Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Radical approaches to C–S bonds

Abstract

Organosulfur functionalities are ubiquitous in nature, pharmaceuticals, agrochemicals, materials and flavourants. Historically, these moieties were introduced almost exclusively using ionic chemistry; however, radical-based methods for the installation of sulfur-based functional groups have recently come to the fore. These radical methods have enabled their late-stage introduction into complex molecules, avoiding the need to preserve labile organosulfur moieties through multistep synthetic sequences. Here, we discuss homolytic C–S bond-forming processes, with a particular emphasis on radical substitution approaches to sulfide, disulfide and sulfinyl products, and the use of sulfur dioxide and its surrogates to build sulfonyl products. We also highlight the mechanistic considerations that we hope will guide further development of radical-based strategies compatible with the various organosulfur moieties that feature in modern chemistry.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The diversity of organosulfur moieties is underpinned by their multiple oxidative states, leading to extensive applications but challenges in their construction.
Fig. 2: Radical strategies to sulfides.
Fig. 3: Sulfide synthesis by homolytic substitution.
Fig. 4: Disulfide synthesis by homolytic substitution.
Fig. 5: Substitution and addition in sulfinylation and sulfonylation chemistry.
Fig. 6: Opportunities for future research in radical sulfuration.

Similar content being viewed by others

References

  1. Ilardi, E. A., Vitaku, E. & Njardarson, J. T. Data-mining for sulfur and fluorine: an evaluation of pharmaceuticals to reveal opportunities for drug design and discovery. J. Med. Chem. 57, 2832–2842 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. Devendar, P. & Yang, G. F. Sulfur-containing agrochemicals. Top. Curr. Chem. 375, 1–44 (2017).

    CAS  Google Scholar 

  3. Wang, N., Saidhareddy, P. & Jiang, X. Construction of sulfur-containing moieties in the total synthesis of natural products. Nat. Prod. Rep. 37, 246–275 (2020).

    Article  PubMed  Google Scholar 

  4. Worthington, M. J. H., Kucera, R. L. & Chalker, J. M. Green chemistry and polymers made from sulfur. Green. Chem. 19, 2748–2761 (2017).

    Article  CAS  Google Scholar 

  5. Wang, M. & Jiang, X. Prospects and challenges in organosulfur chemistry. ACS Sustain. Chem. Eng. 10, 671–677 (2022).

    Article  CAS  Google Scholar 

  6. Scott, K. A. & Njardarson, J. T. Analysis of US FDA-approved drugs containing sulfur atoms. Top. Curr. Chem. 376, 5 (2018).

    Article  Google Scholar 

  7. Zhao, C., Rakesh, K. P., Ravidar, L., Fang, W. Y. & Qin, H. L. Pharmaceutical and medicinal significance of sulfur (SVI)-containing motifs for drug discovery: a critical review. Eur. J. Med. Chem. 162, 679–734 (2019).

    Article  CAS  PubMed  Google Scholar 

  8. Voss, J. History of nineteenth-century organosulfur chemistry. J. Sulfur. Chem. 30, 167–207 (2009).

    Article  CAS  Google Scholar 

  9. Nguyen, T. B. Recent advances in organic reactions involving elemental sulfur. Adv. Synth. Catal. 359, 1066–1130 (2017).

    Article  CAS  Google Scholar 

  10. Aida, F. & Oyaizu, K. Emerging organosulfonium electrophiles as unique reagents for carbonsulfur bond formation: prospects in synthetic chemistry of organosulfur compounds. Chem. Lett. 45, 102–109 (2016).

    Article  CAS  Google Scholar 

  11. Ravindra, V. & Kupwade, A. Concise review on synthesis of sulfoxides and sulfones with special reference to oxidation of sulfides. J. Chem. Rev. 1, 99–113 (2019).

    Article  Google Scholar 

  12. Kondo, T. & Mitsudo, T. A. Metal-catalyzed carbon–sulfur bond formation. Chem. Rev. 100, 3205–3220 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Correa, A., Mancheño, O. G. & Bolm, C. Iron–catalysed carbon–heteroatom and heteroatom–heteroatom bond forming processes. Chem. Soc. Rev. 37, 1108–1117 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Beletskaya, I. P. & Ananikov, V. P. Transition-metal-catalyzed C–S, C–Se, and C–Te bond formation via cross-coupling and atom-economic addition reactions. Chem. Rev. 111, 1596–1636 (2011).

    Article  CAS  PubMed  Google Scholar 

  15. Lee, C. F., Liu, Y. C. & Badsara, S. S. Transition-metal-catalyzed C–S bond coupling reaction. Chem. Asian J. 9, 706–722 (2014).

    Article  CAS  PubMed  Google Scholar 

  16. Liu, H. & Jiang, X. Transfer of sulfur: from simple to diverse. Chem. Asian J. 8, 2546–2563 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. Liang, S., Shaaban, S., Liu, N. W., Hofman, K. & Manolikakes, G. Recent advances in the synthesis of C–S bonds via metal-catalyzed or -mediated functionalization of C–H bonds. Adv. Organomet. Chem. 69, 135–207 (2018).

    Article  CAS  Google Scholar 

  18. Huang, S., Wang, M. & Jiang, X. Ni-catalyzed C–S bond construction and cleavage. Chem. Soc. Rev. 51, 8351–8377 (2022).

    Article  CAS  PubMed  Google Scholar 

  19. Munir, I. et al. Synthetic applications and methodology development of Chan–Lam coupling: a review. Mol. Divers. 23, 215–259 (2019).

    Article  CAS  PubMed  Google Scholar 

  20. Qiao, J. X. & Lam, P. Y. S. Copper-promoted carbon-heteroatom bond cross-coupling with boronic acids and derivatives. Synthesis 2011, 829–856 (2011).

    Article  Google Scholar 

  21. Sanjeeva Rao, K. & Wu, T. S. Chan–Lam coupling reactions: synthesis of heterocycles. Tetrahedron 68, 7735–7754 (2012).

    Article  CAS  Google Scholar 

  22. Zhao, X., Dimitrijević, E. & Dong, V. M. Palladium-catalyzed C–H bond functionalization with arylsulfonyl chlorides. J. Am. Chem. Soc. 131, 3466–3467 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. Beletskaya, I. P. & Ananikov, V. P. Transition-metal-catalyzed C–S, C–Se, and C–Te bond formations via cross-coupling and atom-economic addition reactions. Achievements and challenges. Chem. Rev. 122, 16110–16293 (2022).

    Article  CAS  PubMed  Google Scholar 

  24. Yang, D., Yan, Q., Zhu, E., Lv, J. & He, W. M. Carbon–sulfur bond formation via photochemical strategies: an efficient method for the synthesis of sulfur-containing compounds. Chin. Chem. Lett. 33, 1798–1816 (2022).

    Article  CAS  Google Scholar 

  25. Crich, D. & Quintero, L. Radical chemistry associated with the thiocarbonyl group. Chem. Rev. 89, 1413–1432 (1989).

    Article  CAS  Google Scholar 

  26. Barton, D. H. R., Crich, D. & Motherwell, W. B. New and improved methods for the radical decarboxylation of acids. J. Chem. Soc. Chem. Commun. https://doi.org/10.1039/C39830000939 (1983).

    Article  Google Scholar 

  27. Barton, D. H. R., Crich, D. & Motherwell, W. B. The invention of new radical chain reactions. Part VIII. Radical chemistry of thiohydroxamic esters; a new method for the generation of carbon radicals from carboxylic acids. Tetrahedron 41, 3901–3924 (1985).

    Article  CAS  Google Scholar 

  28. Barton, D. H. R., Crich, D. & Motherwell, W. B. A practical alternative to the hunsdiecker reaction. Tetrahedron Lett. 24, 4979–4982 (1983).

    Article  CAS  Google Scholar 

  29. Zard, S. Z. & Barton, D. On the trail of xanthates: some new chemistry from an old functional group. Angew. Chem. Int. Edn 36, 672–685 (1997).

    Article  Google Scholar 

  30. Barton, D. H. R. & Crich, D. A new method for the radical deoxygenation of tertiary alcohols. J. Chem. Soc. Chem. Commun. https://doi.org/10.1039/C39840000774 (1984).

  31. Delduc, P., Tailhan, C. & Zard, S. Z. A convenient source of alkyl and acyl radicals. J. Chem. Soc. Chem. Commun. https://doi.org/10.1039/C39880000308 (1988).

    Article  Google Scholar 

  32. Barton, D. H. R., Bridon, D. & Zard, S. Z. New decarboxylative chalcogenation of aliphatic and alicyclic carboxylic acids. Tetrahedron Lett. 25, 5777–5780 (1984).

    Article  CAS  Google Scholar 

  33. McCombie, S. W., Motherwell, W. B. & Tozer, M. J. The Barton–McCombie reaction. Org. React. 77, 161–432 (2012).

    CAS  Google Scholar 

  34. Crespi, S. & Fagnoni, M. Generation of alkyl radicals: from the tyranny of tin to the photon democracy. Chem. Rev. 120, 9790–9833 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Corce, V., Ollivier, C. & Fensterbank, L. Boron, silicon, nitrogen and sulfur-based contemporary precursors for the generation of alkyl radicals by single electron transfer and their synthetic utilization. Chem. Soc. Rev. 51, 1470–1510 (2022).

    Article  CAS  PubMed  Google Scholar 

  36. Bell, J. D. & Murphy, J. A. Recent advances in visible light-activated radical coupling reactions triggered by (i) ruthenium, (ii) iridium and (iii) organic photoredox agents. Chem. Soc. Rev. 50, 9540–9685 (2021).

    Article  CAS  PubMed  Google Scholar 

  37. Yan, M., Lo, J. C., Edwards, J. T. & Baran, P. S. Radicals: reactive intermediates with translational potential. J. Am. Chem. Soc. 138, 12692–12714 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Huang, H., Steiniger, K. A. & Lambert, T. H. Electrophotocatalysis: combining light and electricity to catalyze reactions. J. Am. Chem. Soc. 144, 12567–12583 (2022).

    Article  CAS  PubMed  Google Scholar 

  39. Shaw, M. H., Twilton, J. & MacMillan, D. W. Photoredox catalysis in organic chemistry. J. Org. Chem. 81, 6898–6926 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Studer, A. & Curran, D. P. Catalysis of radical reactions: a radical chemistry perspective. Angew. Chem. Int. Edn 128, 58–106 (2016).

    Article  Google Scholar 

  41. Amri, N. & Wirth, T. Recent advances in the electrochemical synthesis of organosulfur compounds. Chem. Rec. 21, 2526–2537 (2021).

    Article  CAS  PubMed  Google Scholar 

  42. Hoyle, C. E. & Bowman, C. N. Thiol-ene click chemistry. Angew. Chem. Int. Edn 49, 1540–1573 (2010).

    Article  CAS  Google Scholar 

  43. Ahangarpour, M., Kavianinia, I., Harris, P. W. R. & Brimble, M. A. Photo-induced radical thiol–ene chemistry: a versatile toolbox for peptide-based drug design. Chem. Soc. Rev. 50, 898–944 (2021).

    Article  CAS  PubMed  Google Scholar 

  44. Lowe, A. B. Thiol-ene ‘click’ reactions and recent applications in polymer and materials synthesis. Polym. Chem. 1, 17–36 (2010).

    Article  CAS  Google Scholar 

  45. Leifert, D. & Studer, A. The persistent radical effect in organic synthesis. Angew. Chem. Int. Edn 59, 74–108 (2020).

    Article  CAS  Google Scholar 

  46. Liu, B., Lim, C. H. & Miyake, G. M. Visible-light-promoted C–S cross-coupling via intermolecular charge transfer. J. Am. Chem. Soc. 139, 13616–13619 (2017). This paper discloses a visible-light-promoted, catalyst-free radical cross-coupling reaction between aryl halides and thiolates enabled by the formation of an EDA complex; several examples of EDA-mediated radical cross-couplings have since followed.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Nandy, A., Kazi, I., Guha, S. & Sekar, G. Visible-light-driven halogen-bond-assisted direct synthesis of heteroaryl thioethers using transition-metal-free one-pot C–I bond formation/C–S cross-coupling reaction. J. Org. Chem. 86, 2570–2581 (2021).

    Article  CAS  PubMed  Google Scholar 

  48. Sundaravelu, N., Nandy, A. & Sekar, G. Visible light mediated photocatalyst free C–S cross coupling: domino synthesis of thiochromane derivatives via photoinduced electron transfer. Org. Lett. 23, 3115–3119 (2021).

    Article  CAS  PubMed  Google Scholar 

  49. Piedra, H. F. & Plaza, M. Photochemical halogen-bonding assisted generation of vinyl and sulfur-centered radicals: stereoselective catalyst-free C(sp2)–S bond forming reactions. Chem. Sci. 14, 650–657 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Li, T. et al. A photoexcited halogen-bonded EDA complex of the thiophenolate anion with iodobenzene for C(sp3)–H activation and thiolation. Chem. Sci. 12, 15655–15661 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Uchikura, T., Hara, Y., Tsubono, K. & Akiyama, T. Visible-light-driven C–S bond formation based on electron donor-acceptor excitation and hydrogen atom transfer combined system. ACS Org. Inorg. Au 1, 23–28 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Luo, Y.-R. Comprehensive Handbook Of Chemical Bond Energies (CRC Press, 2007).

  53. Blanksby, S. J. & Ellison, G. B. Bond dissociation energies of organic molecules. Acc. Chem. Res. 36, 255–263 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. Scaiano, J. C. & Stewart, L. C. Phenyl radical kinetics. J. Am. Chem. Soc. 105, 3609–3614 (1983).

    Article  CAS  Google Scholar 

  55. Huang, C. et al. Direct allylic C(sp3)−H and vinylic C(sp2)−H thiolation with hydrogen evolution by quantum dots and visible light. Angew. Chem. Int. Edn 60, 11779–11783 (2021).

    Article  CAS  Google Scholar 

  56. Vara, B. A. et al. Scalable thioarylation of unprotected peptides and biomolecules under Ni/photoredox catalysis. Chem. Sci. 9, 336–344 (2018).

    Article  CAS  PubMed  Google Scholar 

  57. Uyeda, C., Tan, Y., Fu, G. C. & Peters, J. C. A new family of nucleophiles for photoinduced, copper-catalyzed cross-couplings via single-electron transfer: reactions of thiols with aryl halides under mild conditions (0 °C). J. Am. Chem. Soc. 135, 9548–9552 (2013).

    Article  CAS  PubMed  Google Scholar 

  58. Oderinde, M. S., Frenette, M., Robbins, D. W., Aquila, B. & Johannes, J. W. Photoredox mediated nickel catalyzed cross-coupling of thiols with aryl and heteroaryl iodides via thiyl radicals. J. Am. Chem. Soc. 138, 1760–1763 (2016).

    Article  CAS  PubMed  Google Scholar 

  59. Jerry, M. Advanced Organic Chemistry Reactions, Mechanisms And Structure (John Wiley & Sons, 1985).

  60. Ingold, K. U. & Roberts, B. P. Free-Radical Substitution Reactions. Bimolecular Homolytic Substitutions (SH2 Reactions) At Saturated Multivalent Atoms (John Wiley & Sons, 1971).

  61. Walton, J. C. Homolytic substitution: a molecular ménage à trois. Acc. Chem. Res. 31, 99–107 (1998).

    Article  CAS  Google Scholar 

  62. Derek, H. R. B., Dominique, B. & Zard, S. The invention of new radical chain reactions. Part XIII. High yielding decarboxylative chalcogenation of aliphatic and alicyclic acids. Heterocycles 25, 449–462 (1987).

    Article  Google Scholar 

  63. Curran, D. P., Martin-Esker, A. A., Ko, S. B. & Newcomb, M. Rate constants for chalcogen group transfers in bimolecular substitution reactions with primary alkyl radicals. J. Org. Chem. 58, 4691–4695 (1993).

    Article  CAS  Google Scholar 

  64. Hoffman, M. Z. & Hayon, E. Pulse radiolysis study of sulfhydryl compounds in aqueous solution. J. Am. Chem. Soc. 94, 7950–7957 (1972).

    Article  CAS  Google Scholar 

  65. Madej, E., Folkes, L. K., Wardman, P., Czapski, G. & Goldstein, S. Thiyl radicals react with nitric oxide to form S-nitrosothiols with rate constants near the diffusion-controlled limit. Free Radic. Biol. Med. 44, 2013–2018 (2008).

    Article  CAS  PubMed  Google Scholar 

  66. Dénès, F., Pichowicz, M., Povie, G. & Renaud, P. Thiyl radicals in organic synthesis. Chem. Rev. 114, 2587–2693 (2014).

    Article  PubMed  Google Scholar 

  67. Tang, R. Y., Xie, Y. X., Xie, Y. L., Xiang, J. N. & Li, J. H. TBHP-mediated oxidative thiolation of an sp3 C–H bond adjacent to a nitrogen atom in an amide. Chem. Commun. 47, 12867–12869 (2011).

    Article  CAS  Google Scholar 

  68. Guo, S. R., He, W. M., Xiang, J. N. & Yuan, Y. Q. Palladium-catalyzed thiolation of alkanes and ethers with arylsulfonyl hydrazides. Chem. Commun. 50, 8578–8581 (2014).

    Article  CAS  Google Scholar 

  69. Li, Y., Zhu, F., Wang, Z. & Wu, X. F. Synthesis of thioethers and thioesters with alkyl arylsulfinates as the sulfenylation agent under metal-free conditions. Chem. Asian J. 11, 3503–3507 (2016).

    Article  CAS  PubMed  Google Scholar 

  70. Zhao, J., Fang, H., Han, J., Pan, Y. & Li, G. Metal-free preparation of cycloalkyl aryl sulfides via di-tert-butyl peroxide-promoted oxidative C(sp3)–H bond thiolation of cycloalkanes. Adv. Synth. Catal. 356, 2719–2724 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Du, B., Jin, B. & Sun, P. Syntheses of sulfides and selenides through direct oxidative functionalization of C(sp3)–H bond. Org. Lett. 16, 3032–3035 (2014).

    Article  CAS  PubMed  Google Scholar 

  72. Xiao, Z. et al. Visible-light induced decarboxylative coupling of redox-active esters with disulfides to construct C–S bonds. Chem. Commun. 56, 4164–4167 (2020).

    Article  CAS  Google Scholar 

  73. Shi, Q., Li, P., Zhang, Y. & Wang, L. Visible light-induced tandem oxidative cyclization of 2-alkynylanilines with disulfides (diselenides) to 3-sulfenyl- and 3-selenylindoles under transition metal-free and photocatalyst-free conditions. Org. Chem. Front. 4, 1322–1330 (2017).

    Article  CAS  Google Scholar 

  74. Smaligo, A. J. & Kwon, O. Dealkenylative thiylation of C(sp3)–C(sp2) bonds. Org. Lett. 21, 8592–8597 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Li, Z. et al. Manganese-mediated reductive functionalization of activated aliphatic acids and primary amines. Nat. Commun. 11, 5036 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Jin, Y., Yang, H. & Fu, H. An N-(acetoxy)phthalimide motif as a visible-light pro-photosensitizer in photoredox decarboxylative arylthiation. Chem. Commun. 52, 12909–12912 (2016).

    Article  CAS  Google Scholar 

  77. Loh, Y. Y. et al. Photoredox-catalyzed deuteration and tritiation of pharmaceutical compounds. Science 358, 1182–1187 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Musacchio, A. J. et al. Catalytic intermolecular hydroaminations of unactivated olefins with secondary alkyl amines. Science 355, 727–730 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Panferova, L. I., Zubkov, M. O., Kokorekin, V. A., Levin, V. V. & Dilman, A. D. Using the thiyl radical for aliphatic hydrogen-atom transfer: thiolation of unactivated C−H bonds. Angew. Chem. Int. Edn 60, 2849–2854 (2021). This paper reported the the first synthetic application of a thiyl radical for unactivated C−H bond thiolation, in which an electron-deficient diaryldisulfide serves as both the sulfurating reagent and source of H-atom abstractor.

    Article  CAS  Google Scholar 

  80. Zubkov, M. O., Kosobokov, M. D., Levin, V. V. & Dilman, A. D. Photocatalyzed decarboxylative thiolation of carboxylic acids enabled by fluorinated disulfide. Org. Lett. 24, 2354–2358 (2022).

    Article  CAS  PubMed  Google Scholar 

  81. Gadde, K. et al. Thiosulfonylation of unactivated alkenes with visible-light organic photocatalysis. ACS Catal. 10, 8765–8779 (2020).

    Article  CAS  Google Scholar 

  82. Luo, Y.-R. Handbook Of Bond Dissociation Energies In Organic Compounds (CRC Press, 2003).

  83. Li, J. et al. Visible-light-promoted cross-coupling reactions of 4-alkyl-1,4-dihydropyridines with thiosulfonate or selenium sulfonate: a unified approach to sulfides, selenides, and sulfoxides. Org. Lett. 22, 4908–4913 (2020).

    Article  CAS  PubMed  Google Scholar 

  84. Dong, Y. et al. Organophotoredox-catalyzed formation of alkyl–aryl and –alkyl C–S/Se bonds from coupling of redox-active esters with thio/selenosulfonates. Org. Lett. 22, 9562–9567 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Fazekas, T. J. et al. Diversification of aliphatic C–H bonds in small molecules and polyolefins through radical chain transfer. Science 375, 545–550 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Quiclet-Sire, B. & Zard, S. Z. Some aspects of the radical chemistry of xanthates. Chimia 66, 404–412 (2012).

    Article  CAS  PubMed  Google Scholar 

  87. Czaplyski, W. L., Na, C. G. & Alexanian, E. J. C–H xanthylation: a synthetic platform for alkane functionalization. J. Am. Chem. Soc. 138, 13854–13857 (2016). This paper presents a visible-light-enabled C–H xanthylation using a N-xanthylamide as the radical-trapping reagent for C−S bond formation, with the resulting amidyl radical being responsible for aliphatic C–H bond activation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Quinn, R. K. et al. Site-selective aliphatic C–H chlorination using N-chloroamides enables a synthesis of chlorolissoclimide. J. Am. Chem. Soc. 138, 696–702 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Schmidt, V. A., Quinn, R. K., Brusoe, A. T. & Alexanian, E. J. Site-selective aliphatic C–H bromination using N-bromoamides and visible light. J. Am. Chem. Soc. 136, 14389–14392 (2014).

    Article  CAS  PubMed  Google Scholar 

  90. Williamson, J. B., Czaplyski, W. L., Alexanian, E. J. & Leibfarth, F. A. Regioselective C−H xanthylation as a platform for polyolefin functionalization. Angew. Chem. Int. Edn 57, 6261–6265 (2018).

    Article  CAS  Google Scholar 

  91. Williamson, J. B. et al. Chemo- and regioselective functionalization of isotactic polypropylene: a mechanistic and structure–property study. J. Am. Chem. Soc. 141, 12815–12823 (2019).

    Article  CAS  PubMed  Google Scholar 

  92. Na, C. G., Ravelli, D. & Alexanian, E. J. Direct decarboxylative functionalization of carboxylic acids via O–H hydrogen atom transfer. J. Am. Chem. Soc. 142, 44–49 (2020).

    Article  CAS  PubMed  Google Scholar 

  93. Na, C. G. & Alexanian, E. J. A general approach to site-specific, intramolecular C−H functionalization using dithiocarbamates. Angew. Chem. Int. Edn 57, 13106–13109 (2018).

    Article  CAS  Google Scholar 

  94. Morcillo, S. P. et al. Photoinduced remote functionalization of amides and amines using electrophilic nitrogen radicals. Angew. Chem. Int. Edn 57, 12945–12949 (2018).

    Article  CAS  Google Scholar 

  95. Mukherjee, S., Patra, T. & Glorius, F. Cooperative catalysis: a strategy to synthesize trifluoromethyl-thioesters from aldehydes. ACS Catal. 8, 5842–5846 (2018).

    Article  CAS  Google Scholar 

  96. Mukherjee, S., Maji, B., Tlahuext-Aca, A. & Glorius, F. Visible-light-promoted activation of unactivated C(sp3)–H bonds and their selective trifluoromethylthiolation. J. Am. Chem. Soc. 138, 16200–16203 (2016).

    Article  CAS  PubMed  Google Scholar 

  97. Candish, L., Pitzer, L., Gómez-Suárez, A. & Glorius, F. Visible light-promoted decarboxylative di- and trifluoromethylthiolation of alkyl carboxylic acids. Chem. Eur. J. 22, 4753–4756 (2016).

    Article  CAS  PubMed  Google Scholar 

  98. Liang, R. B. et al. External oxidant-free and selective thiofunctionalization of alkenes enabled by photoredox-neutral catalysis. Org. Chem. Front. 9, 4536–4541 (2022).

    Article  CAS  Google Scholar 

  99. Harris, J. F. Free-radical reactions of fluoroalkanesulfenyl halides. II. Free-radical reactions of trifluoromethanesulfenyl chloride with alkanes. J. Org. Chem. 31, 931–935 (1966).

    Article  CAS  Google Scholar 

  100. Mokrosz, M. J. Syntheses with unsaturated nitriles. Part VII. Trifluoromethanesulfenylation of ylidenemalononitrile dimers. J. Fluor. Chem. 34, 201–207 (1986).

    Article  CAS  Google Scholar 

  101. Wu, H. et al. Direct trifluoromethylthiolation of unactivated C(sp3)–H using silver(I) trifluoromethanethiolate and potassium persulfate. Angew. Chem. Int. Edn 54, 4070–4074 (2015).

    Article  CAS  Google Scholar 

  102. Guo, S., Zhang, X. & Tang, P. Silver-mediated oxidative aliphatic C–H trifluoromethylthiolation. Angew. Chem. Int. Edn 54, 4065–4069 (2015).

    Article  CAS  Google Scholar 

  103. Park, C. M. et al. 9-Fluorenylmethyl (Fm) disulfides: biomimetic precursors for persulfides. Org. Lett. 18, 904–907 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Xiao, X., Feng, M. & Jiang, X. New design of a disulfurating reagent: facile and straightforward pathway to unsymmetrical disulfanes by copper-catalyzed oxidative cross-coupling. Angew. Chem. Int. Edn 55, 14121–14125 (2016).

    Article  CAS  Google Scholar 

  105. Xiao, X., Xue, J. & Jiang, X. Polysulfurating reagent design for unsymmetrical polysulfide construction. Nat. Commun. 9, 2191 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Dai, Z., Xiao, X. & Jiang, X. Nucleophilic disulfurating reagents for unsymmetrical disulfides construction via copper-catalyzed oxidative cross coupling. Tetrahedron 73, 3702–3706 (2017).

    Article  CAS  Google Scholar 

  107. Gao, W. C., Liu, J. & Jiang, X. Phthalimide-based-SSCF3 reagent for enantioselective dithiotrifluoromethylation. Org. Chem. Front. 8, 1275–1279 (2021).

    Article  CAS  Google Scholar 

  108. Xue, J. & Jiang, X. Unsymmetrical polysulfidation via designed bilateral disulfurating reagents. Nat. Commun. 11, 4170 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Gao, W. C., Tian, J., Shang, Y. Z. & Jiang, X. Steric and stereoscopic disulfide construction for cross-linkage via N-dithiophthalimides. Chem. Sci. 11, 3903–3908 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Zou, J. et al. Phthalimide-carried disulfur transfer to synthesize unsymmetrical disulfanes via copper catalysis. ACS Catal. 9, 11426–11430 (2019).

    Article  CAS  Google Scholar 

  111. Ong, C. L., Titinchi, S., Juan, J. C. & Khaligh, N. G. An overview of recent advances in the synthesis of organic unsymmetrical disulfides. Helv. Chim. Acta 104, e2100053 (2021).

    Article  CAS  Google Scholar 

  112. Chauvin, J. P. R. et al. Polysulfide-1-oxides react with peroxyl radicals as quickly as hindered phenolic antioxidants and do so by a surprising concerted homolytic substitution. Chem. Sci. 7, 6347 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Chauvin, J. P. R., Griesser, M. & Pratt, D. A. Hydropersulfides: H-atom transfer agents par excellence. J. Am. Chem. Soc. 139, 6484–6493 (2017).

    Article  CAS  PubMed  Google Scholar 

  114. Chauvin, J. P. R., Griesser, M. & Pratt, D. A. The antioxidant activity of polysulfides: it’s radical! Chem. Sci. 10, 4999–5010 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Wu, Z. & Pratt, D. A. Radical substitution provides a unique route to disulfides. J. Am. Chem. Soc. 142, 10284–10290 (2020). The first report on radical substitution to yield disulfides, demonstrating that tetrasulfides undergo rapid homolytic substitution and the resultant perthiyl radicals dimerize to yield more tetrasulfide.

    Article  CAS  PubMed  Google Scholar 

  116. Chen, S. et al. Sandmeyer-type reductive disulfuration of anilines. Org. Lett. 23, 7428–7433 (2021).

    Article  CAS  PubMed  Google Scholar 

  117. Zhang, J. & Studer, A. Decatungstate-catalyzed radical disulfuration through direct C–H functionalization for the preparation of unsymmetrical disulfides. Nat. Commun. 13, 3886 (2022). Tetrasulfides are used along with decatungstate photocatalysis for the disulfuration of sp3 and aldehydic C–H bonds.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Wu, Z. & Pratt, D. A. A divergent strategy for site-selective radical disulfuration of carboxylic acids with trisulfide-1,1-dioxides. Angew. Chem. Int. Edn 60, 15598–15605 (2021). Using trisulfide-1,1-dioxides as disulfuraing reagents, the authors develop a visible-light-photocatalysed direct disulfuration of carboxylic acids, as well as the first C−H disulfuration.

    Article  CAS  Google Scholar 

  119. Noble, A. & MacMillan, D. W. C. Photoredox α-vinylation of α-amino acids and N-aryl amines. J. Am. Chem. Soc. 136, 11602–11605 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Xia, Y., Wang, L. & Studer, A. Site-selective remote radical C−H functionalization of unactivated C−H bonds in amides using sulfone reagents. Angew. Chem. Int. Edn 57, 12940–12944 (2018).

    Article  CAS  Google Scholar 

  121. Moutrille, C. & Zard, S. Z. A new, practical access to amidyl radicals. Chem. Commun. https://doi.org/10.1039/b405545d (2004).

    Article  Google Scholar 

  122. Gui, Y., Qiu, L., Li, Y., Li, H. & Dong, S. Internal activation of peptidyl prolyl thioesters in native chemical ligation. J. Am. Chem. Soc. 138, 4890–4899 (2016).

    Article  CAS  PubMed  Google Scholar 

  123. Liu, N. W., Liang, S. & Manolikakes, G. Recent advances in the synthesis of sulfones. Synthesis 48, 1939–1973 (2016).

    Article  CAS  Google Scholar 

  124. Liang, S., Hofman, K., Friedrich, M. & Manolikakes, G. Recent advances in the synthesis and direct application of sulfinate salts. Eur. J. Org. Chem. 2020, 4664–4676 (2020).

    Article  CAS  Google Scholar 

  125. Shaaban, S., Liang, S., Liu, N. W. & Manolikakes, G. Synthesis of sulfones via selective C–H functionalization. Org. Biomol. Chem. 15, 1947–1955 (2017).

    Article  CAS  PubMed  Google Scholar 

  126. Liu, J. & Zheng, L. Recent Advances In Transition-metal-mediated Chelation-assisted Sulfonylation Of Unactivated C−H Bonds Vol. 361, 1710–1732 (John Wiley & Sons, 2019).

  127. Qiu, G., Zhou, K. & Wu, J. Recent advances in the sulfonylation of C–H bonds with the insertion of sulfur dioxide. Chem. Commun. 54, 12561–12569 (2018).

    Article  CAS  Google Scholar 

  128. Matavos-Aramyan, S., Soukhakian, S. & Jazebizadeh, M. H. Selected methods for the synthesis of sulfoxides and sulfones with emphasis on oxidative protocols. Phosph. Sulfur Silicon Relat. Elem. 195, 181–193 (2020).

    Article  CAS  Google Scholar 

  129. McGrath, A. J., Garrett, G. E., Valgimigli, L. & Pratt, D. A. The redox chemistry of sulfenic acids. J. Am. Chem. Soc. 132, 16759–16761 (2010).

    Article  CAS  PubMed  Google Scholar 

  130. Ishii, A., Kashiura, S., Oshida, H. & Nakayama, J. First isolation of eclipsed vic-disulfoxide: 7,8-dithiabicyclo[4.2.1]nona-2,4-diene 7-exo,8-exo-dioxide. Org. Lett. 6, 2623–2626 (2004).

    Article  CAS  PubMed  Google Scholar 

  131. Nguyen, V. D. et al. Decarboxylative sulfinylation enables a direct, metal-free access to sulfoxides from carboxylic acids. Angew. Chem. Int. Edn 61, e202210525 (2022). Larionov and co-workers developed a direct decarboxylative sulfinylation employing radical substitution on a sulfinyl sulfone formed in situ from sulfinates and a acyl chloride, thereby enabling the construction of sulfoxides directly from carboxylic acids.

    CAS  Google Scholar 

  132. Griesser, M., Chauvin, J. P. R. & Pratt, D. A. The hydrogen atom transfer reactivity of sulfinic acids. Chem. Sci. 9, 7218–7229 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Farng, L. P. O. & Kice, J. L. Substitution reactions of alkanesulfonyl derivatives: direct substitution vs. elimination–addition mechanisms in substitution reactions of alkyl α-disulfones. J. Am. Chem. Soc. 103, 1137–1145 (1981).

    Article  CAS  Google Scholar 

  134. Suzuki, H. & Abe, H. Copper-assisted displacement reaction of nonactivated lodoarenes with arenesulfinates. Convenient alternative synthesis of unsymmetrical diaryl sulfones. Tetrahedron Lett. 36, 6239–6242 (1995).

    Article  CAS  Google Scholar 

  135. Gund, S. H., Shelkar, R. S. & Nagarkar, J. M. Copper catalyzed synthesis of unsymmetrical diaryl sulfones from an arenediazonium salt and sodium p-toluenesulfinate. RSC Adv. 5, 62926–62930 (2015).

    Article  CAS  Google Scholar 

  136. Zhang, K., Xu, X. H. & Qing, F. L. Copper-promoted trifluoromethanesulfonylation and trifluoromethylation of arenediazonium tetrafluoroborates with NaSO2CF3. J. Org. Chem. 80, 7658–7665 (2015).

    Article  CAS  PubMed  Google Scholar 

  137. He, J. et al. Catalytic decarboxylative radical sulfonylation. Chem 6, 1149–1159 (2020). Li and co-workers demonstrated decarboxylative sulfonylation by merging copper and photoredox catalysis; the reaction produces sulfones directly from carboxylic acids and organosulfinates at room temperature under redox-neutral conditions.

    Article  CAS  Google Scholar 

  138. Zhang, S. et al. Photocatalyzed site-selective C(sp3)–H sulfonylation of toluene derivatives and cycloalkanes with inorganic sulfinates. Chin. J. Catal. 43, 564–570 (2022).

    Article  CAS  Google Scholar 

  139. Chen, Y. et al. Photoredox generation of sulfonyl radicals and coupling with electron deficient olefins. Org. Lett. 22, 5746–5748 (2020).

    Article  CAS  PubMed  Google Scholar 

  140. Dong, D. Q. et al. Recent progress in sulfonylation via radical reaction with sodium sulfinates, sulfinic acids, sulfonyl chlorides or sulfonyl hydrazides. Chem. Sel. 5, 13103–13134 (2020).

    CAS  Google Scholar 

  141. Chatgilialoglu, C. et al. Kinetic studies on the formation of sulfonyl radicals and their addition to carbon–carbon multiple bonds. J. Phys. Chem. A 116, 7623–7628 (2012).

    Article  CAS  PubMed  Google Scholar 

  142. Freeman, F. & Keindl, M. C. Sulfinyl, α-sulfinyl, sulfonyl, and α-sulfonyl radicals. Sulfur. Rep. 4, 231–298 (1985).

    Article  CAS  Google Scholar 

  143. Horowitz, A. Radiolytic decomposition of methanesulfonyl chloride in liquid cyclohexane. A kinetic determination of the bond dissociation energies D(Me‐SO2) and D(c‐C6H11‐SO2). Int. J. Chem. Kin. 8, 709–723 (1976).

    Article  CAS  Google Scholar 

  144. Dos Passos Gomes, G., Wimmer, A., Smith, J. M., König, B. & Alabugin, I. V. CO2 or SO2: should it stay, or should it go? J. Org. Chem. 84, 6232–6243 (2019).

    Article  PubMed  Google Scholar 

  145. Reed, C. F. Method of halogenating compounds and product resulting therefrom. US patent 2046090A (1936).

  146. Meerwein, H. et al. Untersuchungen über aromatische Diazoverbindungen, II. Verfahren zur Herstellung Aromatischer Sulfonsäurechloride, Eine Neue Modifikation der Sandmeyerschen Reaktion. Chem. Ber. 90, 841–852 (1957).

    Article  CAS  Google Scholar 

  147. Ye, S., Li, X., Xie, W. & Wu, J. Photoinduced sulfonylation reactions through the insertion of sulfur dioxide. Eur. J. Org. Chem. 2020, 1274–1287 (2020).

    Article  CAS  Google Scholar 

  148. Hofman, K., Liu, N. W. & Manolikakes, G. Radicals and sulfur dioxide: a versatile combination for the construction of sulfonyl-containing molecules. Chem. Eur. J. 24, 11852–11863 (2018).

    Article  CAS  PubMed  Google Scholar 

  149. Zeng, D., Wang, M., Deng, W. P. & Jiang, X. The same oxygenation-state introduction of hypervalent sulfur under transition-metal-free conditions. Org. Chem. Front. 7, 3956–3966 (2020).

    Article  CAS  Google Scholar 

  150. Chen, S., Li, Y., Wang, M. & Jiang, X. General sulfone construction via sulfur dioxide surrogate control. Green Chem. 22, 322–326 (2020).

    Article  Google Scholar 

  151. Blum, S. P., Hofman, K., Manolikakes, G. & Waldvogel, S. R. Advances in photochemical and electrochemical incorporation of sulfur dioxide for the synthesis of value-added compounds. Chem. Commun. 57, 8236–8249 (2021).

    Article  CAS  Google Scholar 

  152. Emmett, E. J. & Willis, M. C. The development and application of sulfur dioxide surrogates in synthetic organic chemistry. Asian J. Org. Chem. 4, 602–611 (2015).

    Article  CAS  Google Scholar 

  153. Liu, G., Fan, C. & Wu, J. Fixation of sulfur dioxide into small molecules. Org. Biomol. Chem. 13, 1592–1599 (2015).

    Article  CAS  PubMed  Google Scholar 

  154. Nguyen, B., Emmett, E. J. & Willis, M. C. Palladium-catalyzed aminosulfonylation of aryl halides. J. Am. Chem. Soc. 132, 16372–16373 (2010).

    Article  CAS  PubMed  Google Scholar 

  155. Andrews, J. A. & Willis, M. C. DABSO — a reagent to revolutionize organosulfur chemistry. Synthesis 54, 1695–1707 (2022).

    Article  CAS  Google Scholar 

  156. Zheng, D., An, Y., Li, Z. & Wu, J. Metal-free aminosulfonylation of aryldiazonium tetrafluoroborates with DABCO(SO2)2 and hydrazines. Angew. Chem. Int. Edn 53, 2451–2454 (2014). Aryl N-aminosulfonamides are prepared by coupling aryldiazonium tetrafluoroborates, DABSO, and hydrazines, first demonstrating the utility of SO2 surrogates for trapping carbon-centred radicals in the synthesis of sulfonyl compounds.

    Article  CAS  Google Scholar 

  157. Liu, T. et al. Photocatalytic reaction of potassium alkyltrifluoroborates and sulfur dioxide with alkenes. Org. Lett. 20, 3605–3608 (2018).

    Article  CAS  PubMed  Google Scholar 

  158. Andrews, J. A., Pantaine, L. R. E., Palmer, C. F., Poole, D. L. & Willis, M. C. Sulfinates from amines: a radical approach to alkyl sulfonyl derivatives via donor–acceptor activation of pyridinium salts. Org. Lett. 23, 8488–8493 (2021).

    Article  CAS  PubMed  Google Scholar 

  159. Wang, X., Li, H., Qiu, G. & Wu, J. Substituted Hantzsch esters as radical reservoirs with the insertion of sulfur dioxide under photoredox catalysis. Chem. Commun. 55, 2062–2065 (2019).

    Article  CAS  Google Scholar 

  160. Wang, X., Yang, M., Xie, W., Fan, X. & Wu, J. Photoredox-catalyzed hydrosulfonylation reaction of electron-deficient alkenes with substituted Hantzsch esters and sulfur dioxide. Chem. Commun. 55, 6010–6013 (2019).

    Article  CAS  Google Scholar 

  161. Xiang, Y., Li, Y., Kuang, Y. & Wu, J. Vicinal difluoroalkylation and aminosulfonylation of alkynes under photoinduced conditions. Chem. Eur. J. 23, 1032–1035 (2017).

    Article  CAS  PubMed  Google Scholar 

  162. Li, Y., Xiang, Y., Li, Z. & Wu, J. Direct vicinal difunctionalization of alkynes through trifluoromethylation and aminosulfonylation via insertion of sulfur dioxide under catalyst-free conditions. Org. Chem. Front. 3, 1493–1497 (2016).

    Article  CAS  Google Scholar 

  163. Liu, Y. et al. Zinc-mediated intermolecular reductive radical fluoroalkylsulfination of unsaturated carbon–carbon bonds with fluoroalkyl bromides and sulfur dioxide. Chem. Eur. J. 25, 1824–1828 (2019).

    Article  CAS  PubMed  Google Scholar 

  164. Mao, R., Yuan, Z., Li, Y. & Wu, J. N-radical-initiated cyclization through insertion of sulfur dioxide under photoinduced catalyst-free conditions. Chem. Eur. J. 23, 8176–8179 (2017).

    Article  CAS  PubMed  Google Scholar 

  165. Zhang, J., Yang, M., Liu, J. B., He, F. S. & Wu, J. A copper-catalyzed insertion of sulfur dioxide via radical coupling. Chem. Commun. 56, 3225–3228 (2020).

    Article  CAS  Google Scholar 

  166. Tu, X., Huang, J., Xie, W., Zhu, T. & Wu, J. Generation of (E)-β-sulfonyl enamines from sulfur dioxide via a radical process. Org. Chem. Front. 8, 1789–1794 (2021).

    Article  CAS  Google Scholar 

  167. Nguyen, V. D., Trevino, R., Greco, S. G., Arman, H. D. & Larionov, O. V. Tricomponent decarboxysulfonylative cross-coupling facilitates direct construction of aryl sulfones and reveals a mechanistic dualism in the acridine/copper photocatalytic system. ACS Catal. 12, 8729–8739 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Nguyen, V. T. et al. Functional group divergence and the structural basis of acridine photocatalysis revealed by direct decarboxysulfonylation. Chem. Sci. 13, 4170–4179 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Ye, S., Zheng, D., Wu, J. & Qiu, G. Photoredox-catalyzed sulfonylation of alkyl iodides, sulfur dioxide, and electron-deficient alkenes. Chem. Commun. 55, 2214–2217 (2019).

    Article  CAS  Google Scholar 

  170. Nguyen, V. T. et al. Photocatalytic decarboxylative amidosulfonation enables direct transformation of carboxylic acids to sulfonamides. Chem. Sci. 12, 6429–6436 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Li, Y., Mao, R. & Wu, J. N-radical initiated aminosulfonylation of unactivated C(sp3)–H bond through insertion of sulfur dioxide. Org. Lett. 19, 4472–4475 (2017).

    Article  CAS  PubMed  Google Scholar 

  172. Chen, Z. D. et al. Catalytic decarboxylative fluorosulfonylation enabled by energy-transfer-mediated photocatalysis. Org. Lett. 24, 2474–2478 (2022).

    Article  CAS  PubMed  Google Scholar 

  173. Jia, X., Kramer, S., Skrydstrup, T. & Lian, Z. Design and applications of a SO2 surrogate in palladium‐catalyzed direct aminosulfonylation between aryl iodides and amines. Angew. Chem. Int. Edn 60, 7353–7359 (2021).

    Article  CAS  Google Scholar 

  174. Raasch, M. S. Annelations with tetrachlorothiophene 1,1-dioxide. J. Org. Chem. 45, 856–867 (1980).

    Article  CAS  Google Scholar 

  175. Wang, X., Kuang, Y., Ye, S. & Wu, J. Photoredox-catalyzed synthesis of sulfones through deaminative insertion of sulfur dioxide. Chem. Commun. 55, 14962–14964 (2019).

    Article  CAS  Google Scholar 

  176. Qiu, G., Zhou, K., Gao, L. & Wu, J. Insertion of sulfur dioxide via a radical process: an efficient route to sulfonyl compounds. Org. Chem. Front. 5, 691–705 (2018).

    Article  CAS  Google Scholar 

  177. Qiu, G., Lai, L., Cheng, J. & Wu, J. Recent advances in the sulfonylation of alkenes with the insertion of sulfur dioxide via radical reactions. Chem. Commun. 54, 10405–10414 (2018).

    Article  CAS  Google Scholar 

  178. Yi, J. T. et al. Copper-catalyzed direct decarboxylative fluorosulfonylation of aliphatic carboxylic acids. Chem. Commun. 58, 9409–9412 (2022).

    Article  CAS  Google Scholar 

  179. Wang, H., Bellotti, P., Zhang, X., Paulisch, T. O. & Glorius, F. A base-controlled switch of SO2 reincorporation in photocatalyzed radical difunctionalization of alkenes. Chem 7, 3412–3424 (2021).

    Article  CAS  Google Scholar 

  180. Sarver, P. J., Bissonnette, N. B. & Macmillan, D. W. C. Decatungstate-catalyzed C(sp3)–H sulfinylation: rapid access to diverse organosulfur functionality. J. Am. Chem. Soc. 143, 9737–9743 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Benefice-Malouet, S., Blancou, H., Calas, P. & Commeyras, A. Synthese d’acides perfluoroalcane carboxylique et sulfinique par reduction electrochimique d’iodures de perfluoroalkyle sur cathode en fibres de carbone dans le solvant N,N-dimethylformamide. Application a la synthese de perfluoro α,ω diacides. J. Fluor. Chem. 39, 125–140 (1988).

    Article  CAS  Google Scholar 

  182. Jin, S. et al. Photoinduced C(sp3)–H sulfination empowers the direct and chemoselective introduction of the sulfonyl group. Chem. Sci. 12, 13914–13921 (2021). Larionov and co-workers demonstrate the installation of the sulfonyl group using sodium metabisulfite, which under UV irradiation generates 3SO2, which can abstract H atoms from unreactive aliphatic substrates to generate carbon-centred radicals that react with SO2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Ma, S. & Ma, Z. Na2S2O4-promoted radical addition reaction of perfluoroalkyl iodides with allenes and the Pd(0)-catalyzed stereoselective Sonogashira coupling reaction of addition products with propargyl alcohol. Synlett 8, 1263–1265 (2006).

    Article  Google Scholar 

  184. Li, Y., Liu, T., Qiu, G. & Wu, J. Catalyst-free sulfonylation of (hetero)aryl iodides with sodium dithionite. Adv. Synth. Catal. 361, 1154–1159 (2019).

    Article  CAS  Google Scholar 

  185. Li, Y., Chen, S., Wang, M. & Jiang, X. Sodium dithionite-mediated decarboxylative sulfonylation: facile access to tertiary sulfones. Angew. Chem. Int. Edn 59, 8907–8911 (2020).

    Article  CAS  Google Scholar 

  186. Ye, S., Li, Y., Wu, J. & Li, Z. Thiourea dioxide as a source of sulfonyl groups: photoredox generation of sulfones and sulfonamides from heteroaryl/aryl halides. Chem. Commun. 55, 2489–2492 (2019).

    Article  CAS  Google Scholar 

  187. Protti, S. & Fagnoni, M. Recent advances in light-induced selenylation. ACS Org. Inorg. Au 2, 455–463 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Voronkov, M. G. & Deryagina, E. N. Thermal reactions of thiyl radicals. Russ. Chem. Rev. 59, 778–791 (1990).

    Article  Google Scholar 

  189. Beckwith, A. L. J. & Pigou, P. E. Relative reactivities of various sulfides, selenides and halides towards SH2 attack by tributyltin radicals. Aust. J. Chem. 39, 77–87 (1985).

    Article  Google Scholar 

  190. Mukhopadhyay, S. & Bell, A. T. Direct sulfonation of methane to methanesulfonic acid by sulfur trioxide catalyzed by cerium(IV) sulfate in the presence of molecular oxygen. Adv. Synth. Catal. 346, 913–916 (2004).

    Article  CAS  Google Scholar 

  191. Huie, R. E. & Neta, P. Chemical behavior of SO3- and SO5- radicals in aqueous solutions. J. Phys. Chem. 88, 5665–5669 (1984).

    Article  CAS  Google Scholar 

  192. Huang, Y., Li, J., Chen, H., He, Z. & Zeng, Q. Recent progress on the synthesis of chiral sulfones. Chem. Rec. 21, 1216–1239 (2021).

    Article  CAS  PubMed  Google Scholar 

  193. Wojaczyńska, E. & Wojaczyński, J. Modern stereoselective synthesis of chiral sulfinyl compounds. Chem. Rev. 120, 4578–4611 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  194. Clayden, J. & MacLellan, P. Asymmetric synthesis of tertiary thiols and thioethers. Beilstein J. Org. Chem. 7, 582–595 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Nagib, D. A. Asymmetric catalysis in radical chemistry. Chem. Rev. 122, 15989–15992 (2022).

    Article  CAS  PubMed  Google Scholar 

  196. Cao, S., Hong, W., Ye, Z. & Gong, L. Photocatalytic three-component asymmetric sulfonylation via direct C(sp3)–H functionalization. Nat. Commun. 12, 2377 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Luo, Q., Mao, R., Zhu, Y. & Wang, Y. Photoredox-catalyzed generation of sulfamyl radicals: sulfonamidation of enol silyl ether with chlorosulfonamide. J. Org. Chem. 84, 13897–13907 (2019).

    Article  CAS  PubMed  Google Scholar 

  198. Hell, S. M. et al. Silyl radical-mediated activation of sulfamoyl chlorides enables direct access to aliphatic sulfonamides from alkenes. J. Am. Chem. Soc. 142, 720–725 (2020).

    Article  CAS  PubMed  Google Scholar 

  199. Li, Z. et al. CF3SO2Na as a bifunctional reagent: electrochemical trifluoromethylation of alkenes accompanied by SO2 insertion to access trifluoromethylated cyclic N-sulfonylimines. Angew. Chem. Int. Edn 59, 7266–7270 (2020).

    Article  CAS  Google Scholar 

  200. Zhang, Z. X., Bell, C., Ding, M. & Willis, M. C. Modular two-step route to sulfondiimidamides. J. Am. Chem. Soc. 144, 11851–11858 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Zhang, Z. X. & Willis, M. C. Sulfondiimidamides as new functional groups for synthetic and medicinal chemistry. Chem 8, 1137–1146 (2022).

    Article  CAS  Google Scholar 

  202. Ding, M., Zhang, Z. X., Davies, T. Q. & Willis, M. C. A Silyl sulfinylamine reagent enables the modular synthesis of sulfonimidamides via primary sulfinamides. Org. Lett. 24, 1711–1715 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Lo, P. K. T. & Willis, M. C. Nickel(II)-catalyzed addition of aryl and heteroaryl boroxines to the sulfinylamine reagent TrNSO: the catalytic synthesis of sulfinamides, sulfonimidamides, and primary sulfonamides. J. Am. Chem. Soc. 143, 15576–15581 (2021).

    Article  CAS  PubMed  Google Scholar 

  204. Li, L. et al. Photoredox alkylation of sulfinylamine enables the synthesis of highly functionalized sulfinamides and S(VI) derivatives. ACS Catal. 12, 15334–15340 (2022).

    Article  CAS  Google Scholar 

  205. Bremerich, M., Conrads, C. M., Langletz, T. & Bolm, C. Additions to N-sulfinylamines as an approach for the metal-free synthesis of sulfonimidamides: O-benzotriazolyl sulfonimidates as activated intermediates. Angew. Chem. Int. Edn 58, 19014–19020 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Sciences and Engineering Research Council of Canada (RGPIN-2022-05058).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Derek A. Pratt.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Chemistry thanks Wei Wang and the other, anonymous, reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Z., Pratt, D.A. Radical approaches to C–S bonds. Nat Rev Chem 7, 573–589 (2023). https://doi.org/10.1038/s41570-023-00505-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-023-00505-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing