteries. ACS Appl. Mater. Interfaces 12, 41538–41545 (2020).

    Article  PubMed  Google Scholar 

  151. Minafra, N., Culver, S. P., Krauskopf, T., Senyshyn, A. & Zeier, W. G. Effect of Si substitution on the structural and transport properties of superionic Li-argyrodites. J. Mater. Chem. A 6, 645–651 (2018).

    Article  CAS  Google Scholar 

  152. Zhang, Z. et al. Design and synthesis of room temperature stable Li-argyrodite superionic conductors via cation doping. J. Mater. Chem. A 7, 2717–2722 (2019).

    Article  CAS  Google Scholar 

  153. Rajagopal, R. et al. Preparation of highly conductive metal doped/substituted Li7P2S8Br(1−x)Ix type lithium superionic conductor for all-solid-state lithium battery applications. Chem. Eng. J. 428, 132155 (2022).

    Article  CAS  Google Scholar 

  154. Li, G. et al. Sn-O dual-substituted chlorine-rich argyrodite electrolyte with enhanced moisture and electrochemical stability. Adv. Funct. Mater. 33, 2211805 (2022).

    Article  Google Scholar 

  155. Adeli, P. et al. Boosting solid-state diffusivity and conductivity in lithium superionic argyrodites by halide substitution. Angew. Chem. Int. Ed. Engl. 58, 8681–8686 (2019).

    Article  CAS  PubMed  Google Scholar 

  156. Peng, L. et al. Chlorine-rich lithium argyrodite enabling solid-state batteries with capabilities of high voltage, high rate, low-temperature and ultralong cyclability. Chem. Eng. J. 430, 132896 (2022).

    Article  CAS  Google Scholar 

  157. Jung, W. D. et al. Superionic halogen-rich Li-argyrodites using in situ nanocrystal nucleation and rapid crystal growth. Nano Lett. 20, 2303–2309 (2020).

    Article  CAS  PubMed  Google Scholar 

  158. Kitajima, S. et al. Methodology for enhancing the ionic conductivity of superionic halogen-rich argyrodites for all-solid-state lithium batteries. Mater. Today Commun. 28, 102727 (2021).

    Article  CAS  Google Scholar 

  159. Yu, C. et al. Enabling ultrafast ionic conductivity in Br-based lithium argyrodite electrolytes for solid-state batteries with different anodes. Energy Storage Mater. 30, 238–249 (2020).

    Article  Google Scholar 

  160. Wang, H. et al. A lithium argyrodite Li6PS5Cl0.5Br0.5 electrolyte with improved bulk and interfacial conductivity. J. Power Sources 412, 29–36 (2019).

    Article  CAS  Google Scholar 

  161. Wu, Z. et al. Engineering high conductive Li7P2S8I via Cl doping for all-solid-state Li-S batteries workable at different operating temperatures. Chem. Eng. J. 442, 136346 (2022).

    Article  CAS  Google Scholar 

  162. Feng, X. et al. Enhanced ion conduction by enforcing structural disorder in Li-deficient argyrodites Li6−xPS5xCl1+x. Energy Storage Mater. 30, 67–73 (2020).

    Article  Google Scholar 

  163. Subramanian, Y., Rajagopal, R. & Ryu, K. Synthesis, air stability and electrochemical investigation of lithium superionic bromine substituted argyrodite (Li6xPS5xCl1.0Brx) for all-solid-state lithium batteries. J. Power Sources 520, 230849 (2022).

    Article  CAS  Google Scholar 

  164. Patel, S. V. et al. Tunable lithium-ion transport in mixed-halide argyrodites Li6xPS5xClBrx: an unusual compositional space. Chem. Mater. 33, 1435–1443 (2021).

    Article  CAS  Google Scholar 

  165. Fang, H. & Jena, P. Argyrodite-type advanced lithium conductors and transport mechanisms beyond paddle-wheel effect. Nat. Commun. 13, 2078 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Maughan, A. E., Ha, Y., Pekarek, R. T. & Schulze, M. C. Lowering the activation barriers for lithium-ion conductivity through orientational disorder in the cyanide argyrodite Li6PS5CN. Chem. Mater. 33, 5127–5136 (2021).

    Article  CAS  Google Scholar 

  167. Yun, J. et al. Deciphering the critical degradation factors of solid composite electrodes with halide electrolytes: interfacial reaction versus ionic transport. Energy Storage Mater. 59, 102787 (2023).

    Article  Google Scholar 

  168. Ohta, N. et al. LiNbO3-coated LiCoO2 as cathode material for all solid-state lithium secondary batteries. Electrochem. Commun. 9, 1486–1490 (2007).

    Article  CAS  Google Scholar 

  169. Li, X. et al. LiNbO3-coated LiNi0.8Co0.1Mn0.1O2 cathode with high discharge capacity and rate performance for all-solid-state lithium battery. J. Energy Chem. 40, 39–45 (2020).

    Article  Google Scholar 

  170. Yu, C. et al. Superionic conductivity in lithium argyrodite solid-state electrolyte by controlled Cl-doping. Nano Energy 69, 104396 (2020).

    Article  CAS  Google Scholar 

  171. Rao, R. P., Sharma, N., Peterson, V. K. & Adams, S. Formation and conductivity studies of lithium argyrodite solid electrolytes using in-situ neutron diffraction. Solid State Ion. 230, 72–76 (2013).

    Article  CAS  Google Scholar 

  172. Zheng, X. et al. Li3InCl6-coated LiCoO2 for high-performance all solid-state batteries. Appl. Phys. Lett. 121, 033902 (2022).

    Article  CAS  Google Scholar 

  173. Riegger, L. M., Schlem, R., Sann, J., Zeier, W. G. & Janek, J. Lithium-metal anode instability of the superionic halide solid electrolytes and the implications for solid-state batteries. Angew. Chem. Int. Ed. Engl. 60, 6718–6723 (2021). This paper investigates the formation of the reactive layer between Li3InCl6 or Li3YCl6 and lithium by in situ X-ray photoelectron spectroscopy and impedance spectroscopy, and characterizes the interface between Li3InCl6 and Li6PS5Cl using impedance spectroscopy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Nikodimos, Y., Su, W. N. & Hwang, B. J. Halide solid-state electrolytes: stability and application for high voltage all-solid-state Li batteries. Adv. Energy Mater. 13, 2202854 (2023).

    Article  CAS  Google Scholar 

  175. Pang, B. et al. Regulation of the interfaces between argyrodite solid electrolytes and lithium metal anode. Front. Chem. 10, 837978 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Narayanan, S. et al. Effect of current density on the solid electrolyte interphase formation at the lithiumLi6PS5Cl interface. Nat. Commun. 13, 7237 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Nazri, G. Preparation, structure and ionic conductivity of lithium phosphide. Solid State Ion. 34, 97–102 (1989).

    Article  CAS  Google Scholar 

  178. Li, J. et al. Mixed ion-electron conducting Li3P for efficient cathode prelithiation of all-solid-state Li-ion batteries. SmartMat https://doi.org/10.1002/smm2.1200 (2023).

  179. Deng, Z., Zhu, Z., Chu, I. & Ong, S. P. Data-driven first-principles methods for the study and design of alkali superionic conductors. Chem. Mater. 29, 281–288 (2017).

    Article  CAS  Google Scholar 

  180. Zhang, Q. et al. Sulfide-based solid-state electrolytes: synthesis, stability, and potential for all-solid-state batteries. Adv. Mater. 31, 1901131 (2019).

    Article  CAS  Google Scholar 

  181. Ji, W., Zheng, D., Zhang, X., Ding, T. & Qu, D. A kinetically stable anode interface for Li3YCl6-based all-solid-state lithium batteries. J. Mater. Chem. A 9, 15012–15018 (2021).

    Article  CAS  Google Scholar 

  182. Zhang, H. et al. Halide/sulfide composite solid-state electrolyte for Li-anode based all-solid-state batteries. Chin. Chem. Lett. 34, 108228 (2023).

    Article  CAS  Google Scholar 

  183. Kasemchainan, J. et al. Critical stripping current leads to dendrite formation on plating in lithium anode solid electrolyte cells. Nat. Mater. 18, 1105–1111 (2019).

    Article  CAS  PubMed  Google Scholar 

  184. He, X. et al. Tuning interface lithiophobicity for lithium metal solid-state batteries. ACS Energy Lett. 7, 131–139 (2022).

    Article  CAS  Google Scholar 

  185. Zeng, D. et al. Promoting favorable interfacial properties in lithium-based batteries using chlorine-rich sulfide inorganic solid-state electrolytes. Nat. Commun. 13, 1909 (2022). This paper reveals the effects of chlorine content on the microstructure, lithium dendrite resistance and anode-side interface evolution behaviour of argyrodite-type SEs and elucidates the key mechanism of LiCl-rich interface layer on the electrochemical performance.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Maresca, G. et al. Sn/C composite anodes for bulk-type all-solid-state batteries. Electrochim. Acta 395, 139104 (2021).

    Article  CAS  Google Scholar 

  187. Manthiram, A., Yu, X. & Wang, S. Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2, 16103 (2017).

    Article  CAS  Google Scholar 

  188. Adachi, G., Imanaka, N. & Tamura, S. Ionic conducting lanthanide oxides. Chem. Rev. 102, 2405–2430 (2002).

    Article  CAS  PubMed  Google Scholar 

  189. Zhang, Q. et al. Recent advances on rare earths in solid lithium ion conductors. J. Rare Earths 39, 1–10 (2021).

    Article  Google Scholar 

  190. Feinauer, M., Euchner, H., Fichtner, M. & Reddy, M. A. Unlocking the potential of fluoride-based solid electrolytes for solid-state lithium batteries. ACS Appl. Energy Mater. 2, 7196–7203 (2019).

    Article  CAS  Google Scholar 

  191. Liu, H. et al. Versatility of Sb-doping enabling argyrodite electrolyte with superior moisture stability and Li metal compatibility towards practical all-solid-state Li metal batteries. Chem. Eng. J. 462, 142183 (2023).

    Article  CAS  Google Scholar 

  192. Wei, C. et al. Sb and O dual doping of chlorine-rich lithium argyrodite to improve air stability and lithium compatibility for all-solid-state batteries. J. Power Sources 559, 232659 (2023).

    Article  CAS  Google Scholar 

  193. Wu, Z. et al. Ag-modification argyrodite electrolytes enable high-performance for all-solid-state lithium metal batteries. Chem. Eng. J. 466, 143304 (2023).

    Article  CAS  Google Scholar 

  194. Taklu, B. W. et al. Dual CuCl doped argyrodite superconductor to boost the interfacial compatibility and air stability for all solid-state lithium metal batteries. Nano Energy 90, 106542 (2021).

    Article  CAS  Google Scholar 

  195. Su, J. et al. Interfacial modification between argyrodite-type solid-state electrolytes and Li metal anodes using LiPON interlayers. Energy Environ. Sci. 15, 3805–3814 (2022).

    Article  CAS  Google Scholar 

  196. Lu, Y., Tu, Z. & Archer, L. A. Stable lithium electrodeposition in liquid and nanoporous solid electrolytes. Nat. Mater. 13, 961–969 (2014).

    Article  CAS  PubMed  Google Scholar 

  197. Lee, H. J. et al. Li-ion conductivity in Li2OHCl1−xBrx solid electrolytes: grains, grain boundaries and interfaces. J. Mater. Chem. A 10, 11574–11586 (2022).

    Article  CAS  Google Scholar 

  198. Sasano, S. et al. Grain boundary Li-ion conductivity in (Li0.33La0.56)TiO3 polycrystal. Appl. Phys. Lett. 116, 043901 (2020).

    Article  CAS  Google Scholar 

  199. Zheng, J., Elgin, J., Shao, J. & Wu, Y. Differentiating grain and grain boundary ionic conductivities of Li-ion antiperovskite electrolytes. eScience 2, 639–645 (2022).

    Article  Google Scholar 

  200. Kockmann, A., Hesselbach, J., Zellmer, S., Kwade, A. & Garnweitner, G. Facile surface tailoring of metal oxide nanoparticles via a two-step modification approach. RSC Adv. 5, 60993–60999 (2015).

    Article  CAS  Google Scholar 

  201. Huang, Z. et al. Enhanced performance of Li6.4La3Zr1.4Ta0.6O12 solid electrolyte by the regulation of grain and grain boundary phases. ACS Appl. Mater. Interfaces 12, 56118–56125 (2020).

    Article  CAS  PubMed  Google Scholar 

  202. Miñambres, L., Méndez, E., Sánchez, M. N., Castaño, F. & Basterretxea, F. J. Water uptake properties of internally mixed sodium halide and succinic acid particles. Atmos. Env. 45, 5896–5902 (2011).

    Article  Google Scholar 

  203. Zhang, S., Li, S. & Lu, Y. Designing safer lithium-based batteries with nonflammable electrolytes: a review. eScience 1, 163–177 (2021).

    Article  Google Scholar 

Download references

Acknowledgements

H.T. thanks the Interdisciplinary Innovation Program of North China Electric Power University (No. XM2212315). C.X. thanks the National Natural Science Foundation of China (No. 51821004).

Author information

Authors and Affiliations

Authors

Contributions

H.T., Y.X. and Y.Y. proposed the topic of the Review. B.H., F.Z., Y.X. and H.T. wrote the manuscript. C.X., X.H., Y.Y. and X.W. discussed the Review. All the authors agreed upon the final version of the manuscript.

Corresponding authors

Correspondence to Yan Xin, Yang Yang or Huajun Tian.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Chemistry thank the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, B., Zhang, F., Xin, Y. et al. Halogen chemistry of solid electrolytes in all-solid-state batteries. Nat Rev Chem 7, 826–842 (2023). https://doi.org/10.1038/s41570-023-00541-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-023-00541-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing