Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Investigating the function and design of molecular materials through terahertz vibrational spectroscopy

Abstract

Terahertz spectroscopy has proved to be an essential tool for the study of condensed phase materials. Terahertz spectroscopy probes the low-frequency vibrational dynamics of atoms and molecules, usually in the condensed phase. These nuclear dynamics, which typically involve displacements of entire molecules, have been linked to bulk phenomena ranging from phase transformations to semiconducting efficiency. The terahertz region of the electromagnetic spectrum has historically been referred to as the ‘terahertz gap’, but this is a misnomer, as there exist a multitude of methods for accessing terahertz frequencies, and now there are cost-effective instruments that have made terahertz studies much more user-friendly. This Review highlights some of the most exciting applications of terahertz vibrational spectroscopy so far, and provides an in-depth overview of the methods of this technique and its utility to the study of the chemical sciences.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Electromagnetic spectrum and corresponding dynamics.
Fig. 2: Terahertz spectra of crystalline polymorphs.
Fig. 3: Terahertz-driven reactivity.
Fig. 4: Low-frequency dynamics in MOFs.
Fig. 5: Probing organic semiconductors with terahertz radiation.

Similar content being viewed by others

References

  1. Sirtori, C. Bridge for the terahertz gap. Nature 417, 132–133 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Schmuttenmaer, C. A. Exploring dynamics in the far-infrared with terahertz spectroscopy. Chem. Rev. 104, 1759–1780 (2004). This review is an excellent account of THz-TDS, specifically with regard to its experimental considerations and time-resolved techniques.

    Article  CAS  PubMed  Google Scholar 

  3. Du, W., Huang, Y., Zhou, Y. & Xu, X. Terahertz interface physics: from terahertz wave propagation to terahertz wave generation. J. Phys. D 55, 223002 (2022).

    Article  Google Scholar 

  4. Markl, D. et al. Characterisation of pore structures of pharmaceutical tablets: a review. Int. J. Pharm. 538, 188–214 (2018). This review covers applications of THz-TDS within the pharmaceutical sciences, focusing on the characterization of porous materials.

    Article  CAS  PubMed  Google Scholar 

  5. Huq, K. M. S. et al. Terahertz-enabled wireless system for beyond-5G ultra-fast networks: a brief survey. IEEE Netw. 33, 89–95 (2019).

    Article  Google Scholar 

  6. Bawuah, P. & Zeitler, J. A. Advances in terahertz time-domain spectroscopy of pharmaceutical solids: a review. Trends Anal. Chem. 139, 116272 (2021).

    Article  CAS  Google Scholar 

  7. Ruggiero, M. T., Zeitler, J. A. & Korter, T. M. Concomitant polymorphism and the martensitic-like transformation of an organic crystal. Phys. Chem. Chem. Phys. 19, 28502–28506 (2017).

    Article  CAS  PubMed  Google Scholar 

  8. Banks, P. A., Burgess, L. & Ruggiero, M. T. The necessity of periodic boundary conditions for the accurate calculation of crystalline terahertz spectra. Phys. Chem. Chem. Phys. 23, 20038–20051 (2021).

    Article  CAS  PubMed  Google Scholar 

  9. Hutereau, M. et al. Resolving anharmonic lattice dynamics in molecular crystals with X-ray diffraction and terahertz spectroscopy. Phys. Rev. Lett. 125, 103001 (2020).

    Article  CAS  PubMed  Google Scholar 

  10. Ruggiero, M. T., Zeitler, J. A. & Erba, A. Intermolecular anharmonicity in molecular crystals: interplay between experimental low-frequency dynamics and quantum quasi-harmonic simulations of solid purine. Chem. Commun. 53, 3781–3784 (2017).

    Article  CAS  Google Scholar 

  11. Kleist, E. M. & Ruggiero, M. T. Advances in low-frequency vibrational spectroscopy and applications in crystal engineering. Cryst. Growth Des. 22, 939–953 (2021).

    Article  Google Scholar 

  12. Strachan, C. J. et al. Using terahertz pulsed spectroscopy to quantify pharmaceutical polymorphism and crystallinity. J. Pharm. Sci. 94, 837–846 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Ajito, K., Ueno, Y., Song, H.-J., Tamechika, E. & Kukutsu, N. Terahertz spectroscopic imaging of polymorphic forms in pharmaceutical crystals. Mol. Cryst. Liq. Cryst. 538, 33–38 (2011).

    Article  CAS  Google Scholar 

  14. Siegrist, K. et al. High-resolution terahertz spectroscopy of crystalline trialanine: extreme sensitivity to β-sheet structure and cocrystallized water. J. Am. Chem. Soc. 128, 5764–5775 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Ruggiero, M. T., Kölbel, J., Li, Q. & Zeitler, J. A. Predicting the structures and associated phase transition mechanisms in disordered crystals via a combination of experimental and theoretical methods. Faraday Discuss. 211, 425–439 (2018).

    Article  CAS  PubMed  Google Scholar 

  16. Ruggiero, M. T., Zhang, W., Bond, A. D., Mittleman, D. M. & Zeitler, J. A. Uncovering the connection between low-frequency dynamics and phase transformation phenomena in molecular solids. Phys. Rev. Lett. 120, 196002 (2018).

    Article  CAS  PubMed  Google Scholar 

  17. Turton, D. A. et al. Terahertz underdamped vibrational motion governs protein-ligand binding in solution. Nat. Commun. 5, 3999 (2014).

    Article  CAS  PubMed  Google Scholar 

  18. Li, X. et al. Terahertz field-induced ferroelectricity in quantum paraelectric SrTiO3. Science 364, 1079–1082 (2019).

    Article  CAS  PubMed  Google Scholar 

  19. Kemp, M. C. et al. Security applications of terahertz technology. In Proc. SPIE Vol. 5070 (eds Hwu, R. J. & Woolard, D. L.) 44–52 (International Society for Optics and Photonics, 2003).

  20. Kawase, K., Ogawa, Y., Watanabe, Y. & Inoue, H. Non-destructive terahertz imaging of illicit drugs using spectral fingerprints. Opt. Express 11, 2549–2554 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Tanno, T. et al. In situ observation of gas adsorption onto ZIF-8 using terahertz waves. J. Phys. Chem. C 121, 17921–17924 (2017). This work reports the terahertz spectral response of MOF ZIF-8 upon loading of gaseous guest molecules, which highlights the role of an anti-symmetric gate-opening vibrational mode in guest molecule adsorption.

    Article  CAS  Google Scholar 

  22. Ryder, M. R. et al. Identifying the role of terahertz vibrations in metal–organic frameworks: from gate-opening phenomenon to shear-driven structural destabilization. Phys. Rev. Lett. 113, 215502 (2014).

    Article  PubMed  Google Scholar 

  23. Ruggiero, M. T., Sibik, J., Orlando, R., Zeitler, J. A. & Korter, T. M. Measuring the elasticity of poly-l-proline helices with terahertz spectroscopy. Angew. Chem. Int. Ed. 128, 6877–6881 (2016).

    Article  Google Scholar 

  24. Woerner, M., Kuehn, W., Bowlan, P., Reimann, K. & Elsaesser, T. Ultrafast two-dimensional terahertz spectroscopy of elementary excitations in solids. N. J. Phys. 15, 025039 (2013).

    Article  CAS  Google Scholar 

  25. Kuehn, W. et al. Strong correlation of electronic and lattice excitations in GaAs/AlGaAs semiconductor quantum wells revealed by two-dimensional terahertz spectroscopy. Phys. Rev. Lett. 107, 067401 (2011).

    Article  CAS  PubMed  Google Scholar 

  26. Tarekegne, A. T. et al. Subcycle nonlinear response of doped 4H silicon carbide revealed by two-dimensional terahertz spectroscopy. ACS Photon. 7, 221–231 (2019).

    Article  Google Scholar 

  27. Reimann, K., Woerner, M. & Elsaesser, T. Two-dimensional terahertz spectroscopy of condensed-phase molecular systems. J. Chem. Phys. 154, 120901 (2021).

    Article  CAS  PubMed  Google Scholar 

  28. Schweicher, G. et al. Chasing the “killer” phonon mode for the rational design of low-disorder, high-mobility molecular semiconductors. Adv. Mater. 31, 1902407 (2019). This article emphasizes the role of terahertz vibrations in organic semiconducting molecular materials, specifically with respect to their detrimental effects upon charge carrier mobilities.

    Article  CAS  Google Scholar 

  29. Ruggiero, M. T., Ciuchi, S., Fratini, S. & D’Avino, G. Electronic structure, electron-phonon coupling, and charge transport in crystalline rubrene under mechanical strain. J. Phys. Chem. C 123, 15897–15907 (2019).

    Article  CAS  Google Scholar 

  30. Jepsen, P. U., Cooke, D. G. & Koch, M. Terahertz spectroscopy and imaging — modern techniques and applications. Laser Photon. Rev. 5, 124–166 (2011).

    Article  CAS  Google Scholar 

  31. Baxter, J. B. & Guglietta, G. W. Terahertz spectroscopy. Anal. Chem. 83, 4342–4368 (2011). This review provides an in-depth account of the developments of terahertz techniques, as well as detailing current methods for the generation and detection of terahertz pulses.

    Article  CAS  PubMed  Google Scholar 

  32. Cheville, R. A. & Grischkowsky, D. Observation of pure rotational absorption spectra in the v2 band of hot H2O in flames. Opt. Lett. 23, 531–533 (1998).

    Article  CAS  PubMed  Google Scholar 

  33. Pirali, O., Van-Oanh, N. T., Parneix, P., Vervloet, M. & Bréchignac, P. Far-infrared spectroscopy of small polycyclic aromatic hydrocarbons. Phys. Chem. Chem. Phys. 8, 3707–3714 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Walther, M., Fischer, B. M. & Jepsen, P. U. Noncovalent intermolecular forces in polycrystalline and amorphous saccharides in the far infrared. Chem. Phys. 288, 261–268 (2003).

    Article  CAS  Google Scholar 

  35. Ruggiero, M. T., Gooch, J., Zubieta, J. & Korter, T. M. Evaluation of range-corrected density functionals for the simulation of pyridinium-containing molecular crystals. J. Phys. Chem. A 120, 939–947 (2016).

    Article  CAS  PubMed  Google Scholar 

  36. Grechko, M. et al. Coupling between intra- and intermolecular motions in liquid water revealed by two-dimensional terahertz-infrared-visible spectroscopy. Nat. Commun. 9, 885 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Williams, M. R. C. et al. Terahertz spectroscopy of enantiopure and racemic polycrystalline valine. Phys. Chem. Chem. Phys. 13, 11719 (2011).

    Article  CAS  PubMed  Google Scholar 

  38. Kendrick, J. & Burnett, A. D. Exploring the reliability of DFT calculations of the infrared and terahertz spectra of sodium peroxodisulfate. J. Infrared Millim. Terahertz Waves 41, 382–413 (2020).

    Article  CAS  Google Scholar 

  39. Kendrick, J. & Burnett, A. D. PDielec: the calculation of infrared and terahertz absorption for powdered crystals. J. Comput. Chem. 37, 1491–1504 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zeitler, J. et al. Drug hydrate systems and dehydration processes studied by terahertz pulsed spectroscopy. Int. J. Pharm. 334, 78–84 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Zeitler, J. et al. Characterization of temperature-induced phase transitions in five polymorphic forms of sulfathiazole by terahertz pulsed spectroscopy and differential scanning calorimetry. J. Pharm. Sci. 95, 2486–2498 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Zeitler, J. A. et al. Terahertz pulsed spectroscopy and imaging in the pharmaceutical setting — a review. J. Pharm. Pharmacol. 59, 209–223 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Zeitler, J. A. et al. Analysis of coating structures and interfaces in solid oral dosage forms by three dimensional terahertz pulsed imaging. J. Pharm. Sci. 96, 330–340 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Parrott, E. P. J. & Zeitler, J. A. Terahertz time-domain and low-frequency Raman spectroscopy of organic materials. Appl. Spectrosc. 69, 1–25 (2015). This review provides a thorough discussion of the terahertz response of amorphous solids.

    Article  CAS  PubMed  Google Scholar 

  45. Suresh, K., Ashe, J. S. & Matzger, A. J. Far-infrared spectroscopy as a probe for polymorph discrimination. J. Pharm. Sci. 108, 1915–1920 (2019).

    Article  CAS  PubMed  Google Scholar 

  46. Ruggiero, M. T. Invited review: Modern methods for accurately simulating the terahertz spectra of solids. J. Infrared Millim. Terahertz Waves 41, 491–528 (2020).

    Article  Google Scholar 

  47. Allis, D. G. & Korter, T. M. Theoretical analysis of the terahertz spectrum of the high explosive petn. ChemPhysChem 7, 2398–2408 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. King, M. D., Buchanan, W. D. & Korter, T. M. Understanding the terahertz spectra of crystalline pharmaceuticals: terahertz spectroscopy and solid-state density functional theory study of (S)-(+)-ibuprofen and (RS)-ibuprofen. J. Pharm. Sci. 100, 1116–1129 (2011).

    Article  CAS  PubMed  Google Scholar 

  49. Allis, D. G., Prokhorova, D. A. & Korter, T. M. Solid-state modeling of the terahertz spectrum of the high explosive hmx. J. Phys. Chem. A 110, 1951–1959 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Allis, D. G., Hakey, P. M. & Korter, T. M. Terahertz spectroscopy of illicit drugs: experiment and theory. In Frontiers In Optics 2008/Laser Science XXIV/Plasmonics and Metamaterials/Optical Fabrication and Testing OSA Technical Digest, LThB2 (Optica, 2008).

  51. Juliano, T. R., King, M. D. & Korter, T. M. Evaluating London dispersion force corrections in crystalline nitroguanidine by terahertz spectroscopy. IEEE Trans. Terahertz Sci. Technol. 3, 281–287 (2013).

    Article  CAS  Google Scholar 

  52. Korter, T. M. et al. Terahertz spectroscopy of solid serine and cysteine. Chem. Phys. Lett. 418, 65–70 (2006).

    Article  CAS  Google Scholar 

  53. Banks, P. A., Song, Z. & Ruggiero, M. T. Assessing the performance of density functional theory methods on the prediction of low-frequency vibrational spectra. J. Infrared Millim. Terahertz Waves 41, 1411–1429 (2020).

    Article  CAS  Google Scholar 

  54. Perdew, J. P. et al. Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100, 136406 (2008).

    Article  PubMed  Google Scholar 

  55. Vilela Oliveira, D., Laun, J., Peintinger, M. F. & Bredow, T. BSSE-correction scheme for consistent gaussian basis sets of double- and triple-zeta valence with polarization quality for solid-state calculations. J. Comput. Chem. 40, 2364–2376 (2019).

    Article  CAS  PubMed  Google Scholar 

  56. Ruggiero, M. T. & Zeitler, J. A. Resolving the origins of crystalline anharmonicity using terahertz time-domain spectroscopy and ab initio simulations. J. Phys. Chem. B 120, 11733–11739 (2016).

    Article  CAS  PubMed  Google Scholar 

  57. Shen, Y. C., Upadhya, P. C., Linfield, E. H. & Davies, A. G. Temperature-dependent low-frequency vibrational spectra of purine and adenine. Appl. Phys. Lett. 82, 2350–2352 (2003).

    Article  CAS  Google Scholar 

  58. Katz, G., Zybin, S., Goddard, W. A. I., Zeiri, Y. & Kosloff, R. Direct MD simulations of terahertz absorption and 2D spectroscopy applied to explosive crystals. J. Phys. Chem. Lett. 5, 772–776 (2014).

    Article  CAS  PubMed  Google Scholar 

  59. Pereverzev, A. & Sewell, T. D. Terahertz spectrum and normal-mode relaxation in pentaerythritol tetranitrate: effect of changes in bond-stretching force-field terms. J. Chem. Phys. 134, 244502 (2011).

    Article  PubMed  Google Scholar 

  60. Erba, A., Shahrokhi, M., Moradian, R. & Dovesi, R. On how differently the quasi-harmonic approximation works for two isostructural crystals: thermal properties of periclase and lime. J. Chem. Phys. 142, 044114 (2015).

    Article  CAS  PubMed  Google Scholar 

  61. Maul, J., Ongari, D., Moosavi, S. M., Smit, B. & Erba, A. Thermoelasticity of flexible organic crystals from quasi-harmonic lattice dynamics: the case of copper(II) acetylacetonate. J. Phys. Chem. Lett. 11, 8543–8548 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Banks, P. A. et al. Thermoelasticity in organic semiconductors determined with terahertz spectroscopy and quantum quasi-harmonic simulations. J. Mater. Chem. C 8, 10917–10925 (2020).

    Article  CAS  Google Scholar 

  63. Schireman, R. G., Maul, J., Erba, A. & Ruggiero, M. T. Anharmonic coupling of stretching vibrations in ice: a periodic VSCF and VCI description. J. Chem. Theory Comput. 18, 4428–4437 (2022).

    Article  CAS  PubMed  Google Scholar 

  64. Asher, M. et al. Anharmonic lattice vibrations in small-molecule organic semiconductors. Adv. Mater. 32, 1908028 (2020).

    Article  CAS  Google Scholar 

  65. Asher, M. et al. Chemical modifications suppress anharmonic effects in the lattice dynamics of organic semiconductors. ACS Mater. Au 2, 699–708 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Barnes, R. B. & Czerny, M. Messungen am NaCl und KCl im spektralbereich ihrer ultraroten eigenschwingungen. Z. Phys. 72, 447–461 (1931).

    Article  CAS  Google Scholar 

  67. Day, G. M., Zeitler, J. A., Jones, W., Rades, T. & Taday, P. F. Understanding the influence of polymorphism on phonon spectra: lattice dynamics calculations and terahertz spectroscopy of carbamazepine. J. Phys. Chem. B 110, 447–456 (2006).

    Article  CAS  PubMed  Google Scholar 

  68. Ruggiero, M. T., Sibik, J., Zeitler, J. A. & Korter, T. M. Examination of l-glutamic acid polymorphs by solid-state density functional theory and terahertz spectroscopy. J. Phys. Chem. A 120, 7490–7495 (2016).

    Article  CAS  PubMed  Google Scholar 

  69. Byrn, S., Pfeiffer, R., Ganey, M., Hoiberg, C. & Poochikian, G. Pharmaceutical solids: a strategic approach to regulatory considerations. Pharm. Res. 12, 945–954 (1995).

    Article  CAS  PubMed  Google Scholar 

  70. Chieng, N., Rades, T. & Aaltonen, J. An overview of recent studies on the analysis of pharmaceutical polymorphs. J. Pharm. Biomed. 55, 618–644 (2011).

    Article  CAS  Google Scholar 

  71. Beran, G. J. O. Modeling polymorphic molecular crystals with electronic structure theory. Chem. Rev. 116, 5567–5613 (2016).

    Article  CAS  PubMed  Google Scholar 

  72. Heinz, A., Strachan, C. J., Gordon, K. C. & Rades, T. Analysis of solid-state transformations of pharmaceutical compounds using vibrational spectroscopy. J. Pharm. Pharmacol. 61, 971–988 (2009).

    Article  CAS  PubMed  Google Scholar 

  73. McGoverin, C. M., Rades, T. & Gordon, K. C. Recent pharmaceutical applications of Raman and terahertz spectroscopies. J. Pharm. Sci. 97, 4598–4621 (2008).

    Article  CAS  PubMed  Google Scholar 

  74. Karimi-Jafari, M., Padrela, L., Walker, G. M. & Croker, D. M. Creating cocrystals: a review of pharmaceutical cocrystal preparation routes and applications. Cryst. Growth Des. 18, 6370–6387 (2018).

    Article  CAS  Google Scholar 

  75. Duggirala, N. K., Perry, M. L., Almarsson, O. & Zaworotko, M. J. Pharmaceutical cocrystals: along the path to improved medicines. Chem. Commun. 52, 640–655 (2016).

    Article  CAS  Google Scholar 

  76. Charron, D. M., Ajito, K., Kim, J.-Y. & Ueno, Y. Chemical mapping of pharmaceutical cocrystals using terahertz spectroscopic imaging. Anal. Chem. 85, 1980–1984 (2013).

    Article  CAS  PubMed  Google Scholar 

  77. Nguyen, K. L., Friscić, T., Day, G. M., Gladden, L. F. & Jones, W. Terahertz time-domain spectroscopy and the quantitative monitoring of mechanochemical cocrystal formation. Nat. Mater. 6, 206–209 (2007).

    Article  CAS  PubMed  Google Scholar 

  78. Bawuah, P. et al. Terahertz-based porosity measurement of pharmaceutical tablets: a tutorial. J. Infrared Millim. Terahertz Waves 41, 450–469 (2020).

    Article  CAS  Google Scholar 

  79. Markelz, A. G. & Mittleman, D. M. Perspective on terahertz applications in bioscience and biotechnology. ACS Photon. 9, 1117–1126 (2022). This review details applications of terahertz sciences in the biological sciences.

    Article  CAS  Google Scholar 

  80. Taday, P., Bradley, I., Arnone, D. & Pepper, M. Using terahertz pulse spectroscopy to study the crystalline structure of a drug: a case study of the polymorphs of ranitidine hydrochloride. J. Pharm. Sci. 92, 831–838 (2003).

    Article  CAS  PubMed  Google Scholar 

  81. Jepsen, P. U. & Clark, S. J. Precise ab-initio prediction of terahertz vibrational modes in crystalline systems. Chem. Phys. Lett. 442, 275–280 (2007).

    Article  CAS  Google Scholar 

  82. Nyman, J. & Day, G. M. Static and lattice vibrational energy differences between polymorphs. CrystEngComm 17, 5154–5165 (2015).

    Article  CAS  Google Scholar 

  83. Delaney, S. P., Pan, D., Galella, M., Yin, S. X. & Korter, T. M. Understanding the origins of conformational disorder in the crystalline polymorphs of irbesartan. Cryst. Growth Des. 12, 5017–5024 (2012).

    Article  CAS  Google Scholar 

  84. Capaccioli, S., Ngai, K., Thayyil, M. S. & Prevosto, D. Coupling of caged molecule dynamics to JG β-relaxation: I. J. Phys. Chem. B 119, 8800–8808 (2015).

    Article  CAS  PubMed  Google Scholar 

  85. Sibik, J. & Zeitler, J. A. Terahertz response of organic amorphous systems: experimental concerns and perspectives. Philos. Mag. 96, 842–853 (2015).

    Article  Google Scholar 

  86. Li, R. et al. A study into the effect of subtle structural details and disorder on the terahertz spectrum of crystalline benzoic acid. Phys. Chem. Chem. Phys. 12, 5329–5340 (2010).

    Article  CAS  PubMed  Google Scholar 

  87. King, M. D., Blanton, T. N., Misture, S. T. & Korter, T. M. Prediction of the unknown crystal structure of creatine using fully quantum mechanical methods. Cryst. Growth Des. 11, 5733–5740 (2011).

    Article  CAS  Google Scholar 

  88. Zhang, F., Wang, H.-W., Tominaga, K., Hayashi, M. & Sasaki, T. Terahertz fingerprints of short-range correlations of disordered atoms in diflunisal. J. Phys. Chem. A 123, 4555–4564 (2019).

    Article  CAS  PubMed  Google Scholar 

  89. Brittain, H. G. (ed.) Polymorphism in pharmaceutical solids. In Drugs And The Pharmaceutical Sciences 2nd edn (CRC Press, 2009).

  90. Anwar, J. & Zahn, D. Polymorphic phase transitions: macroscopic theory and molecular simulation. Adv. Drug Deliv. Rev. 117, 47–70 (2017).

    Article  CAS  PubMed  Google Scholar 

  91. Dunitz, J. D. Phase changes and chemical reactions in molecular crystals. Acta Crystallogr. B 51, 619–631 (1995).

    Article  Google Scholar 

  92. James, R. & Kinderlehrer, D. Theory of diffusionless phase transitions. In PDEs And Continuum Models Of Phase Transitions 51–84 (Springer, 1989).

  93. Paul, M. E., da Silva, T. H. & King, M. D. True polymorphic phase transition or dynamic crystal disorder? An investigation into the unusual phase behavior of barbituric acid dihydrate. Cryst. Growth Des. 19, 4745–4753 (2019).

    Article  CAS  Google Scholar 

  94. Nichol, G. S. & Clegg, W. A variable-temperature study of a phase transition in barbituric acid dihydrate. Acta Crystallogr. B 61, 464–472 (2005).

    Article  PubMed  Google Scholar 

  95. Yu, L. Amorphous pharmaceutical solids: preparation, characterization and stabilization. Adv. Drug Deliv. Rev. 48, 27–42 (2001).

    Article  CAS  PubMed  Google Scholar 

  96. Bhugra, C. & Pikal, M. J. Role of thermodynamic, molecular, and kinetic factors in crystallization from the amorphous state. J. Pharm. Sci. 97, 1329–1349 (2008).

    Article  CAS  PubMed  Google Scholar 

  97. Cavagna, A. Supercooled liquids for pedestrians. Phys. Rep. 476, 51–124 (2009).

    Article  CAS  Google Scholar 

  98. Alonzo, D. E., Zhang, G. G. Z., Zhou, D., Gao, Y. & Taylor, L. S. Understanding the behavior of amorphous pharmaceutical systems during dissolution. Pharm. Res. 27, 608–618 (2010).

    Article  CAS  PubMed  Google Scholar 

  99. Goldstein, M. The past, present, and future of the Johari–Goldstein relaxation. J. Non-Cryst. Solids 357, 249–250 (2011).

    Article  CAS  Google Scholar 

  100. Cicerone, M. T. & Tyagi, M. Metabasin transitions are Johari–Goldstein relaxation events. J. Chem. Phys. 146, 054502 (2017).

    Article  PubMed  Google Scholar 

  101. Ruggiero, M. T. et al. The significance of the amorphous potential energy landscape for dictating glassy dynamics and driving solid-state crystallisation. Phys. Chem. Chem. Phys. 19, 30039–30047 (2017).

    Article  CAS  PubMed  Google Scholar 

  102. Kissi, E. O. et al. Glass-transition temperature of the β-relaxation as the major predictive parameter for recrystallization of neat amorphous drugs. J. Phys. Chem. B 122, 2803–2808 (2018).

    Article  CAS  PubMed  Google Scholar 

  103. Gerstman, B., Roberson, M. & Austin, R. Enhancement of ligand binding to myoglobin by far-infrared excitation from a free-electron laser. J. Opt. Soc. Am. B 6, 1050 (1989).

    Article  CAS  Google Scholar 

  104. Hoshina, H. et al. Polymer morphological change induced by terahertz irradiation. Sci. Rep. 6, 27180 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Yamazaki, S. et al. Actin polymerization is activated by terahertz irradiation. Sci. Rep. 8, 9990 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Cheon, H., Jin Yang, H., Lee, S.-H., Kim, Y. A. & Son, J.-H. Terahertz molecular resonance of cancer DNA. Sci. Rep. 6, 37103 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Tao, Y. H., Hodgetts, S. I., Harvey, A. R. & Wallace, V. P. Reproducibility of terahertz peaks in a frozen aqueous solution of 5-methylcytidine. J. Infrared Millim. Terahertz Waves 42, 588–606 (2021).

    Article  CAS  Google Scholar 

  108. Cheon, H., Paik, J. H., Choi, M., Yang, H.-J. & Son, J.-H. Detection and manipulation of methylation in blood cancer DNA using terahertz radiation. Sci. Rep. 9, 6413 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Cheon, H., Yang, H.-J., Choi, M. & Son, J.-H. Effective demethylation of melanoma cells using terahertz radiation. Biomed. Opt. Express 10, 4931 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Côté, A. P. et al. Porous, crystalline, covalent organic frameworks. Science 310, 1166–1170 (2005).

    Article  PubMed  Google Scholar 

  111. Furukawa, H., Cordova, K. E., O’Keeffe, M. & Yaghi, O. M. The chemistry and applications of metal–organic frameworks. Science 341, 1230444 (2013).

    Article  PubMed  Google Scholar 

  112. Zhou, H.-C. J. & Kitagawa, S. Metal–organic frameworks (MOFs). Chem. Soc. Rev. 43, 5415–5418 (2014).

    Article  CAS  PubMed  Google Scholar 

  113. James, S. L. Metal–organic frameworks. Chem. Soc. Rev. 32, 276 (2003).

    Article  CAS  PubMed  Google Scholar 

  114. Carreon, M. A. Porous crystals as membranes. Science 367, 624–625 (2020).

    Article  CAS  PubMed  Google Scholar 

  115. Krause, S., Hosono, N. & Kitagawa, S. Chemistry of soft porous crystals: structural dynamics and gas adsorption properties. Angew. Chem. Int. Ed. 59, 15325–15341 (2020).

    Article  CAS  Google Scholar 

  116. Cao, J., Li, X. & Tian, H. Metal–organic framework (MOF)-based drug delivery. Curr. Med. Chem. 27, 5949–5969 (2020).

    Article  CAS  PubMed  Google Scholar 

  117. Russo, V. et al. Applications of metal organic frameworks in wastewater treatment: a review on adsorption and photodegradation. Front. Chem. Eng. https://doi.org/10.3389/fceng.2020.581487 (2020).

    Article  Google Scholar 

  118. Naftaly, M., Tikhomirov, I., Hou, P. & Markl, D. Measuring open porosity of porous materials using THz-TDS and an index-matching medium. Sensors 20, 3120 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Zhou, W. & Yildirim, T. Lattice dynamics of metal–organic frameworks: neutron inelastic scattering and first-principles calculations. Phys. Rev. B 74, 180301 (2006).

    Article  Google Scholar 

  120. Ryder, M. R., Civalleri, B., Cinque, G. & Tan, J. C. Discovering connections between terahertz vibrations and elasticity underpinning the collective dynamics of the HKUST-1 metal–organic framework. CrystEngComm 18, 4303–4312 (2016).

    Article  CAS  Google Scholar 

  121. Sussardi, A. et al. Correlating pressure-induced emission modulation with linker rotation in a photoluminescent MOF. Angew. Chem. Int. Ed. 132, 8195–8199 (2020).

    Article  Google Scholar 

  122. Heerden, D. P., Smith, V. J., Aggarwal, H. & Barbour, L. J. High pressure in situ single-crystal X-ray diffraction reveals turnstile linker rotation upon room-temperature stepped uptake of alkanes. Angew. Chem. Int. Ed. 60, 13430–13435 (2021).

    Article  Google Scholar 

  123. Lock, N. et al. Elucidating negative thermal expansion in MOF-5. J. Phys. Chem. C 114, 16181–16186 (2010).

    Article  CAS  Google Scholar 

  124. Shustova, N. B., McCarthy, B. D. & Dinca, M. Turn-on fluorescence in tetraphenylethylene-based metal–organic frameworks: an alternative to aggregation-induced emission. J. Am. Chem. Soc. 133, 20126–20129 (2011).

    Article  CAS  PubMed  Google Scholar 

  125. Serra-Crespo, P. et al. NH2-MIL-53(Al): a high-contrast reversible solid-state nonlinear optical switch. J. Am. Chem. Soc. 134, 8314–8317 (2012).

    Article  CAS  PubMed  Google Scholar 

  126. Li, Q., Zaczek, A. J., Korter, T. M., Zeitler, J. A. & Ruggiero, M. T. Methyl-rotation dynamics in metal–organic frameworks probed with terahertz spectroscopy. Chem. Commun. 54, 5776–5779 (2018).

    Article  CAS  Google Scholar 

  127. Gould, S. L., Tranchemontagne, D., Yaghi, O. M. & Garcia-Garibay, M. A. Amphidynamic character of crystalline MOF-5: rotational dynamics of terephthalate phenylenes in a free-volume, sterically unhindered environment. J. Am. Chem. Soc. 130, 3246–3247 (2008).

    Article  CAS  PubMed  Google Scholar 

  128. Gonzalez-Nelson, A., Coudert, F.-X. & van der Veen, M. Rotational dynamics of linkers in metal–organic frameworks. Nanomaterials 9, 330 (2019). The dynamics of MOFs are discussed in this review, which also discusses how to probe these dynamics with THz-TDS.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Fairen-Jimenez, D. et al. Opening the gate: framework flexibility in ZIF-8 explored by experiments and simulations. J. Am. Chem. Soc. 133, 8900–8902 (2011).

    Article  CAS  PubMed  Google Scholar 

  130. Casco, M. E. et al. Gate-opening effect in ZIF-8: the first experimental proof using inelastic neutron scattering. Chem. Commun. 52, 3639–3642 (2016).

    Article  CAS  Google Scholar 

  131. Tan, N. Y. et al. Investigation of the terahertz vibrational modes of ZIF-8 and ZIF-90 with terahertz time-domain spectroscopy. Chem. Commun. 51, 16037–16040 (2015).

    Article  CAS  Google Scholar 

  132. Formalik, F., Mazur, B., Fischer, M., Firlej, L. & Kuchta, B. Phonons and adsorption-induced deformations in ZIFs: is it really a gate opening? J. Phys. Chem. C 125, 7999–8005 (2021).

    Article  CAS  Google Scholar 

  133. Zhang, W. et al. Probing the mechanochemistry of metal–organic frameworks with low-frequency vibrational spectroscopy. J. Phys. Chem. C 122, 27442–27450 (2018). This article details the response of terahertz vibrational modes as a function of increasing pressure, describing a way in which guest molecule loading into MOF complexes can be monitored through THz-TDS.

    Article  CAS  Google Scholar 

  134. Torré, J.-P. et al. CO2–hydroquinone clathrate: synthesis, purification, characterization and crystal structure. Cryst. Growth Des. 16, 5330–5338 (2016).

    Article  Google Scholar 

  135. Conde, M. M., Torré, J. P. & Miqueu, C. Revisiting the thermodynamic modelling of type I gas–hydroquinone clathrates. Phys. Chem. Chem. Phys. 18, 10018–10027 (2016).

    Article  CAS  PubMed  Google Scholar 

  136. Eikeland, E., Thomsen, M. K., Overgaard, J., Spackman, M. A. & Iversen, B. B. Intermolecular interaction energies in hydroquinone clathrates at high pressure. Cryst. Growth Des. 17, 3834–3846 (2017).

    Article  CAS  Google Scholar 

  137. Zhang, W., Song, Z., Ruggiero, M. T. & Mittleman, D. M. Assignment of terahertz modes in hydroquinone clathrates. J. Infrared Millim. Terahertz Waves 41, 1355–1365 (2020).

    Article  CAS  Google Scholar 

  138. Zhang, W., Song, Z., Ruggiero, M. T. & Mittleman, D. M. Terahertz vibrational motions mediate gas uptake in organic clathrates. Cryst. Growth Des. 20, 5638–5643 (2020).

    Article  CAS  Google Scholar 

  139. Lázaro, I. A. et al. Surface-functionalization of Zr-fumarate MOF for selective cytotoxicity and immune system compatibility in nanoscale drug delivery. ACS Appl. Mater. Interf. 10, 31146–31157 (2018).

    Article  Google Scholar 

  140. Suresh, K. & Matzger, A. J. Enhanced drug delivery by dissolution of amorphous drug encapsulated in a water unstable metal–organic framework (MOF). Angew. Chem. Int. Ed. 58, 16790–16794 (2019).

    Article  CAS  Google Scholar 

  141. Wu, M.-X. & Yang, Y.-W. Metal-organic framework (MOF)-based drug/cargo delivery and cancer therapy. Adv. Mater. 29, 1606134 (2017).

    Article  Google Scholar 

  142. Souza, B. E. et al. Guest–host interactions of nanoconfined anti-cancer drug in metal–organic framework exposed by terahertz dynamics. Chem. Commun. 55, 3868–3871 (2019). This article details a study in which MOF HKUST-1 samples were prepared as unloaded and loaded complexes with anti-cancer molecules, which using inelastic neutron scattering to sample the terahertz region, was able to provide insight into the specific guest-molecule adsorption site, as well as intermolecular interactions between the host MOF and incorporated guest molecules.

    Article  CAS  Google Scholar 

  143. Geng, K. et al. Covalent organic frameworks: design, synthesis, and functions. Chem. Rev. 120, 8814–8933 (2020).

    Article  CAS  PubMed  Google Scholar 

  144. Jin, E. et al. Exceptional electron conduction in two-dimensional covalent organic frameworks. Chem 7, 3309–3324 (2021).

    Article  CAS  Google Scholar 

  145. Jin, E. et al. A nanographene-based two-dimensional covalent organic framework as a stable and efficient photocatalyst. Angew. Chem. Int. Ed. 61, e202114059 (2022).

    CAS  Google Scholar 

  146. Okamoto, T. et al. Bent-shaped p-type small-molecule organic semiconductors: a molecular design strategy for next-generation practical applications. J. Am. Chem. Soc. 142, 9083–9096 (2020).

    Article  CAS  PubMed  Google Scholar 

  147. Fratini, S., Nikolka, M., Salleo, A., Schweicher, G. & Sirringhaus, H. Charge transport in high-mobility conjugated polymers and molecular semiconductors. Nat. Mater. 19, 491–502 (2020).

    Article  CAS  PubMed  Google Scholar 

  148. Yamamoto, A. et al. Zigzag-elongated fused π-electronic core: a molecular design strategy to maximize charge-carrier mobility. Adv. Sci. 5, 1700317 (2018).

    Article  Google Scholar 

  149. Nematiaram, T. & Troisi, A. Modeling charge transport in high-mobility molecular semiconductors: balancing electronic structure and quantum dynamics methods with the help of experiments. J. Chem. Phys. 152, 190902 (2020).

    Article  CAS  PubMed  Google Scholar 

  150. Troisi, A. & Orlandi, G. Charge-transport regime of crystalline organic semiconductors: diffusion limited by thermal off-diagonal electronic disorder. Phys. Rev. Lett. 96, 086601 (2006).

    Article  PubMed  Google Scholar 

  151. Troisi, A. & Orlandi, G. Dynamics of the intermolecular transfer integral in crystalline organic semiconductors. J. Phys. Chem. A 110, 4065–4070 (2006).

    Article  CAS  PubMed  Google Scholar 

  152. Troisi, A. Charge transport in high mobility molecular semiconductors: classical models and new theories. Chem. Soc. Rev. 40, 2347–2358 (2011).

    Article  CAS  PubMed  Google Scholar 

  153. Brédas, J. L., Calbert, J. P., Da Silva Filho, D. A. & Cornil, J. Organic semiconductors: a theoretical characterization of the basic parameters governing charge transport. Proc. Natl Acad. Sci. USA 99, 5804–5809 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Olivier, Y., Lemaur, V., Brédas, J. L. & Cornil, J. Charge hopping in organic semiconductors: influence of molecular parameters on macroscopic mobilities in model one-dimensional stacks. J. Phys. Chem. A 110, 6356–6364 (2006).

    Article  CAS  PubMed  Google Scholar 

  155. Coropceanu, V. et al. Charge transport in organic semiconductors. Chem. Rev. 107, 926–952 (2007).

    Article  CAS  PubMed  Google Scholar 

  156. Valeev, E. F., Coropceanu, V., da Silva Filho, D. A., Salman, S. & Brédas, J.-L. Effect of electronic polarization on charge-transport parameters in molecular organic semiconductors. J. Am. Chem. Soc. 128, 9882–9886 (2006).

    Article  CAS  PubMed  Google Scholar 

  157. Baumeier, B., Kirkpatrick, J. & Andrienko, D. Density-functional based determination of intermolecular charge transfer properties for large-scale morphologies. Phys. Chem. Chem. Phys. 12, 11103–11113 (2010).

    Article  CAS  PubMed  Google Scholar 

  158. Illig, S. et al. Reducing dynamic disorder in small-molecule organic semiconductors by suppressing large-amplitude thermal motions. Nat. Commun. 7, 1–10 (2016).

    Article  Google Scholar 

  159. Dovesi, R. et al. Quantum-mechanical condensed matter simulations with CRYSTAL. Wiley Interdisc. Rev. Comput. Mol. Sci. 8, e1360 (2018).

    Article  Google Scholar 

  160. Gonze, X. et al. Recent developments in the ABINIT software package. Comput. Phys. Commun. 205, 106–131 (2016).

    Article  CAS  Google Scholar 

  161. Clark, S. J. et al. First principles methods using CASTEP. Z. Kristallogr. 220, 567–570 (2005).

    Article  CAS  Google Scholar 

  162. Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009).

    Article  PubMed  Google Scholar 

  163. Kühne, T. D. et al. CP2K: an electronic structure and molecular dynamics software package — Quickstep: efficient and accurate electronic structure calculations. J. Chem. Phys. 152, 194103 (2020).

    Article  PubMed  Google Scholar 

  164. Chen, H., Zhang, W., Li, M., He, G. & Guo, X. Interface engineering in organic field-effect transistors: principles, applications, and perspectives. Chem. Rev. 120, 2879–2949 (2020).

    Article  CAS  PubMed  Google Scholar 

  165. Repp, J., Meyer, G., Stojkovic′, S. M., Gourdon, A. & Joachim, C. Molecules on insulating films: scanning-tunneling microscopy imaging of individual molecular orbitals. Phys. Rev. Lett. 94, 026803 (2005).

    Article  PubMed  Google Scholar 

  166. Cocker, T. L. et al. An ultrafast terahertz scanning tunnelling microscope. Nat. Photon. 7, 620–625 (2013).

    Article  CAS  Google Scholar 

  167. Cocker, T. L., Peller, D., Yu, P., Repp, J. & Huber, R. Tracking the ultrafast motion of a single molecule by femtosecond orbital imaging. Nature 539, 263–267 (2016). This article reports findings of a vibrational mode of a single molecule adsorbed onto a surface, uniquely probed by the THz-STM technique.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank the National Science Foundation (CHE-2055402 and DMR-2046483), the American Chemical Society Petroleum Research Fund (61794-DNI10), and the University of Vermont for support.

Author information

Authors and Affiliations

Authors

Contributions

M.T.R. designed the structure and content of the review. All authors contributed to the discussion, writing, reviewing and editing of the manuscript.

Corresponding author

Correspondence to Michael T. Ruggiero.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Chemistry thanks Lijuan Xie and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banks, P.A., Kleist, E.M. & Ruggiero, M.T. Investigating the function and design of molecular materials through terahertz vibrational spectroscopy. Nat Rev Chem 7, 480–495 (2023). https://doi.org/10.1038/s41570-023-00487-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-023-00487-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing