Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Room-temperature phosphorescent materials derived from natural resources

Abstract

Room-temperature phosphorescent (RTP) materials have enormous potential in many different areas. Additionally, the conversion of natural resources to RTP materials has attracted considerable attention. Owing to their inherent luminescent properties, natural materials can be efficiently converted into sustainable RTP materials. However, to date, only a few reviews have focused on this area of endeavour. Motivated by this lack of coverage, in this Review, we address this shortcoming and introduce the types of natural resource available for the preparation of RTP materials. We mainly focus on the inherent advantages of natural resources for RTP materials, strategies for activating and enhancing the RTP properties of the natural resources as well as the potential applications of these RTP materials. In addition, we discuss future challenges and opportunities in this area of research.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic illustration for the production of room-temperature phosphorescent materials from natural resources.
Fig. 2: Representative natural structures and resources for room-temperature phosphorescent materials.
Fig. 3: Strategies for enhancing room-temperature phosphorescence emission from non-aromatic resources and applications.
Fig. 4: Strategies for activating room-temperature phosphorescence emission from aromatic resources and applications.

Similar content being viewed by others

References

  1. Zhao, W., He, Z. & Tang, B. Z. Room-temperature phosphorescence from organic aggregates. Nat. Rev. Mater. 5, 869–885 (2020).

    Article  CAS  Google Scholar 

  2. Gao, R., Kodaimati, M. S. & Yan, D. Recent advances in persistent luminescence based on molecular hybrid materials. Chem. Soc. Rev. 50, 5564–5589 (2021).

    Article  CAS  PubMed  Google Scholar 

  3. Ma, X., Wang, J. & Tian, H. Assembling-induced emission: an efficient approach for amorphous metal-free organic emitting materials with room-temperature phosphorescence. Acc. Chem. Res. 52, 738–748 (2019).

    Article  CAS  PubMed  Google Scholar 

  4. Tang, S. et al. Nonconventional luminophores: characteristics, advancements and perspectives. Chem. Soc. Rev. 50, 12616–12655 (2021).

    Article  CAS  PubMed  Google Scholar 

  5. Li, Q. & Li, Z. Molecular packing: another key point for the performance of organic and polymeric optoelectronic materials. Acc. Chem. Res. 53, 962–973 (2020).

    Article  CAS  PubMed  Google Scholar 

  6. Nie, H., Wei, Z., Ni, X.-L. & Liu, Y. Assembly and applications of macrocyclic-confinement-derived supramolecular organic luminescent emissions from cucurbiturils. Chem. Rev. 122, 9032–9077 (2022).

    Article  CAS  PubMed  Google Scholar 

  7. Tian, R., Xu, S.-M., Xu, Q. & Lu, C. Large-scale preparation for efficient polymer-based room-temperature phosphorescence via click chemistry. Sci. Adv. 6, eaaz6107 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Liu, S., Lin, Y. & Yan, D. Hydrogen-bond organized 2D metal–organic microsheets: direct ultralong phosphorescence and color-tunable optical waveguides. Sci. Bull. 67, 2076–2084 (2022).

    Article  CAS  Google Scholar 

  9. Zhou, B. & Yan, D. Long persistent luminescence from metal–organic compounds: state of the art. Adv. Funct. Mater. 33, 2300735 (2023).

    Article  CAS  Google Scholar 

  10. Liu, S., Fang, X., Lu, B. & Yan, D. Wide range zero-thermal-quenching ultralong phosphorescence from zero-dimensional metal halide hybrids. Nat. Commun. 11, 4649 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kumar, P., Singh, S. & Gupta, B. K. Future prospects of luminescent nanomaterial based security inks: from synthesis to anti-counterfeiting applications. Nanoscale 8, 14297–14340 (2016).

    Article  CAS  PubMed  Google Scholar 

  12. Evans, R. C., Douglas, P. & Winscom, C. J. Coordination complexes exhibiting room-temperature phosphorescence: evaluation of their suitability as triplet emitters in organic light emitting diodes. Coord. Chem. Rev. 250, 2093–2126 (2006).

    Article  CAS  Google Scholar 

  13. Feldmann, C., Jüstel, T., Ronda, C. R. & Schmidt, P. J. Inorganic luminescent materials: 100 years of research and application. Adv. Funct. Mater. 13, 511–516 (2003).

    Article  CAS  Google Scholar 

  14. Yan, Y., Zhang, J., Ren, L. & Tang, C. Metal-containing and related polymers for biomedical applications. Chem. Soc. Rev. 45, 5232–5263 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Green, D. C. et al. Controlling the fluorescence and room-temperature phosphorescence behaviour of carbon nanodots with inorganic crystalline nanocomposites. Nat. Commun. 10, 206 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Zheng, X. et al. Nearly unity quantum yield persistent room-temperature phosphorescence from heavy atom-free rigid inorganic/organic hybrid frameworks. Angew. Chem. Int. Ed. Engl. 61, e202207104 (2022).

    Article  CAS  PubMed  Google Scholar 

  17. Yao, X. et al. Room-temperature phosphorescence enabled through nacre-mimetic nanocomposite design. Adv. Mater. 33, 2005973 (2021).

    Article  CAS  Google Scholar 

  18. Wu, Z. et al. Persistent room temperature phosphorescence from triarylboranes: a combined experimental and theoretical study. Angew. Chem. Int. Ed. Engl. 59, 17137–17144 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Shao, W. & Kim, J. Metal-free organic phosphors toward fast and efficient room-temperature phosphorescence. Acc. Chem. Res. 55, 1573–1585 (2022).

    Article  CAS  PubMed  Google Scholar 

  20. Hamzehpoor, E. et al. Efficient room-temperature phosphorescence of covalent organic frameworks through covalent halogen doping. Nat. Chem. 15, 83–90 (2023).

    Article  CAS  PubMed  Google Scholar 

  21. Ren, Y. et al. Clusterization-triggered color-tunable room-temperature phosphorescence from 1,4-dihydropyridine-based polymers. J. Am. Chem. Soc. 144, 1361–1369 (2022).

    Article  CAS  PubMed  Google Scholar 

  22. Jia, X. et al. Photoexcitation-controlled self-recoverable molecular aggregation for flicker phosphorescence. Proc. Natl Acad. Sci. USA 116, 4816–4821 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wei, J. et al. Induction of strong long-lived room-temperature phosphorescence of N-phenyl-2-naphthylamine molecules by confinement in a crystalline dibromobiphenyl matrix. Angew. Chem. Int. Ed. Engl. 55, 15589–15593 (2016).

    Article  CAS  PubMed  Google Scholar 

  24. Ma, H., Peng, Q., An, Z., Huang, W. & Shuai, Z. Efficient and long-lived room-temperature organic phosphorescence: theoretical descriptors for molecular designs. J. Am. Chem. Soc. 141, 1010–1015 (2018).

    Article  Google Scholar 

  25. Hirata, S. Molecular physics of persistent room temperature phosphorescence and long-lived triplet excitons. Appl. Phys. Rev. 9, 011304 (2022).

    Article  CAS  Google Scholar 

  26. Baryshnikov, G., Minaev, B. & Ågren, H. Theory and calculation of the phosphorescence phenomenon. Chem. Rev. 117, 6500–6537 (2017).

    Article  CAS  PubMed  Google Scholar 

  27. He, Z. et al. White light emission from a single organic molecule with dual phosphorescence at room temperature. Nat. Commun. 8, 416 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Fateminia, S. A. et al. Organic nanocrystals with bright red persistent room‐temperature phosphorescence for biological applications. Angew. Chem. Int. Ed. Engl. 129, 12328–12332 (2017).

    Article  Google Scholar 

  29. Chen, C. et al. Intramolecular charge transfer controls switching between room temperature phosphorescence and thermally activated delayed fluorescence. Angew. Chem. Int. Ed. Engl. 130, 16645–16649 (2018).

    Article  Google Scholar 

  30. Ye, W. et al. Confining isolated chromophores for highly efficient blue phosphorescence. Nat. Mater. 20, 1539–1544 (2021).

    Article  CAS  PubMed  Google Scholar 

  31. Zhu, T., Yang, T., Zhang, Q. & Yuan, W. Z. Clustering and halogen effects enabled red/near-infrared room temperature phosphorescence from aliphatic cyclic imides. Nat. Commun. 13, 2658 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Shoji, Y. et al. Unveiling a new aspect of simple arylboronic esters: long-lived room-temperature phosphorescence from heavy-atom-free molecules. J. Am. Chem. Soc. 139, 2728–2733 (2017).

    Article  CAS  PubMed  Google Scholar 

  33. Baroncini, M., Bergamini, G. & Ceroni, P. Rigidification or interaction-induced phosphorescence of organic molecules. Chem. Commun. 53, 2081–2093 (2017).

    Article  CAS  Google Scholar 

  34. Bolton, O., Lee, K., Kim, H.-J., Lin, K. Y. & Kim, J. Activating efficient phosphorescence from purely organic materials by crystal design. Nat. Chem. 3, 205–210 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Yuan, W. Z. et al. Crystallization-induced phosphorescence of pure organic luminogens at room temperature. J. Phys. Chem. C 114, 6090–6099 (2010).

    Article  CAS  Google Scholar 

  36. Zhang, Z. Y., Chen, Y. & Liu, Y. Efficient room‐temperature phosphorescence of a solid‐state supramolecule enhanced by cucurbit [6] uril. Angew. Chem. Int. Ed. Engl. 58, 6028–6032 (2019).

    Article  CAS  PubMed  Google Scholar 

  37. Kwon, M. S., Lee, D., Seo, S., Jung, J. & Kim, J. Tailoring intermolecular interactions for efficient room-temperature phosphorescence from purely organic materials in amorphous polymer matrices. Angew. Chem. Int. Ed. Engl. 53, 11177–11181 (2014).

    Article  CAS  PubMed  Google Scholar 

  38. Jiang, K. et al. Triple‐mode emission of carbon dots: applications for advanced anti‐counterfeiting. Angew. Chem. Int. Ed. Engl. 55, 7231–7235 (2016).

    Article  CAS  PubMed  Google Scholar 

  39. Ma, X., Xu, C., Wang, J. & Tian, H. Amorphous pure organic polymers for heavy-atom-free efficient room-temperature phosphorescence emission. Angew. Chem. Int. Ed. Engl. 57, 10854–10858 (2018).

    Article  CAS  PubMed  Google Scholar 

  40. Gu, L. et al. Color-tunable ultralong organic room temperature phosphorescence from a multicomponent copolymer. Nat. Commun. 11, 944 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kuila, S. & George, S. J. Phosphorescence energy transfer: ambient afterglow fluorescence from water‐processable and purely organic dyes via delayed sensitization. Angew. Chem. Int. Ed. Engl. 59, 9393–9397 (2020).

    Article  CAS  PubMed  Google Scholar 

  42. Li, D. et al. Completely aqueous processable stimulus responsive organic room temperature phosphorescence materials with tunable afterglow color. Nat. Commun. 13, 347 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Tao, S. et al. Design of metal‐free polymer carbon dots: a new class of room‐temperature phosphorescent materials. Angew. Chem. Int. Ed. Engl. 57, 2393–2398 (2018).

    Article  CAS  PubMed  Google Scholar 

  44. Gan, N., Shi, H., An, Z. & Huang, W. Recent advances in polymer‐based metal‐free room‐temperature phosphorescent materials. Adv. Funct. Mater. 28, 1802657 (2018).

    Article  Google Scholar 

  45. Nidhankar, A. D., Wakchaure, V. C. & Babu, S. S. Efficient metal-free organic room temperature phosphors. Chem. Sci. 12, 4216–4236 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chen, X. et al. Versatile room-temperature-phosphorescent materials prepared from N-substituted naphthalimides: emission enhancement and chemical conjugation. Angew. Chem. Int. Ed. Engl. 55, 9872–9876 (2016).

    Article  CAS  PubMed  Google Scholar 

  47. Feng, S. et al. Light/force-sensitive 0d lead-free perovskites: from highly efficient blue afterglow to white phosphorescence with near-unity quantum efficiency. Angew. Chem. Int. Ed. Engl. 61, e202116511 (2022).

    Article  CAS  PubMed  Google Scholar 

  48. Hirata, S. et al. Efficient persistent room temperature phosphorescence in organic amorphous materials under ambient conditions. Adv. Funct. Mater. 23, 3386–3397 (2013).

    Article  CAS  Google Scholar 

  49. Lei, Y. et al. Wide‐range color‐tunable organic phosphorescence materials for printable and writable security inks. Angew. Chem. Int. Ed. Engl. 59, 16054–16060 (2020).

    Article  CAS  PubMed  Google Scholar 

  50. Xiao, F. et al. Guest–host doped strategy for constructing ultralong-lifetime near-infrared organic phosphorescence materials for bioimaging. Nat. Commun. 13, 186 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhang, J. et al. Stimuli-responsive deep-blue organic ultralong phosphorescence with lifetime over 5 s for reversible water-jet anti-counterfeiting printing. Angew. Chem. Int. Ed. Engl. 60, 17094–17101 (2021).

    Article  PubMed  Google Scholar 

  52. Kaschuk, J. J. et al. Plant-based structures as an opportunity to engineer optical functions in next-generation light management. Adv. Mater. 34, 2104473 (2022).

    Article  CAS  Google Scholar 

  53. Guo, X. et al. A sustainable wood-based iron photocatalyst for multiple uses with sunlight: water treatment and radical photopolymerization. Angew. Chem. Int. Ed. Engl. 62, e202301242 (2023).

    Article  CAS  PubMed  Google Scholar 

  54. Wan, K. et al. Structural materials with afterglow room temperature phosphorescence activated by lignin oxidation. Nat. Commun. 13, 5508 (2022). Structural RTP materials are prepared from natural wood via lignin oxidation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Yang, M. et al. Repurposing lignin to generate functional afterglow paper. Cell Rep. Phys. Sci. 3, 100867 (2022).

    Article  CAS  Google Scholar 

  56. Wang, X. et al. Lignin nanoparticles: promising sustainable building blocks of photoluminescent and haze films for improving efficiency of solar cells. ACS Appl. Mater. Interfaces 13, 33536–33545 (2021).

    Article  CAS  PubMed  Google Scholar 

  57. Zhang, Y. et al. Cross-linked polyphosphazene nanospheres boosting long-lived organic room-temperature phosphorescence. J. Am. Chem. Soc. 144, 6107–6117 (2022). Ellagic acid confined in the polymer matrix exhibits a strong RTP emission after chemical modification.

    Article  CAS  PubMed  Google Scholar 

  58. Wan, K. et al. Sustainable afterglow room-temperature phosphorescence emission materials generated using natural phenolics. Angew. Chem. Int. Ed. Engl. 61, e202202760 (2022). Natural phenolics exhibit RTP emission when they are trapped in a polymer matrix.

    Article  CAS  PubMed  Google Scholar 

  59. Zhu, Z., Zeng, L., Li, W., Xu, W. & Tian, D. Efficient persistent luminescence from cellulose–halide mixtures for optical encryption. ACS Sustain. Chem. Eng. 10, 16752–16759 (2022).

    Article  CAS  Google Scholar 

  60. Zhang, X. et al. Ultralong phosphorescence cellulose with excellent anti-bacterial, water-resistant and ease-to-process performance. Nat. Commun. 13, 1117 (2022). Cellulose is efficiently converted to multifunctional RTP materials via chemical modifications.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Dou, X. et al. Clustering-triggered emission and persistent room temperature phosphorescence of sodium alginate. Biomacromolecules 19, 2014–2022 (2018).

    Article  CAS  PubMed  Google Scholar 

  62. Lü, B. et al. Natural ultralong hemicelluloses phosphorescence. Cell Rep. Phys. Sci. 3, 101015 (2022). RTP emission is observed from natural hemicellulose in a solid state.

    Article  Google Scholar 

  63. Nie, F. & Yan, D. Macroscopic assembly of chiral hydrogen-bonded metal-free supramolecular glasses for enhanced color-tunable ultralong room temperature phosphorescence. Angew. Chem. Int. Ed. Engl. 62, e202302751 (2023).

    Article  CAS  PubMed  Google Scholar 

  64. Nie, F., Wang, K.-Z. & Yan, D. Supramolecular glasses with color-tunable circularly polarized afterglow through evaporation-induced self-assembly of chiral metal–organic complexes. Nat. Commun. 14, 1654 (2023). Supramolecular glasses with circularly polarized RTP emissions are fabricated using zinc(II) ion and chiral l-histidine.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sun, Y. et al. Ultralong lifetime and efficient room temperature phosphorescent carbon dots through multi-confinement structure design. Nat. Commun. 11, 5591 (2020). Carbon dots with long-lived RTP emission are made from rice husk using a multiple confinement strategy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Zhai, Y. et al. Room temperature phosphorescence from natural wood activated by external chloride anion treatment. Nat. Commun. 14, 2614 (2023). Natural wood is converted to RTP materials via external chloride anion treatment.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Habibi, Y., Lucia, L. A. & Rojas, O. J. Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem. Rev. 110, 3479–3500 (2010).

    Article  CAS  PubMed  Google Scholar 

  68. Li, T. et al. Developing fibrillated cellulose as a sustainable technological material. Nature 590, 47–56 (2021).

    Article  CAS  PubMed  Google Scholar 

  69. Wang, S. et al. Strong, tough, ionic conductive, and freezing-tolerant all-natural hydrogel enabled by cellulose–bentonite coordination interactions. Nat. Commun. 13, 3408 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zhao, D. et al. Cellulose-based flexible functional materials for emerging intelligent electronics. Adv. Mater. 33, 2000619 (2021).

    Article  CAS  Google Scholar 

  71. Qin, Y. et al. Stretchable triboelectric self-powered sweat sensor fabricated from self-healing nanocellulose hydrogels. Adv. Funct. Mater. 32, 2201846 (2022).

    Article  CAS  Google Scholar 

  72. Chen, W. et al. Nanocellulose: a promising nanomaterial for advanced electrochemical energy storage. Chem. Soc. Rev. 47, 2837–2872 (2018).

    Article  CAS  PubMed  Google Scholar 

  73. Tu, H., Zhu, M., Duan, B. & Zhang, L. Recent progress in high-strength and robust regenerated cellulose materials. Adv. Mater. 33, 2000682 (2021).

    Article  CAS  Google Scholar 

  74. Liu, W. et al. Cellulose nanopaper: fabrication, functionalization, and applications. Nano-Micro Lett. 14, 104 (2022).

    Article  CAS  Google Scholar 

  75. Zhang, X. et al. Cellulose-based ultralong room-temperature phosphorescence nanomaterials with tunable color and high quantum yield via nano-surface confining effect. Research 6, 0029 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Rao, J., Lv, Z., Chen, G. & Peng, F. Hemicellulose: structure, chemical modification, and application. Prog. Polym. Sci. 140, 101675 (2023).

    Article  CAS  Google Scholar 

  77. Ibn Yaich, A., Edlund, U. & Albertsson, A.-C. Transfer of biomatrix/wood cell interactions to hemicellulose-based materials to control water interaction. Chem. Rev. 117, 8177–8207 (2017).

    Article  CAS  PubMed  Google Scholar 

  78. Qaseem, M. F., Shaheen, H. & Wu, A.-M. Cell wall hemicellulose for sustainable industrial utilization. Renew. Sust. Energ. Rev. 144, 110996 (2021).

    Article  CAS  Google Scholar 

  79. Questell-Santiago, Y. M., Galkin, M. V., Barta, K. & Luterbacher, J. S. Stabilization strategies in biomass depolymerization using chemical functionalization. Nat. Rev. Chem. 4, 311–330 (2020).

    Article  CAS  PubMed  Google Scholar 

  80. Hao, X. et al. Dialdehyde xylan-based sustainable, stable, and catalytic liquid metal nano-inks. Green Chem. 23, 7796–7804 (2021).

    Article  CAS  Google Scholar 

  81. Bai, L. et al. Nanochitin: chemistry, structure, assembly, and applications. Chem. Rev. 122, 11604–11674 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Chen, Y. et al. Super-strong and super-stiff chitosan filaments with highly ordered hierarchical structure. Adv. Funct. Mater. 31, 2104368 (2021).

    Article  CAS  Google Scholar 

  83. Mohan, K. et al. Recent insights into the extraction, characterization, and bioactivities of chitin and chitosan from insects. Trends Food Sci. Technol. 105, 17–42 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Kumar, M. N. V. R., Muzzarelli, R. A. A., Muzzarelli, C., Sashiwa, H. & Domb, A. J. Chitosan chemistry and pharmaceutical perspectives. Chem. Rev. 104, 6017–6084 (2004).

    Article  PubMed  Google Scholar 

  85. Avcu, E. et al. Electrophoretic deposition of chitosan-based composite coatings for biomedical applications: a review. Prog. Mater. Sci. 103, 69–108 (2019).

    Article  CAS  Google Scholar 

  86. Kim, T.-H. et al. Chemical modification of chitosan as a gene carrier in vitro and in vivo. Prog. Polym. Sci. 32, 726–753 (2007).

    Article  CAS  Google Scholar 

  87. Sashiwa, H. & Aiba, S.-I. Chemically modified chitin and chitosan as biomaterials. Prog. Polym. Sci. 29, 887–908 (2004).

    Article  CAS  Google Scholar 

  88. Haridevan, H., Evans, D. A., Ragauskas, A. J., Martin, D. J. & Annamalai, P. K. Valorisation of technical lignin in rigid polyurethane foam: a critical evaluation on trends, guidelines and future perspectives. Green Chem. 23, 8725–8753 (2021).

    Article  CAS  Google Scholar 

  89. Kim, J., Nguyen, T. V. T., Kim, Y. H., Hollmann, F. & Park, C. B. Lignin as a multifunctional photocatalyst for solar-powered biocatalytic oxyfunctionalization of C-H bonds. Nat. Syn. 1, 217–226 (2022).

    Article  Google Scholar 

  90. Bertella, S. & Luterbacher, J. S. Lignin functionalization for the production of novel materials. Trends Chem. 2, 440–453 (2020).

    Article  CAS  Google Scholar 

  91. Ai, Y. et al. Toward cleaner production of nanocellulose: a review and evaluation. Green Chem. 24, 6406–6434 (2022).

    Article  CAS  Google Scholar 

  92. Vigh, M. A trashed treasure: lignin could become a large and renewable source of organic compounds for the chemical industry to replace fossil fuel‐based chemicals. EMBO Rep. 24, e57103 (2023).

    Article  CAS  PubMed  Google Scholar 

  93. Dai, L. et al. All-lignin-based hydrogel with fast pH-stimuli responsiveness for mechanical switching and actuation. Chem. Mater. 32, 4324–4330 (2020).

    Article  CAS  Google Scholar 

  94. Sun, Z., Fridrich, B., de Santi, A., Elangovan, S. & Barta, K. Bright side of lignin eepolymerization: toward new platform chemicals. Chem. Rev. 118, 614–678 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Li, H., Bunrit, A., Li, N. & Wang, F. Heteroatom-participated lignin cleavage to functionalized aromatics. Chem. Soc. Rev. 49, 3748–3763 (2020).

    Article  CAS  PubMed  Google Scholar 

  96. Wang, M. et al. Carbon modification of nickel catalyst for depolymerization of oxidized lignin to aromatics. ACS Catal. 8, 1614–1620 (2018).

    Article  CAS  Google Scholar 

  97. Shuai, L. et al. Formaldehyde stabilization facilitates lignin monomer production during biomass depolymerization. Science 354, 329–333 (2016).

    Article  CAS  PubMed  Google Scholar 

  98. Wu, X. et al. Photocatalytic transformations of lignocellulosic biomass into chemicals. Chem. Soc. Rev. 49, 6198–6223 (2020).

    Article  CAS  PubMed  Google Scholar 

  99. Zhang, T. et al. Stable lignin-based afterglow materials with ultralong phosphorescence lifetimes in solid-state and aqueous solution. Green Chem. 25, 1406–1416 (2023).

    Article  CAS  Google Scholar 

  100. Sileika, T. S., Barrett, D. G., Zhang, R., Lau, K. H. A. & Messersmith, P. B. Colorless multifunctional coatings inspired by polyphenols found in tea, chocolate, and wine. Angew. Chem. Int. Ed. Engl. 52, 10766–10770 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Haslam, E. Practical Polyphenolics: From Structure to Molecular Recognition and Physiological Action (Cambridge Univ. Press, 1998).

  102. Bravo, L. Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance. Nutr. Rev. 56, 317–333 (1998).

    Article  CAS  PubMed  Google Scholar 

  103. Alara, O. R., Abdurahman, N. H. & Ukaegbu, C. I. Extraction of phenolic compounds: a review. Curr. Res. Food Sci. 4, 200–214 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Luo, W. et al. Engineering robust metal-phenolic network membranes for uranium extraction from seawater. Energy Environ. Sci. 12, 607–614 (2019).

    Article  CAS  Google Scholar 

  105. Qiu, X. et al. Superstructured mesocrystals through multiple inherent molecular interactions for highly reversible sodium ion batteries. Sci. Adv. 7, eabh3482 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Geng, H. et al. Metal ion-directed functional metal-phenolic materials. Chem. Rev. 122, 11432–11473 (2022).

    Article  CAS  PubMed  Google Scholar 

  107. Yang, X. & Berglund, L. A. Structural and ecofriendly holocellulose materials from wood: microscale fibers and nanoscale fibrils. Adv. Mater. 33, 2001118 (2021).

    Article  CAS  Google Scholar 

  108. Chen, C., Berglund, L., Burgert, I. & Hu, L. Wood nanomaterials and nanotechnologies. Adv. Mater. 33, 2006207 (2021).

    Article  CAS  Google Scholar 

  109. Schubert, M., Panzarasa, G. & Burgert, I. Sustainability in wood products: a new perspective for handling natural diversity. Chem. Rev. 123, 1889–1924 (2022).

    Article  PubMed  Google Scholar 

  110. Ding, Y. et al. Emerging engineered wood for building applications. Chem. Rev. 123, 1843–1888 (2022).

    Article  PubMed  Google Scholar 

  111. Yuan, J. et al. Sustainable afterglow materials from lignin inspired by wood phosphorescence. Cell Rep. Phys. Sci. 2, 100542 (2021).

    Article  CAS  Google Scholar 

  112. Fang, M.-M., Yang, J. & Li, Z. Recent advances in purely organic room temperature phosphorescence polymer. Chin. J. Polym. Sci. 37, 383–393 (2019).

    Article  CAS  Google Scholar 

  113. Shokri, Z. et al. Elucidating the impact of enzymatic modifications on the structure, properties, and applications of cellulose, chitosan, starch and their derivatives: a review. Mater. Today Chem. 24, 100780 (2022).

    Article  CAS  Google Scholar 

  114. Zhang, H. et al. Clusterization-triggered emission: uncommon luminescence from common materials. Mater. Today 32, 275–292 (2020).

    Article  CAS  Google Scholar 

  115. Zhang, Z. et al. Modulating emission of boric acid into highly efficient and color-tunable afterglow via dehydration-induced through-pace conjugation. Adv. Sci. 10, 2300139 (2023).

    Article  CAS  Google Scholar 

  116. Gao, Q. et al. Stereospecific redox-mediated clusterization reconstruction for constructing long-lived, color-tunable, and processable phosphorescence cellulose. Chem. Eng. J. 451, 138923 (2023).

    Article  CAS  Google Scholar 

  117. Wang, Q. et al. Reevaluating protein photoluminescence: remarkable visible luminescence upon concentration and insight into the emission mechanism. Angew. Chem. Int. Ed. Engl. 131, 12797–12803 (2019). Clustering of the peptide backbone and pendant groups is proposed to be the reason for RTP emission of bovine serum albumin protein.

    Article  Google Scholar 

  118. Gong, Y. et al. Room temperature phosphorescence from natural products: crystallization matters. Sci. China Chem. 56, 1178–1182 (2013). Efficient RTP is observed in natural compounds and polymers such as starch, cellulose, bovine serum albumin and other carbohydrates.

    Article  CAS  Google Scholar 

  119. Zhu, Z., Zeng, L., Li, W., Tian, D. & Xu, W. Enhancing persistent luminescence of cellulose by dehydration for label-free time-resolved imaging. ACS Sustain. Chem. Eng. 9, 17420–17426 (2021). RTP from cellulose is used for label-free time-resolved imaging in plants.

    Article  CAS  Google Scholar 

  120. Cai, S. et al. Ultralong organic phosphorescent foams with high mechanical strength. J. Am. Chem. Soc. 143, 16256–16263 (2021). RTP foams with strong mechanical performance are made from gelatin via freeze drying.

    Article  CAS  PubMed  Google Scholar 

  121. Zhang, X. et al. Irreversible humidity-responsive phosphorescence materials from cellulose for advanced anti-counterfeiting and environmental monitoring. ACS Appl. Mater. Interfaces 14, 16582–16591 (2022).

    Article  CAS  PubMed  Google Scholar 

  122. Du, L.-L. et al. Clustering-triggered emission of cellulose and its derivatives. Chin. J. Polym. Sci. 37, 409–415 (2019).

    Article  CAS  Google Scholar 

  123. Zeng, L. et al. Luminescence lifetime tuning of non-conjugated organic clusters through external heavy-atom effect for smartphone-based time-resolved imaging. Chem. Eng. J. 460, 141452 (2023).

    Article  CAS  Google Scholar 

  124. Jiang, J. et al. Tunable photoluminescence properties of microcrystalline cellulose with gradually changing crystallinity and crystal form. Macromol. Rapid Commun. 42, 2100321 (2021).

    Article  CAS  Google Scholar 

  125. Guo, J., Yang, C. & Zhao, Y. Long-lived organic room-temperature phosphorescence from amorphous polymer systems. Acc. Chem. Res. 55, 1160–1170 (2022).

    Article  CAS  PubMed  Google Scholar 

  126. Li, W. et al. Carbon dot-silica nanoparticle composites for ultralong lifetime phosphorescence imaging in tissue and cells at room temperature. Chem. Mater. 31, 9887–9894 (2019).

    Article  CAS  Google Scholar 

  127. An, Z. et al. Stabilizing triplet excited states for ultralong organic phosphorescence. Nat. Mater. 14, 685–690 (2015).

    Article  CAS  PubMed  Google Scholar 

  128. Wu, H. & Zhao, Y. Colour-tunable ultra-long emission. Nat. Photon. 13, 373–375 (2019).

    Article  CAS  Google Scholar 

  129. Liu, R., Jiang, T., Liu, D. & Ma, X. A facile and green strategy to obtain organic room-temperature phosphorescence from natural lignin. Sci. China Chem. 65, 1100–1104 (2022).

    Article  CAS  Google Scholar 

  130. Cho, K. G. et al. Light‐emitting devices based on electrochemiluminescence gels. Adv. Funct. Mater. 30, 1907936 (2020).

    Article  CAS  Google Scholar 

  131. Zeng, W. et al. Fiber‐based wearable electronics: a review of materials, fabrication, devices, and applications. Adv. Mater. 26, 5310–5336 (2014).

    Article  CAS  PubMed  Google Scholar 

  132. Kwon, S. et al. Recent progress of fiber shaped lighting devices for smart display applications — a fibertronic perspective. Adv. Mater. 32, 1903488 (2020).

    Article  CAS  Google Scholar 

  133. Ge, M. et al. Luminescent materials derived from biomass resources. Coord. Chem. Rev. 477, 214951 (2023).

    Article  CAS  Google Scholar 

  134. Fu, Q. et al. Luminescent and hydrophobic wood films as optical lighting materials. ACS Nano 14, 13775–13783 (2020).

    Article  CAS  PubMed  Google Scholar 

  135. Großkopf, J., Kratz, T., Rigotti, T. & Bach, T. Enantioselective photochemical reactions enabled by triplet energy transfer. Chem. Rev. 122, 1626–1653 (2022).

    Article  PubMed  Google Scholar 

  136. Dimitrios, B. Sources of natural phenolic antioxidants. Trends Food Sci. Technol. 17, 505–512 (2006).

    Article  CAS  Google Scholar 

  137. Urakawa, K., Sumimoto, M., Arisawa, M., Matsuda, M. & Ishikawa, H. Redox switching of orthoquinone-containing aromatic compounds with hydrogen and oxygen gas. Angew. Chem. Int. Ed. Engl. 55, 7432–7436 (2016).

    Article  CAS  PubMed  Google Scholar 

  138. Kharissova, O. V., Dias, H. R., Kharisov, B. I., Pérez, B. O. & Pérez, V. M. J. The greener synthesis of nanoparticles. Trends Biotechnol. 31, 240–248 (2013).

    Article  CAS  PubMed  Google Scholar 

  139. Daimon, T. et al. The silkworm Green b locus encodes a quercetin 5-O-glucosyltransferase that produces green cocoons with UV-shielding properties. Proc. Natl Acad. Sci. USA 107, 11471–11476 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Zou, C. et al. Bacterial cellulose: a versatile chiral host for circularly polarized luminescence. Molecules 24, 1008 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Liu, J., Kong, T. & Xiong, H. M. Mulberry-leaves-derived red-emissive carbon dots for feeding silkworms to produce brightly fluorescent silk. Adv. Mater. 34, 2200152 (2022).

    Article  CAS  Google Scholar 

  142. Zhou, L. et al. Ultralong-lived up-conversional room-temperature afterglow materials with a polyvinyl alcohol substrate. Polymers 14, 2414 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Zheng, Y. et al. Near-infrared-excited multicolor afterglow in carbon dots-based room-temperature afterglow materials. Angew. Chem. Int. Ed. Engl. 60, 22253–22259 (2021).

    Article  CAS  PubMed  Google Scholar 

  144. Liang, Y.-C. et al. Phosphorescent carbon-nanodots-assisted Förster resonant energy transfer for achieving red afterglow in an aqueous solution. ACS Nano 15, 16242–16254 (2021).

    Article  CAS  PubMed  Google Scholar 

  145. Lin, F. et al. Stepwise energy transfer: near-infrared persistent luminescence from doped polymeric systems. Adv. Mater. 34, 2108333 (2022).

    Article  CAS  Google Scholar 

  146. Wang, B. et al. Carbon dots in a matrix: energy-transfer-enhanced room-temperature red phosphorescence. Angew. Chem. Int. Ed. Engl. 58, 18443–18448 (2019).

    Article  CAS  PubMed  Google Scholar 

  147. Li, W., Chen, Z., Yu, H., Li, J. & Liu, S. Wood‐derived carbon materials and light‐emitting materials. Adv. Mater. 33, 2000596 (2021).

    Article  CAS  Google Scholar 

  148. Zhang, X. et al. Natural‐product‐derived carbon dots: from natural products to functional materials. ChemSusChem 11, 11–24 (2018).

    Article  PubMed  Google Scholar 

  149. Wang, P. et al. Producing long afterglow by cellulose confinement effect: a wood-inspired design for sustainable phosphorescent materials. Carbon 171, 946–952 (2021).

    Article  CAS  Google Scholar 

  150. Song, Z. et al. A molecular engineering strategy for achieving blue phosphorescent carbon dots with outstanding efficiency above 50%. Adv. Mater. 35, 2207970 (2023).

    Article  CAS  Google Scholar 

  151. Wang, B. & Lu, S. The light of carbon dots: from mechanism to applications. Matter 5, 110–149 (2022).

    Article  Google Scholar 

  152. Sun, Y.-P. et al. Quantum-sized carbon dots for bright and colorful photoluminescence. J. Am. Chem. Soc. 128, 7756–7757 (2006).

    Article  CAS  PubMed  Google Scholar 

  153. Xu, X. et al. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J. Am. Chem. Soc. 126, 12736–12737 (2004).

    Article  CAS  PubMed  Google Scholar 

  154. Liu, F., Li, Z., Li, Y., Feng, Y. & Feng, W. Room-temperature phosphorescent fluorine–nitrogen co-doped carbon dots: information encryption and anti-counterfeiting. Carbon 181, 9–15 (2021).

    Article  CAS  Google Scholar 

  155. Wu, Q. et al. Chitosan-derived carbon dots with room-temperature phosphorescence and energy storage enhancement properties. ACS Sustain. Chem. Eng. 10, 3027–3036 (2022).

    Article  Google Scholar 

  156. Shi, J. et al. Prepared carbon dots from wheat straw for detection of Cu2+ in cells and zebrafish and room temperature phosphorescent anti-counterfeiting. Spectroc. Acta Pt A-Molec. BioMolec. Spectr. 281, 121597 (2022).

    Article  CAS  Google Scholar 

  157. Ni, Y. et al. Room-temperature phosphorescence based on chitosan carbon dots for trace water detection in organic solvents and anti-counterfeiting application. Dye Pigment. 197, 109923 (2022).

    Article  CAS  Google Scholar 

  158. Gao, Y. et al. Matrix-free and highly efficient room-temperature phosphorescence of nitrogen-doped carbon dots. Langmuir 34, 12845–12852 (2018).

    Article  CAS  PubMed  Google Scholar 

  159. Li, S. et al. Sustainable silk-derived multimode carbon dots. Small 17, 2103623 (2021).

    Article  CAS  Google Scholar 

  160. Zhai, Y. et al. Carbon dots confined in 3D polymer network: producing robust room temperature phosphorescence with tunable lifetimes. Chin. Chem. Lett. 33, 783–787 (2022).

    Article  CAS  Google Scholar 

  161. Liu, P. et al. Biomimetic confined self-assembly of chitin nanocrystals. Nano Today 43, 101420 (2022).

    Article  CAS  Google Scholar 

  162. Xu, M. et al. Exploring the circular polarization capacity from chiral cellulose nanocrystal films for a photo-controlled chiral helix of supramolecular polymers. Angew. Chem. Int. Ed. Engl. 61, e202117042 (2022).

    Article  CAS  PubMed  Google Scholar 

  163. Xu, M. et al. Designing hybrid chiral photonic films with circularly polarized room-temperature phosphorescence. ACS Nano 14, 11130–11139 (2020).

    Article  CAS  PubMed  Google Scholar 

  164. Wang, X. et al. Organic phosphors with bright triplet excitons for efficient X-ray-excited luminescence. Nat. Photon. 15, 187–192 (2021).

    Article  CAS  Google Scholar 

  165. Song, S. Y. et al. Colorful triplet excitons in carbon nanodots for time delay lighting. Adv. Mater. 35, 2212286 (2023).

    Article  CAS  Google Scholar 

  166. Wang, J. et al. Rhodium(I) complex-based polymeric nanomicelles in water exhibiting coexistent near-infrared phosphorescence imaging and anticancer activity in vivo. J. Am. Chem. Soc. 142, 2709–2714 (2020).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Z.C. thanks the National Natural Science Foundation of China (31890774), the Natural Science Funding of Heilong Jiang province for Excellent Young Scholars (YQ2020C017) and Fundamental Research Funds for the Central Universities (2572022CG02). T.D.J. thanks the University of Bath and the Open Research Fund of the School of Chemistry and Chemical Engineering, Henan Normal University (2020ZD01) for support.

Author information

Authors and Affiliations

Authors

Contributions

X.L. and B.T. contributed equally to this manuscript. All authors contributed to every aspect of the manuscript.

Corresponding authors

Correspondence to Tony D. James or Zhijun Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Chemistry thanks Dongpeng Yan, Luiz Cury and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, X., Tian, B., Zhai, Y. et al. Room-temperature phosphorescent materials derived from natural resources. Nat Rev Chem 7, 800–812 (2023). https://doi.org/10.1038/s41570-023-00536-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-023-00536-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing