Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Nanoscale molecular rectifiers

Abstract

The use of molecules bridged between two electrodes as a stable rectifier is an important goal in molecular electronics. Until recently, however, and despite extensive experimental and theoretical work, many aspects of our fundamental understanding and practical challenges have remained unresolved and prevented the realization of such devices. Recent advances in custom-designed molecular systems with rectification ratios exceeding 105 have now made these systems potentially competitive with existing silicon-based devices. Here, we provide an overview and critical analysis of recent progress in molecular rectification within single molecules, self-assembled monolayers, molecular multilayers, heterostructures, and metal–organic frameworks and coordination polymers. Examples of conceptually important and best-performing systems are discussed, alongside their rectification mechanisms. We present an outlook for the field, as well as prospects for the commercialization of molecular rectifiers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: An example of a single-molecule rectifier.
Fig. 2: Examples of SAM-based molecular rectifiers.
Fig. 3: Schematic illustration of representative bilayer and multilayer molecular junctions.
Fig. 4: Examples of heterostructured molecular junctions for studying nanoscale rectification.
Fig. 5: Examples of MOF-based molecular junctions exhibiting current rectification characteristics.
Fig. 6: An example of a SURMOF-based rectifier.

Similar content being viewed by others

References

  1. Herrer, L., Martín, S. & Cea, P. Nanofabrication techniques in large-area molecular electronic devices. Appl. Sci. 10, 6064 (2020).

  2. Xiang, D., Wang, X., Jia, C., Lee, T. & Guo, X. Molecular-scale electronics: from concept to function. Chem. Rev. 116, 4318–4440 (2016).

    Article  CAS  Google Scholar 

  3. Bergren, A. J. et al. Musical molecules: the molecular junction as an active component in audio distortion circuits. J. Phys. Condens. Matter 28, 094011 (2016).

    Article  Google Scholar 

  4. Vilan, A. & Cahen, D. Chemical modification of semiconductor surfaces for molecular electronics. Chem. Rev. 117, 4624–4666 (2017).

    Article  CAS  Google Scholar 

  5. Kong, G. D. et al. Mixed molecular electronics: tunneling behaviors and applications of mixed self‐assembled monolayers. Adv. Electron. Mater. 6, 1901157 (2020).

    Article  CAS  Google Scholar 

  6. Liu, Y., Qiu, X., Soni, S. & Chiechi, R. C. Charge transport through molecular ensembles: recent progress in molecular electronics. Chem. Phys. Rev. 2, 021303 (2021).

    Article  Google Scholar 

  7. Fu, T., Zang, Y., Zou, Q., Nuckolls, C. & Venkataraman, L. Using deep learning to identify molecular junction characteristics. Nano Lett. 20, 3320–3325 (2020).

    Article  CAS  Google Scholar 

  8. Liao, K. C., Hsu, L. Y., Bowers, C. M., Rabitz, H. & Whitesides, G. M. Molecular series-tunneling junctions. J. Am. Chem. Soc. 137, 5948–5954 (2015).

    Article  CAS  Google Scholar 

  9. Belding, L. et al. Conformation, and charge tunneling through molecules in SAMs. J. Am. Chem. Soc. 143, 3481–3493 (2021).

    Article  CAS  Google Scholar 

  10. Liu, L. et al. Enhancement of intrinsic proton conductivity and aniline sensitivity by introducing dye molecules into the MOF channel. ACS Appl. Mater. Interf. 11, 16490–16495 (2019).

    Article  CAS  Google Scholar 

  11. Vilan, A., Aswal, D. & Cahen, D. Large-area, ensemble molecular electronics: motivation and challenges. Chem. Rev. 117, 4248–4286 (2017).

    Article  CAS  Google Scholar 

  12. Kumar, S. et al. Chemical locking in molecular tunneling junctions enables nonvolatile memory with large on–off ratios. Adv. Mater. 31, 1807831 (2019).

    Article  Google Scholar 

  13. Goswami, S. et al. Robust resistive memory devices using solution-processable metal-coordinated azo aromatics. Nat. Mater. 16, 1216–1224 (2017).

    Article  CAS  Google Scholar 

  14. Li, Y. et al. Gate controlling of quantum interference and direct observation of anti-resonances in single molecule charge transport. Nat. Mater. 18, 357–363 (2019).

    Article  CAS  Google Scholar 

  15. Diez-Perez, I. et al. Controlling single-molecule conductance through lateral coupling of π orbitals. Nat. Nanotechnol. 6, 226–231 (2011).

    Article  CAS  Google Scholar 

  16. Ho Choi, S., Kim, B. & Frisbie, C. D. Electrical resistance of long conjugated molecular wires. Science 320, 1482–1486 (2008).

    Article  Google Scholar 

  17. Gupta, R. et al. Electrochemical potential‐driven high‐throughput molecular electronic and spintronic devices: from molecules to applications. Angew. Chem. Int. Ed. 60, 26904–26921 (2021).

    Article  CAS  Google Scholar 

  18. Bonifas, A. P. & McCreery, R. L. Soft Au, Pt and Cu contacts for molecular junctions through surface-diffusion-mediated deposition. Nat. Nanotechnol. 5, 612–617 (2010).

    Article  CAS  Google Scholar 

  19. Love, J. C., Estroff, L. A., Kriebel, J. K., Nuzzo, R. G. & Whitesides, G. M. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem. Rev. 105, 1103–1170 (2005).

    Article  CAS  Google Scholar 

  20. Venkataraman, L., Klare, J. E., Nuckolls, C., Hybertsen, M. S. & Steigerwald, M. L. Dependence of single-molecule junction conductance on molecular conformation. Nature 442, 904–907 (2006).

    Article  CAS  Google Scholar 

  21. Jash, P., Parashar, R. K., Fontanesi, C. & Mondal, P. C. The importance of electrical impedance spectroscopy and equivalent circuit analysis on nanoscale molecular electronic devices. Adv. Funct. Mater. 32, 2109956 (2022).

    Article  CAS  Google Scholar 

  22. Chen, X. & Nijhuis, C. A. The unusual dielectric response of large area molecular tunnel junctions probed with impedance spectroscopy. Adv. Electron. Mater. 8, 2100495 (2021).

    Article  Google Scholar 

  23. Aviram, A. & Ratner, M. A. Molecular rectifiers. Chem. Phys. Lett. 29, 277–283 (1974). This paper describes the first theoretical model of a molecular rectifier; the rectification behaviour of such a system in the presence of an electric field is calculated.

    Article  CAS  Google Scholar 

  24. Elbing, M. et al. A single-molecule diode. Proc. Natl Acad. Sci. USA 102, 8815–8820 (2005).

    Article  CAS  Google Scholar 

  25. Xie, Z., Bâldea, I. & Frisbie, C. D. Why one can expect large rectification in molecular junctions based on alkane monothiols and why rectification is so modest. Chem. Sci. 9, 4456–4467 (2018).

    Article  CAS  Google Scholar 

  26. Hnid, I. et al. Unprecedented ON/OFF ratios in photoactive diarylethene-bisthienylbenzene molecular junctions. Nano Lett. 21, 7555–7560 (2021).

    Article  CAS  Google Scholar 

  27. Park, J. et al. Rectification in molecular tunneling junctions based on alkanethiolates with bipyridine–metal complexes. J. Am. Chem. Soc. 143, 2156–2163 (2021).

    Article  CAS  Google Scholar 

  28. Bâldea, I. Why asymmetric molecular coupling to electrodes cannot be at work in real molecular rectifiers. Phys. Rev. B 103, 195408 (2021).

    Article  Google Scholar 

  29. Bâldea, I. Are asymmetric SAM‐induced work function modifications relevant for real molecular rectifiers? Adv. Theory Simul. 5, 2200077 (2022).

    Article  Google Scholar 

  30. Reichert, J. et al. Driving current through single organic molecules. Phys. Rev. Lett. 88, 176804 (2002).

    Article  CAS  Google Scholar 

  31. Shpaisman, H. et al. Electronic contact deposition onto organic molecular monolayers: can we detect metal penetration? Adv. Funct. Mater. 20, 2181–2188 (2010).

    Article  CAS  Google Scholar 

  32. Kushmerick, J. G. et al. Metal–molecule contacts and charge transport across monomolecular layers: measurement and theory. Phys. Rev. Lett. 89, 086802 (2002).

    Article  CAS  Google Scholar 

  33. Taylor, J., Brandbyge, M. & Stokbro, K. Theory of rectification in tour wires: the role of electrode coupling. Phys. Rev. Lett. 89, 138301 (2002).

    Article  Google Scholar 

  34. Metzger, R. M. Unimolecular electronics. Chem. Rev. 115, 5056–5115 (2015).

    Article  CAS  Google Scholar 

  35. Batra, A. et al. Tuning rectification in single-molecular diodes. Nano Lett. 22, 6233–6237 (2013).

    Article  Google Scholar 

  36. Ding, W., Negre, C. F. A., Vogt, L. & Batista, V. S. Single molecule rectification induced by the asymmetry of a single frontier orbital. J. Chem. Theory Comput. 10, 3393–3400 (2014).

    Article  CAS  Google Scholar 

  37. Díez-Pérez, I. et al. Rectification and stability of a single molecular diode with controlled orientation. Nat. Chem. 1, 635–641 (2009).

    Article  Google Scholar 

  38. Hipps, K. W. Molecular electronics: it’s all about contacts. Science 294, 536–537 (2001).

    Article  CAS  Google Scholar 

  39. Van Dyck, C. & Ratner, M. A. Molecular rectifiers: a new design based on asymmetric anchoring moieties. Nano Lett. 15, 1577–1584 (2015).

    Article  Google Scholar 

  40. Zhang, G., Ratner, M. A. & Reuter, M. G. Is molecular rectification caused by asymmetric electrode couplings or by a molecular bias drop? J. Phys. Chem. C 119, 6254–6260 (2015).

    Article  CAS  Google Scholar 

  41. Kim, T., Liu, Z.-F., Lee, C., Neaton, J. B. & Venkataraman, L. Charge transport and rectification in molecular junctions formed with carbon-based electrodes. Proc. Natl Acad. Sci. USA 111, 10928–10932 (2014).

    Article  CAS  Google Scholar 

  42. Stokbro, K., Taylor, J. & Brandbyge, M. Do Aviram−Ratner diodes rectify? J. Am. Chem. Soc. 125, 3674–3675 (2003).

    Article  CAS  Google Scholar 

  43. Yuan, L., Breuer, R., Jiang, L., Schmittel, M. & Nijhuis, C. A. A molecular diode with a statistically robust rectification ratio of three orders of magnitude. Nano Lett. 15, 5506–5512 (2015).

    Article  CAS  Google Scholar 

  44. Chen, X. et al. Molecular diodes with rectification ratios exceeding 105 driven by electrostatic interactions. Nat. Nanotech. 12, 797–803 (2017).

    Article  CAS  Google Scholar 

  45. Han, Y. et al. Electric-field-driven dual-functional molecular switches in tunnel junctions. Nat. Mater. 19, 843–848 (2020). This is a report of a molecular tunnel junction featuring self-assembled monolayers; the junction showed unprecedented dual functionality of a diode and a variable resistor.

    Article  CAS  Google Scholar 

  46. Thompson, D., Barco, E., Del & Nijhuis, C. A. Design principles of dual-functional molecular switches in solid-state tunnel junctions. Appl. Phys. Lett. 117, 030502 (2020).

    Article  CAS  Google Scholar 

  47. Perrin, M. L. et al. Single-molecule resonant tunneling diode. J. Phys. Chem. C 119, 5697–5702 (2015).

    Article  CAS  Google Scholar 

  48. Quek, S. Y., Choi, H. J., Louie, S. G. & Neaton, J. B. Length dependence of conductance in aromatic single-molecule junctions. Nano Lett. 9, 3949–3953 (2009).

    Article  CAS  Google Scholar 

  49. Krive, I. V., Palevski, A., Shekhter, R. I. & Jonson, M. Resonant tunneling of electrons in quantum wires (review). Low. Temp. Phys. 36, 119–141 (2010).

    Article  CAS  Google Scholar 

  50. Pistolesi, F., Blanter, Y. M. & Martin, I. Self-consistent theory of molecular switching. Phys. Rev. B 78, 1–12 (2008).

    Article  Google Scholar 

  51. Jan Van Der Molen, S. & Liljeroth, P. Charge transport through molecular switches. J. Phys. Condens. Matter 22, 133001 (2010).

  52. Petta, J. R., Slater, S. K. & Ralph, D. C. Spin-dependent transport in molecular tunnel junctions. Phys. Rev. Lett. 93, 2–5 (2004).

    Article  Google Scholar 

  53. Rocha, A. R. et al. Towards molecular spintronics. Nat. Mater. 4, 335–339 (2005).

    Article  CAS  Google Scholar 

  54. Wang, L., Wang, L., Zhang, L. & Xiang, D. Advance of mechanically controllable break junction for molecular electronics. Top. Curr. Chem. 375, 61 (2017).

    Article  Google Scholar 

  55. Gehring, P., Thijssen, J. M. & van der Zant, H. S. J. Single-molecule quantum-transport phenomena in break junctions. Nat. Rev. Phys. 1, 381–396 (2019).

    Article  Google Scholar 

  56. Caneva, S. et al. Mechanically controlled quantum interference in graphene break junctions. Nat. Nanotechnol. 13, 1126–1131 (2018).

    Article  CAS  Google Scholar 

  57. Bellec, A., Lagoute, J. & Repain, V. Molecular electronics: scanning tunneling microscopy and single-molecule devices. C. R. Chim. 21, 1287–1299 (2018).

    Article  CAS  Google Scholar 

  58. Bouvron, S. et al. Charge transport in a single molecule transistor probed by scanning tunneling microscopy. Nanoscale 10, 1487–1493 (2018).

    Article  CAS  Google Scholar 

  59. Wold, D. J. & Frisbie, C. D. Formation of metal–molecule–metal tunnel junctions: microcontacts to alkanethiol monolayers with a conducting AFM tip. J. Am. Chem. Soc. 122, 2970–2971 (2000).

    Article  CAS  Google Scholar 

  60. Wold, D. J., Frisbie, C. D. & January, R. V. Fabrication and characterization of metal–molecule–metal junctions by conducting probe atomic force microscopy. J. Am. Chem. Soc. 123, 5549–5556 (2001).

    Article  CAS  Google Scholar 

  61. Kim, Beebe, J. M., Jun, Y., Zhu, X.-Y. & Frisbie, C. D. Correlation between HOMO alignment and contact resistance in molecular junctions: aromatic thiols versus aromatic isocyanides. J. Am. Chem. Soc. 128, 4970–4971 (2006).

    Article  CAS  Google Scholar 

  62. Pasupathy, A. N. et al. The Kondo effect in the presence of ferromagnetism. Science 306, 86–89 (2004).

    Article  CAS  Google Scholar 

  63. Vazquez, H. et al. Probing the conductance superposition law in single-molecule circuits with parallel paths. Nat. Nanotechnol. 7, 663–667 (2012).

    Article  CAS  Google Scholar 

  64. Reddy, P., Jang, S.-Y., Rachel, A. & Segalman, A. M. Thermoelectricity in molecular junctions. Science 315, 1568–1571 (2007).

    Article  CAS  Google Scholar 

  65. Rodriguez-Gonzalez, S. et al. Homo level pinning in molecular junctions: joint theoretical and experimental evidence. J. Phys. Chem. Lett. 9, 2394–2403 (2018).

    Article  CAS  Google Scholar 

  66. Xin, N. et al. Concepts in the design and engineering of single-molecule electronic devices. Nat. Rev. Phys. 1, 211–230 (2019).

    Article  Google Scholar 

  67. Kushmerick, J. G. et al. Vibronic contributions to charge transport across molecular junctions. Nano Lett. 4, 639–642 (2004).

    Article  CAS  Google Scholar 

  68. Tian, J.-H. et al. Study of molecular junctions with a combined surface-enhanced Raman and mechanically controllable break junction method. J. Am. Chem. Soc. 128, 14748–14749 (2006).

    Article  CAS  Google Scholar 

  69. Iwane, M., Fujii, S. & Kiguchi, M. Molecular diode studies based on a highly sensitive molecular measurement technique. Sensors 17, 956 (2017).

    Article  Google Scholar 

  70. Aragonès, A. C. et al. Single-molecule electrical contacts on silicon electrodes under ambient conditions. Nat. Commun. 8, 15056 (2017). A very high and reproducible rectification ratio was demonstrated in a single molecule junction under ambient conditions.

    Article  Google Scholar 

  71. Atesci, H. et al. Humidity-controlled rectification switching in ruthenium-complex molecular junctions. Nat. Nanotechnol. 13, 117–121 (2018).

    Article  CAS  Google Scholar 

  72. Xu, K. & Xie, S. Self-assembled molecular devices: a minireview. Instrum. Sci. Technol. 48, 86–111 (2020).

    Article  CAS  Google Scholar 

  73. Schmaltz, T., Sforazzini, G., Reichert, T. & Frauenrath, H. Self-assembled monolayers as patterning tool for organic electronic devices. Adv. Mater. 29, 1605286 (2017).

    Article  Google Scholar 

  74. Singh, M., Kaur, N. & Comini, E. The role of self-assembled monolayers in electronic devices. J. Mater. Chem. C 8, 3938–3955 (2020).

    Article  CAS  Google Scholar 

  75. Casalini, S., Bortolotti, C. A., Leonardi, F. & Biscarini, F. Self-assembled monolayers in organic electronics. Chem. Soc. Rev. 46, 40–71 (2017).

    Article  CAS  Google Scholar 

  76. Eck, W. 3.8.10 Chemisorption of polyatomic chain-like hydrocarbons on metals and semiconductors. In Adsorbed Layers on Surfaces (ed. Bonzel, H. P.) 371–385 (Springer, 2005).

  77. Yuan, L. et al. Controlling the direction of rectification in a molecular diode. Nat. Commun. 6, 6324 (2015).

    Article  CAS  Google Scholar 

  78. Yuan, L., Thompson, D., Cao, L., Nerngchangnong, N. & Nijhuis, C. A. One carbon matters: the origin and reversal of odd–even effects in molecular diodes with self-assembled monolayers of ferrocenyl-alkanethiolates. J. Phys. Chem. C 119, 17910–17919 (2015).

    Article  CAS  Google Scholar 

  79. Wang, L. et al. Unraveling the failure modes of molecular diodes: the importance of the monolayer formation protocol and anchoring group to minimize leakage currents. J. Phys. Chem. C 123, 19759–19767 (2019).

    Article  CAS  Google Scholar 

  80. Starr, R. L. et al. Gold–carbon contacts from oxidative addition of aryl iodides. J. Am. Chem. Soc. 142, 7128–7133 (2020).

    Article  CAS  Google Scholar 

  81. Haj-Yahia, A. E. et al. Substituent variation drives metal/monolayer/semiconductor junctions from strongly rectifying to ohmic behavior. Adv. Mater. 25, 702–706 (2013).

    Article  CAS  Google Scholar 

  82. Nguyen, Q. Van, Xie, Z. & Daniel Frisbie, C. Quantifying molecular structure-tunneling conductance relationships: oligophenylene dimethanethiol vs oligophenylene dithiol molecular junctions. J. Phys. Chem. C 125, 4292–4298 (2021).

    Article  CAS  Google Scholar 

  83. Vilan, A., Ghabboun, J. & Cahen, D. Molecule–metal polarization at rectifying GaAs interfaces. J. Phys. Chem. B 107, 6360–6376 (2003).

    Article  CAS  Google Scholar 

  84. Sachan, P. & Mondal, P. C. Versatile electrochemical approaches towards the fabrication of molecular electronic devices. Analyst 145, 1563–1582 (2020).

    Article  CAS  Google Scholar 

  85. Nijhuis, C. A., Reus, W. F. & Whitesides, G. M. Molecular rectification in metal–SAM–metal oxide–metal junctions. J. Am. Chem. Soc. 131, 17814–17827 (2009).

    Article  CAS  Google Scholar 

  86. Nijhuis, C. A., Reus, W. F. & Whitesides, G. M. Mechanism of rectification in tunneling junctions based on molecules with asymmetric potential drops. J. Am. Chem. Soc. 132, 18386–18401 (2010).

    Article  CAS  Google Scholar 

  87. Nijhuis, C. A., Reus, W. F., Barber, J. R., Dickey, M. D. & Whitesides, G. M. Charge transport and rectification in arrays of SAM-based tunneling junctions. Nano Lett. 10, 3611–3619 (2010).

    Article  CAS  Google Scholar 

  88. Yoon, H. J. et al. Rectification in tunneling junctions: 2,2’-bipyridyl-terminated n-alkanethiolates. J. Am. Chem. Soc. 136, 17155–17162 (2014).

    Article  CAS  Google Scholar 

  89. Park, J. et al. Rectification in molecular tunneling junctions based on alkanethiolates with bipyridine–metal complexes. J. Am. Chem. Soc. 143, 2156–2163 (2021).

    Article  CAS  Google Scholar 

  90. Qiu, L. et al. Rectification of current responds to incorporation of fullerenes into mixed-monolayers of alkanethiolates in tunneling junctions. Chem. Sci. 8, 2365–2372 (2017).

    Article  CAS  Google Scholar 

  91. Asyuda, A., Das, S., Lang, H., Zojer, E. & Zharnikov, M. Bias‐triggered conductivity switching and high effective rectification in metallocene‐based molecular junctions. Adv. Electron. Mater. 8, 2200296 (2022). Custom-designed molecular films of ferrocenyl- and ruthenocenyl-thiolates showed two different conductivity states, corresponding to an effective rectification ratio of more than 103 at V = ±0.1 V.

    Article  CAS  Google Scholar 

  92. Panda, S. S., Katz, H. E. & Tovar, J. D. Solid-state electrical applications of protein and peptide based nanomaterials. Chem. Soc. Rev. 47, 3640–3658 (2018).

    Article  CAS  Google Scholar 

  93. Jia, C. et al. Redox control of charge transport in vertical ferrocene molecular tunnel junctions. Chem 6, 1172–1182 (2020).

    Article  CAS  Google Scholar 

  94. Kong, G. D. et al. Interstitially mixed self-assembled monolayers enhance electrical stability of molecular junctions. Nano Lett. 21, 3162–3169 (2021).

    Article  CAS  Google Scholar 

  95. Fereiro, J. A., Bendikov, T., Pecht, I., Sheves, M. & Cahen, D. Protein binding and orientation matter: bias-induced conductance switching in a mutated azurin junction. J. Am. Chem. Soc. 142, 19217–19225 (2020).

    Article  CAS  Google Scholar 

  96. Wang, K. et al. Structure determined charge transport in single DNA molecule break junctions. Chem. Sci. 5, 3425–3431 (2014).

    Article  CAS  Google Scholar 

  97. Liu, S. et al. Direct conductance measurement of individual metallo-DNA duplexes within single-molecule break junctions. Angew. Chem. Int. Edn 50, 8886–8890 (2011).

    Article  CAS  Google Scholar 

  98. Hihath, J., Guo, S., Zhang, P. & Tao, N. Effects of cytosine methylation on DNA charge transport. J. Phys. Condens. Matter 24, 164204 (2012).

    Article  Google Scholar 

  99. Guo, C. et al. Molecular rectifier composed of DNA with high rectification ratio enabled by intercalation. Nat. Chem. 8, 484–490 (2016).

    Article  CAS  Google Scholar 

  100. Oliveira, J. I. N., Albuquerque, E. L., Fulco, U. L., Mauriz, P. W. & Sarmento, R. G. Electronic transport through oligopeptide chains: an artificial prototype of a molecular diode. Chem. Phys. Lett. 612, 14–19 (2014).

    Article  CAS  Google Scholar 

  101. Feng, M. et al. Recent advances in multilayer‐structure dielectrics for energy storage application. Adv. Sci. 8, 2102221 (2021).

    Article  CAS  Google Scholar 

  102. Hwang, S., Lee, E. J., Song, D. & Jeong, N. C. High proton mobility with high directionality in isolated channels of MOF-74. ACS Appl. Mater. Interf. 10, 35354–35660 (2018).

    Article  CAS  Google Scholar 

  103. Li, C. et al. Recent development and applications of electrical conductive MOFs. Nanoscale 13, 485–509 (2021).

    Article  CAS  Google Scholar 

  104. Wang, M., Dong, R. & Feng, X. Two-dimensional conjugated metal-organic frameworks (2Dc-MOFs): chemistry and function for MOFtronics. Chem. Soc. Rev. 50, 2764–2793 (2021).

    Article  CAS  Google Scholar 

  105. Skorupskii, G. & Dincă, M. Electrical conductivity in a porous, cubic rare-earth catecholate. J. Am. Chem. Soc. 142, 6920–6924 (2020).

    Article  CAS  Google Scholar 

  106. Mukherjee, B., Mohanta, K. & Pal, A. J. Tuning of molecular rectification in donor/acceptor assemblies via supramolecular structures. Chem. Mater. 18, 3302–3307 (2006).

    Article  CAS  Google Scholar 

  107. Smerdon, J. A., Giebink, N. C., Guisinger, N. P., Darancet, P. & Guest, J. R. Large spatially resolved rectification in a donor–acceptor molecular heterojunction. Nano Lett. 16, 2603–2607 (2016).

    Article  CAS  Google Scholar 

  108. Tyagi, P. Multilayer edge molecular electronics devices: a review. J. Mater. Chem. 21, 4733 (2011).

    Article  CAS  Google Scholar 

  109. Sergi Lopes, C., Merces, L., de Oliveira, R. F., de Camargo, D. H. S. & Bof Bufon, C. C. Rectification ratio and direction controlled by temperature in copper phthalocyanine ensemble molecular diodes. Nanoscale 12, 10001–10009 (2020).

    Article  CAS  Google Scholar 

  110. Bayat, A., Lacroix, J.-C. & McCreery, R. L. Control of electronic symmetry and rectification through energy level variations in bilayer molecular junctions. J. Am. Chem. Soc. 138, 12287–12296 (2016).

    Article  CAS  Google Scholar 

  111. Li, T. et al. Integrated molecular diode as 10 MHz half-wave rectifier based on an organic nanostructure heterojunction. Nat. Commun. 11, 3592 (2020).

    Article  Google Scholar 

  112. Chandra Mondal, P., Tefashe, U. M. & McCreery, R. L. Internal electric field modulation in molecular electronic devices by atmosphere and mobile ions. J. Am. Chem. Soc. 140, 7239–7247 (2018).

    Article  CAS  Google Scholar 

  113. Hnid, I. et al. Combining photomodulation and rectification in coordination molecular wires based on dithienylethene molecular junctions. J. Phys. Chem. C 124, 26304–26309 (2020).

    Article  CAS  Google Scholar 

  114. Smith, S. R. & McCreery, R. L. Photocurrent, photovoltage, and rectification in large-area bilayer molecular electronic junctions. Adv. Electron. Mater. 4, 1800093 (2018).

    Article  Google Scholar 

  115. James, D. D., Bayat, A., Smith, S. R., Lacroix, J. C. & McCreery, R. L. Nanometric building blocks for robust multifunctional molecular junctions. Nanoscale Horiz. 3, 45–52 (2018).

    Article  CAS  Google Scholar 

  116. Qiu, X., Rousseva, S., Ye, G., Hummelen, J. C. & Chiechi, R. C. In operando modulation of rectification in molecular tunneling junctions comprising reconfigurable molecular self-assemblies. Adv. Mater. 33, e2006109 (2021).

    Article  Google Scholar 

  117. Seo, S. et al. Recent progress in artificial synapses based on two-dimensional van der Waals materials for brain-inspired computing. ACS Appl. Electron. Mater. 2, 371–388 (2020).

    Article  CAS  Google Scholar 

  118. Wu, C., Kim, T. W., Choi, H. Y., Strukov, D. B. & Yang, J. J. Flexible three-dimensional artificial synapse networks with correlated learning and trainable memory capability. Nat. Commun. 8, 752 (2017).

    Article  Google Scholar 

  119. Gupta, R., Jash, P. & Mondal, P. C. Nanoscale molecular layers for memory devices: challenges and opportunities for commercialization. J. Mater. Chem. C 9, 11497–11516 (2021).

    Article  CAS  Google Scholar 

  120. Yang, C. et al. An optically modulated organic schottky‐barrier planar‐diode‐based artificial synapse. Adv. Opt. Mater. 8, 2000153 (2020). This work highlights how trapped charges in the molecular layers can be useful for switching and memory applications.

    Article  CAS  Google Scholar 

  121. Xie, Z., Bâldea, I., Smith, C. E., Wu, Y. & Frisbie, C. D. Experimental and theoretical analysis of nanotransport in oligophenylene dithiol junctions as a function of molecular length and contact work function. ACS Nano 9, 8022–8036 (2015).

    Article  CAS  Google Scholar 

  122. Kilgour, M. & Segal, D. Charge transport in molecular junctions: from tunneling to hopping with the probe technique. J. Chem. Phys. 143, 024111 (2015).

    Article  Google Scholar 

  123. Thomas, J. O. et al. Understanding resonant charge transport through weakly coupled single-molecule junctions. Nat. Commun. 10, 4628 (2019).

    Article  Google Scholar 

  124. Liu, J. et al. A rectifying diode with hysteresis effect from an electroactive hybrid of carbazole-functionalized polystyrene with CdTe nanocrystals via electrostatic interaction. Sci. China Chem. 53, 2324–2328 (2010).

    Article  CAS  Google Scholar 

  125. Wang, L. et al. Rectification-regulated memristive characteristics in electron-type CuPc-based element for electrical synapse. Adv. Electron. Mater. 3, 1700063 (2017).

    Article  Google Scholar 

  126. Lu, H. et al. Polymer-carbon dot hybrid structure for a self-rectifying memory device by energy level offset and doping. RSC Adv. 8, 13917–13920 (2018).

    Article  CAS  Google Scholar 

  127. Mohanta, K., Batabyal, S. K. & Pal, A. J. Organization of organic molecules with inorganic nanoparticles: hybrid nanodiodes. Adv. Funct. Mater. 18, 687–693 (2008).

    Article  CAS  Google Scholar 

  128. Banerjee, A., Kundu, B. & Pal, A. J. Hybrid heterojunctions between a 2D transition metal dichalcogenide and metal phthalocyanines: their energy levels: vis-à-vis current rectification. Phys. Chem. Chem. Phys. 19, 28450–28457 (2017).

    Article  CAS  Google Scholar 

  129. Shin, J. et al. Tunable rectification in a molecular heterojunction with two-dimensional semiconductors. Nat. Commun. 11, 1412 (2020).

    Article  CAS  Google Scholar 

  130. Schoedel, A., Li, M., Li, D., O’Keeffe, M. & Yaghi, O. M. Structures of metal–organic frameworks with rod secondary building units. Chem. Rev. 116, 12466–12535 (2016).

    Article  CAS  Google Scholar 

  131. Ji, Z. et al. From molecules to frameworks to superframework crystals. Adv. Mater. 33, 2103808 (2021).

    Article  CAS  Google Scholar 

  132. Kirk, M. L. et al. Heterospin biradicals provide insight into molecular conductance and rectification. Chem. Sci. 8, 5408–5415 (2017).

    Article  CAS  Google Scholar 

  133. Sung Cho, H. et al. Extra adsorption and adsorbate superlattice formation in metal-organic frameworks. Nature 527, 503–507 (2015).

    Article  CAS  Google Scholar 

  134. Garg, S. et al. Conductance photoswitching of metal–organic frameworks with embedded spiropyran. Angew. Chem. Int. Ed. 58, 1193–1197 (2019).

    Article  CAS  Google Scholar 

  135. Sheberla, D. et al. Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Nat. Mater. 16, 220–224 (2017).

    Article  CAS  Google Scholar 

  136. Dou, J.-H. et al. Atomically precise single-crystal structures of electrically conducting 2D metal–organic frameworks. Nat. Mater. 20, 222–228 (2021).

    Article  CAS  Google Scholar 

  137. Sun, L., Campbell, M. G. & Dincă, M. Electrically conductive porous metal–organic frameworks. Angew. Chem. Int. Ed. 55, 3566–3579 (2016).

    Article  CAS  Google Scholar 

  138. Stavila, V., Talin, A. A. & Allendorf, M. D. MOF-based electronic and opto-electronic devices. Chem. Soc. Rev. 43, 5994–6010 (2014).

    Article  CAS  Google Scholar 

  139. Johnson, E. M., Ilic, S. & Morris, A. J. Design strategies for enhanced conductivity in metal-organic frameworks. ACS Cent. Sci. 7, 445–453 (2021).

    Article  CAS  Google Scholar 

  140. Neumann, T. et al. Superexchange charge transport in loaded metal organic frameworks. ACS Nano 10, 7085–7093 (2016).

    Article  CAS  Google Scholar 

  141. Liu, J. et al. Electric transport properties of surface-anchored metal–organic frameworks and the effect of ferrocene loading. ACS Appl. Mater. Interf. 7, 9824–9830 (2015).

    Article  CAS  Google Scholar 

  142. Meng, X., Wang, H. N., Wang, L. S., Zou, Y. H. & Zhou, Z. Y. Enhanced proton conductivity of a MOF-808 framework through anchoring organic acids to the zirconium clusters by post-synthetic modification. CrystEngComm 21, 3146–3150 (2019).

    Article  CAS  Google Scholar 

  143. Yang, S. et al. Enhancing MOF performance through the introduction of polymer guests. Coord. Chem. Rev. 427, 213525 (2021).

    Article  CAS  Google Scholar 

  144. Xie, L. S., Skorupskii, G. & Dincă, M. Electrically conductive metal–organic frameworks. Chem. Rev. 120, 8536–8580 (2020).

    Article  CAS  Google Scholar 

  145. Halder, S. et al. A Cd(II)-based MOF as a photosensitive Schottky diode: experimental and theoretical studies. Dalton Trans. 46, 11239–11249 (2017).

    Article  CAS  Google Scholar 

  146. Ghorai, P. et al. The development of a promising photosensitive Schottky barrier diode using a novel Cd(II) based coordination polymer. Dalton Trans. 46, 13531–13543 (2017).

    Article  CAS  Google Scholar 

  147. Prasoon, A. et al. Achieving current rectification ratios ≥105 across thin films of coordination polymer. Chem. Sci. 10, 10040–10047 (2019). This study reports a high rectification ratio of 105 for a device featuring a coordination polymer.

    Article  CAS  Google Scholar 

  148. Das, K. S. et al. Utilization of counter anions for charge transportation in the electrical device fabrication of Zn(II) metal–organic frameworks. Dalton Trans. 49, 17005–17016 (2020).

    Article  CAS  Google Scholar 

  149. Cao, L.-A. et al. A highly oriented conductive MOF thin film-based Schottky diode for self-powered light and gas detection. J. Mater. Chem. A 8, 9085–9090 (2020).

    Article  CAS  Google Scholar 

  150. Chandresh, A., Liu, X., Wöll, C. & Heinke, L. Programmed molecular assembly of abrupt crystalline organic/organic heterointerfaces yielding metal‐organic framework diodes with large on‐off ratios. Adv. Sci. 8, 2001884 (2021). Demonstration of a p–n-heterojunction comprising n-conducting fullerene-based and p-conducting anthracene-based SURMOFs. These junctions showed a diode-like behaviour with an RR value of about 106.

    Article  CAS  Google Scholar 

  151. Goddard, W. A., Brenner, D., Lyshevski, S. E. & Iafrate, G. J. Handbook of Nanoscience, Engineering, and Technology (CRC Press, 2007).

  152. Trasobares, J., Vuillaume, D., Théron, D. & Clément, N. A 17 GHz molecular rectifier. Nat. Commun. 7, 12850 (2016).

    Article  CAS  Google Scholar 

  153. McCreery, R. L. Carbon-based molecular junctions for practical molecular electronics. Acc. Chem. Res. 55, 2766–2779 (2022).

    Article  CAS  Google Scholar 

  154. Jeong, H. et al. Redox-induced asymmetric electrical characteristics of ferrocene-alkanethiolate molecular devices on rigid and flexible substrates. Adv. Funct. Mater. 24, 2472–2480 (2014).

    Article  CAS  Google Scholar 

  155. Li, M. et al. Performance investigation of multilayer MoS2 thin-film transistors fabricated via mask-free optically induced electrodeposition. ACS Appl. Mater. Interf. 9, 8361–8370 (2017).

    Article  CAS  Google Scholar 

  156. Byeon, S. E., Kim, M. & Yoon, H. J. Maskless arbitrary writing of molecular tunnel junctions. ACS Appl. Mater. Interf. 9, 40556–40563 (2017).

    Article  CAS  Google Scholar 

  157. Kim, J. S. et al. Schottky-barrier-controllable graphene electrode to boost rectification in organic vertical P–N junction photodiodes. Adv. Funct. Mater. 27, 1704475 (2017).

    Article  Google Scholar 

  158. WADA, Y. Prospects for single-molecule information-processing devices for the next paradigm. Ann. N. Y. Acad. Sci. 960, 39–61 (2006).

    Article  Google Scholar 

  159. Wan, A. et al. Arrays of high quality SAM-based junctions and their application in molecular diode based logic. Nanoscale 7, 19547–19556 (2015).

    Article  CAS  Google Scholar 

  160. Moth-Poulsen, K. & Bjørnholm, T. Molecular electronics with single molecules in solid-state devices. Nat. Nanotechnol. 4, 551–556 (2009).

    Article  CAS  Google Scholar 

  161. Ghosh, A. W., Zahid, F., Damle, P. S. & Datta, S. Insights into molecular conduction from IV asymmetry. Preprint at arXiv https://doi.org/10.48550/arXiv.cond-mat/0202519 (2002).

    Article  Google Scholar 

  162. Stafford, C. A. Nonlinear conductance in resonant tunneling. Phys. Rev. Lett. 77, 2770–2773 (1996).

    Article  CAS  Google Scholar 

  163. Datta, S. et al. Current–voltage characteristics of self-assembled monolayers by scanning tunneling microscopy. Phys. Rev. Lett. 79, 2530–2533 (1997).

    Article  CAS  Google Scholar 

  164. Capozzi, B. et al. Single-molecule diodes with high rectification ratios through environmental control. Nat. Nanotechnol. 10, 522–527 (2015).

    Article  CAS  Google Scholar 

  165. Mujica, V., Roitberg, A. E. & Ratner, M. Molecular wire conductance: electrostatic potential spatial profile. J. Chem. Phys. 112, 6834–6839 (2000).

    Article  CAS  Google Scholar 

  166. Van Dyck, C. & Bergren, A. J. Large built-in fields control the electronic properties of nanoscale molecular devices with dipolar structures. Adv. Electron. Mater. 4, 1700656 (2018).

    Article  Google Scholar 

  167. Hihath, J. et al. Inelastic transport and low-bias rectification in a single-molecule diode. ACS Nano 5, 8331–8339 (2011).

    Article  CAS  Google Scholar 

  168. Chen, X. et al. On-wire lithography-generated molecule-based transport junctions: a new testbed for molecular electronics. J. Am. Chem. Soc. 130, 8166–8168 (2008).

    Article  CAS  Google Scholar 

  169. Baldo, M. ~A. & Forrest, S. ~R. Interface-limited injection in amorphous organic semiconductors. Phys. Rev. B 64, 85201 (2001).

    Article  Google Scholar 

  170. Jeong, H. et al. An in-depth study of redox-induced conformational changes in charge transport characteristics of a ferrocene-alkanethiolate molecular electronic junction: temperature-dependent transition voltage spectroscopy analysis. J. Phys. Chem. C 120, 3564–3572 (2016).

    Article  CAS  Google Scholar 

  171. Kornilovitch, P. E., Bratkovsky, A. M. & Stanley Williams, R. Current rectification by molecules with asymmetric tunneling barriers. Phys. Rev. B 66, 165436 (2002). This is the original proposal of rectification based on an asymmetric voltage drop.

    Article  Google Scholar 

  172. Van Nguyen, Q. Controlling rectification in metal–molecules–metal junctions based on 11-(ferrocenyl) undecanethiol: effects of the electronic coupling strength. J. Phys. Chem. C 126, 6405–6412 (2022).

    Article  Google Scholar 

  173. Fischer, C. M., Burghard, M., Roth, S. & v Klitzing, K. Organic quantum wells: molecular rectification and single-electron tunnelling. Europhys. Lett. 28, 129–134 (1994).

    Article  CAS  Google Scholar 

  174. Metzger, R. M. Unimolecular rectifiers: present status. Chem. Phys. 326, 176–187 (2006).

    Article  CAS  Google Scholar 

  175. Peterson, I. R., Vuillaume, D. & Metzger, R. M. Analytical model for molecular-scale charge transport. J. Phys. Chem. A 105, 4702–4707 (2001).

    Article  CAS  Google Scholar 

  176. Solomon, G. C., Andrews, D. Q., Van Duyne, R. P. & Ratner, M. A. When things are not as they seem: quantum interference turns molecular electron transfer “rules” upside down. J. Am. Chem. Soc. 130, 7788–7789 (2008).

    Article  CAS  Google Scholar 

  177. Thong, A. Z., Shaffer, M. S. P. & Horsfield, A. P. Rectification and negative differential resistance via orbital level pinning. Sci. Rep. 8, 9120 (2018).

    Article  Google Scholar 

  178. Kang, H. et al. Interplay of Fermi level pinning, marcus inverted transport, and orbital gating in molecular tunneling junctions. J. Phys. Chem. Lett. 11, 8597–8603 (2020). An important example of anti-Aviram–Ratner rectifier achieved by Fermi-level pinning.

    Article  CAS  Google Scholar 

  179. Migliore, A., Schiff, P. & Nitzan, A. On the relationship between molecular state and single electron pictures in simple electrochemical junctions. Phys. Chem. Chem. Phys. 14, 13746 (2012).

    Article  CAS  Google Scholar 

  180. Kang, H., Kong, G. D. & Yoon, H. J. Solid state dilution controls marcus inverted transport in rectifying molecular junctions. J. Phys. Chem. Lett. 12, 982–988 (2021).

    Article  CAS  Google Scholar 

  181. Saygun, T., Bylin, J., Hammar, H. & Fransson, J. Voltage-induced switching dynamics of a coupled spin pair in a molecular junction. Nano Lett. 16, 2824–2829 (2016).

    Article  CAS  Google Scholar 

  182. Delprat, S. et al. Molecular spintronics: the role of spin-dependent hybridization. J. Phys. D 51, 473001 (2018).

    Article  Google Scholar 

  183. Slota, M. & Bogani, L. Combining molecular spintronics with electron paramagnetic resonance: the path towards single-molecule pulsed spin spectroscopy. Appl. Magn. Reson. 51, 1357–1409 (2020).

    Article  CAS  Google Scholar 

  184. Mujica, V., Ratner, M. A. & Nitzan, A. Molecular rectification: why is it so rare? Chem. Phys. 281, 147–150 (2002).

    Article  CAS  Google Scholar 

  185. Zhao, P. et al. Large low bias negative differential resistance in an endohedral Li@C60 dimer junction. J. Phys. Chem. C 116, 7968–7974 (2012).

    Article  CAS  Google Scholar 

  186. Kong, G. D., Byeon, S. E., Jang, J., Kim, J. W. & Yoon, H. J. Electronic mechanism of in situ inversion of rectification polarity in supramolecular engineered monolayer. J. Am. Chem. Soc. 144, 7966–7971 (2022).

    Article  CAS  Google Scholar 

  187. Polakovsky, A., Showman, J., Valdiviezo, J. & Palma, J. L. Quantum interference enhances rectification behavior of molecular devices. Phys. Chem. Chem. Phys. 23, 1550–1557 (2021).

    Article  CAS  Google Scholar 

  188. Han, B. et al. Systematic modulation of charge transport in molecular devices through facile control of molecule–electrode coupling using a double self-assembled monolayer nanowire junction. J. Am. Chem. Soc. 142, 9708–9717 (2020).

    CAS  Google Scholar 

  189. Troisi, A. & Ratner, M. A. Molecular rectification through electric field induced conformational changes. J. Am. Chem. Soc. 124, 14528–14529 (2002).

    Article  CAS  Google Scholar 

  190. Ai, Y. et al. In-place modulation of rectification in tunneling junctions comprising self-assembled monolayers. Nano Lett. 18, 7552–7559 (2018).

    Article  CAS  Google Scholar 

  191. Szydlo, N., Chartier, E., Proust, N., Magariño, J. & Kaplan, D. High current post‐hydrogenated chemical vapor deposited amorphous silicon p‐i‐n diodes. Appl. Phys. Lett. 40, 988–990 (1982).

    Article  CAS  Google Scholar 

  192. Wang, Q. et al. High-current-density thin-film silicon diodes grown at low temperature. Appl. Phys. Lett. 85, 2122–2124 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

P.C.M. acknowledges the Department of Science and Technology for a start-up research grant (SRG/2019/000391), an initiation and special grant from IIT Kanpur (IITK/CHM/2019044), and the Council of Scientific & Industrial Research (CSIR, sanctioned NO.:01(3049)/21/EMR-II), New Delhi, India.

Author information

Authors and Affiliations

Authors

Contributions

R.G., J.A.F., A.B., A.P. and P.C.M. researched data for the article. R.G., J.A.F., M.Z. and P.C.M. contributed substantially to discussion of the content. R.G., J.A.F., M.Z. and P.C.M. wrote the article. M.Z. and P.C.M. reviewed and/or edited the manuscript before submission.

Corresponding authors

Correspondence to Jerry A. Fereiro, Michael Zharnikov or Prakash Chandra Mondal.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

International Technology Roadmap for Semiconductors: https://irds.ieee.org/editions

Glossary

Aviram–Ratner model

A model involving two conjugated moieties — a donor (D) and an acceptor (A) — connected via an insulating (non-conjugated) moiety (σ bridge).

Atomic force microscopy

(AFM). A technique widely used to study the morphology and structure of surfaces with nanoscale precision.

Barrier height

The potential difference between the Fermi level of the electrical contact and the band edge or frontier molecular orbital (either HOMO or LUMO) populated by electrons or holes.

Break junctions

A tool to investigate the electrical properties of single molecules and small molecular assemblies by creating a nanometre-sized gap between two metal electrodes, bridged by a molecule or molecules.

Conductive-probe atomic force microscopy

(CP-AFM). A technique capable of mapping the local variation in electrical conductivity and topography of the sample at the nanoscale level.

Fermi level

The highest energy level occupied by electrons in a metal at 0 K, the density of states of which determines the thermal and electrical conductivity of a particular material.

Inelastic electron tunnelling spectroscopy

A technique to investigate the vibrational modes of molecules in which an oxide layer with molecules adsorbed on it is placed between two metal electrodes and subjected to a variable bias.

Mechanically controlled break junction

A tool with which to examine the mechanical and electrical properties of single molecules.

Rectification ratio

Figure of merit for the effectiveness of rectification, usually defined as the ratio of the currents measured at the bias voltages of the same magnitude but reverse polarities.

Scanning tunnelling microscopy

(STM). A technique widely used to study the morphology and structure of surfaces with atomic and nanoscale precision that relies on quantum tunnelling between the conducting tip and sample surface.

Sequential tunnelling

A sequence of tunnelling steps of charge carriers from an electrode across the molecule to the other electrode, which differs from single-step tunnelling in that the tunnelling happens coherently from one electrode to the other with the molecule serving as a tunnelling barrier.

Work function

The minimum energy (usually in electronvolts) required to remove an electron from the bulk of a given material to a point in the vacuum immediately outside the material surface.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, R., Fereiro, J.A., Bayat, A. et al. Nanoscale molecular rectifiers. Nat Rev Chem 7, 106–122 (2023). https://doi.org/10.1038/s41570-022-00457-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-022-00457-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing