Abstract
Photoexcited organic chromophore–radical systems hold great promise for a range of technological applications in molecular spintronics, including quantum information technology and artificial photosynthesis. However, further development of such systems will depend on the ability to control the magnetic properties of these materials, which requires a profound understanding of the underlying excited-state dynamics. In this Review, we discuss photogenerated triplet–doublet systems and their potential to be used for applications in molecular spintronics. We outline the theoretical description of the spin system in the different coupling regimes and the invoked excited-state mechanisms governing the generation and transfer of spin polarization. The main characterization techniques used to evaluate the optical and magnetic properties of chromophore–radical systems are discussed. We conclude by giving an overview of previously investigated covalently linked triplet–radical systems, and highlight the need for further systematic investigations to improve our understanding of the magnetic interactions in such systems.

This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 per month
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout








References
Wasielewski, M. R. et al. Exploiting chemistry and molecular systems for quantum information science. Nat. Rev. Chem. 4, 490–504 (2020). Overview of quantum information science and discussion of how chemical systems can impact quantum information science.
Wolf, S. A. et al. Spintronics: a spin-based electronics vision for the future. Science 294, 1488–1495 (2001).
Cornia, A. & Seneor, P. The molecular way. Nat. Mater. 16, 505–506 (2017).
Moreno-Pineda, E., Martins, D. & Tuna, F. Molecules as qubits, qudits and quantum gates. Electron Paramag. Reson. 27, 146 – 187 (2021).
Atzori, M. & Sessoli, R. The second quantum revolution: role and challenges of molecular chemistry. J. Am. Chem. Soc. 141, 11339–11352 (2019).
Colvin, M. T. et al. Ultrafast intersystem crossing and spin dynamics of zinc meso-tetraphenylporphyrin covalently bound to stable radicals. J. Phys. Chem. A 115, 7538–7549 (2011).
Giacobbe, E. M. et al. Ultrafast intersystem crossing and spin dynamics of photoexcited perylene-3,4:9,10-bis(dicarboximide) covalently linked to a nitroxide radical at fixed distances. J. Am. Chem. Soc. 131, 3700–3712 (2009). Explanation of possible excited state deactivation processes and detailed discussion of experimental excited state dynamics.
Nolden, O. et al. Excitation energy transfer and exchange-mediated quartet state formation in porphyrin-trityl systems. Chem. Eur. J. 27, 2683–2691 (2021).
Mayländer, M., Chen, S., Lorenzo, E. R., Wasielewski, M. R. & Richert, S. Exploring photogenerated molecular quartet states as spin qubits and qudits. J. Am. Chem. Soc. 143, 7050–7058 (2021). First detailed pulse EPR investigation considering photogenerated quartet states in the context of quantum information science.
Kandrashkin, Y. E. & van der Est, A. The triplet mechanism of electron spin polarization in moderately coupled triplet-doublet rigid complexes as a source of the enhanced +1/2 ↔ −1/2 transitions. J. Chem. Phys. 151, 184301 (2019).
Kandrashkin, Y. E. & van der Est, A. Light-induced electron spin polarization in rigidly linked, strongly coupled triplet–doublet spin pairs. Chem. Phys. Lett. 379, 574–580 (2003). Perturbation theory treatment explaining the contributions of net and multiplet polarization to the spectra of strongly coupled triplet–doublet pairs.
Wang, Z. et al. Efficient radical-enhanced intersystem crossing in an NDI-TEMPO dyad: photophysics, electron spin polarization, and application in photodynamic therapy. Chem. Eur. J. 24, 18663–18675 (2018).
Yamauchi, S., Takahashi, K., Islam, S. S. M., Ohba, Y. & Tarasov, V. Time-resolved high-frequency EPR studies on magnesium and zinc tetraphenylporphines in their lowest excited triplet states. J. Phys. Chem. B 114, 14559–14563 (2010).
Teki, Y. Excited-state dynamics of non-luminescent and luminescent π-radicals. Chem. Eur. J. 26, 980–996 (2020). Overview of different polarization-transfer mechanisms for triplet–doublet pairs.
Kawai, A. & Shibuya, K. Electron spin dynamics in a pair interaction between radical and electronically-excited molecule as studied by a time-resolved ESR method. J. Photochem. Photobiol. C Photochem. Rev. 7, 89–103 (2006). Review article on weakly coupled bimolecular triplet–radical systems.
Buchachenko, A. L. & Berdinsky, V. L. Electron spin catalysis. Chem. Rev. 102, 603–612 (2002).
Fleck, N. et al. C–C cross-coupling reactions of trityl radicals: spin density delocalization, exchange coupling, and a spin label. J. Org. Chem. 84, 3293–3303 (2019).
Wang, Z. et al. Radical-enhanced intersystem crossing in new bodipy derivatives and application for efficient triplet–triplet annihilation upconversion. J. Am. Chem. Soc. 139, 7831–7842 (2017).
Han, J. et al. Doublet–triplet energy transfer-dominated photon upconversion. J. Phys. Chem. Lett. 8, 5865–5870 (2017).
Nguyen, V.-N., Yan, Y., Zhao, J. & Yoon, J. Heavy-atom-free photosensitizers: from molecular design to applications in the photodynamic therapy of cancer. Acc. Chem. Res. 54, 207–220 (2021).
Hattori, Y., Kusamoto, T. & Nishihara, H. Luminescence, stability, and proton response of an open-shell (3,5-dichloro-4-pyridyl)bis(2,4,6-trichlorophenyl)methyl radical. Angew. Chem. Int. Ed. 53, 11845–11848 (2014).
Beldjoudi, Y. et al. Multifunctional dithiadiazolyl radicals: fluorescence, electroluminescence, and photoconducting behavior in pyren-1′-yl-dithiadiazolyl. J. Am. Chem. Soc. 140, 6260–6270 (2018).
Ai, X. et al. Efficient radical-based light-emitting diodes with doublet emission. Nature 563, 536–540 (2018).
Gaita-Ariño, A., Luis, F., Hill, S. & Coronado, E. Molecular spins for quantum computation. Nat. Chem. 11, 301–309 (2019).
Troiani, F. & Affronte, M. Molecular spins for quantum information technologies. Chem. Soc. Rev. 40, 3119–3129 (2011).
Rugg, B. K. et al. Photodriven quantum teleportation of an electron spin state in a covalent donor–acceptor–radical system. Nat. Chem. 11, 981–986 (2019).
Olshansky, J. H., Zhang, J., Krzyaniak, M. D., Lorenzo, E. R. & Wasielewski, M. R. Selectively addressable photogenerated spin qubit pairs in DNA hairpins. J. Am. Chem. Soc. 142, 3346–3350 (2020).
Ishii, K., Fujisawa, J., Ohba, Y. & Yamauchi, S. A time-resolved electron paramagnetic resonance study on the excited states of tetraphenylporphinatozinc(II) coordinated by p-pyridyl nitronyl nitroxide. J. Am. Chem. Soc. 118, 13079–13080 (1996).
Ishii, K., Fujisawa, J., Adachi, A., Yamauchi, S. & Kobayashi, N. General simulations of excited quartet spectra with electron-spin polarizations: the excited multiplet states of (tetraphenylporphinato)zinc(II) coordinated by p- or m-pyridyl nitronyl nitroxides. J. Am. Chem. Soc. 120, 3152–3158 (1998).
Tarasov, V. F., Islam, S. S. M., Ohba, Y., Forbes, M. D. E. & Yamauchi, S. Multifrequency TREPR investigation of excited-state ZnTPP/nitroxide radical complexes. Appl. Magn. Reson. 41, 175–193 (2011).
van der Est, A., Asano-Someda, M., Ragogna, P. & Kaizu, Y. Light-induced electron spin polarization of a weakly coupled triplet–doublet spin pair in a covalently linked porphyrin dimer. J. Phys. Chem. A 106, 8531–8542 (2002). Calculated stick spectra for coupled triplet–doublet pairs in different coupling regimes.
Asano, M. S., Ishizuka, K. & Kaizu, Y. Spin-multiplicity of a moderately coupled triplet–doublet spin pair in a biphenylene-linked porphyrin dimer. Mol. Phys. 104, 1609–1618 (2006).
Asano, M. S., Okamura, K., Jin-mon, A., Takahashi, S. & Kaizu, Y. Enhanced intersystem crossing due to long-range exchange interaction in copper(II) porphyrin-free base porphyrin dimers: HOMO and spacer dependence. Chem. Phys. 419, 250–260 (2013).
Kandrashkin, Y. E. & van der Est, A. Stimulated electron spin polarization in strongly coupled triplet–doublet spin pairs. Appl. Magn. Reson. 40, 189–204 (2011). Detailed theoretical treatment of a strongly coupled triplet–doublet spin system.
Richert, S., Tait, C. E. & Timmel, C. R. Delocalisation of photoexcited triplet states probed by transient EPR and hyperfine spectroscopy. J. Magn. Reson. 280, 103–116 (2017). Review article on EPR spectroscopy of photogenerated triplet states.
Kobori, Y., Fuki, M. & Murai, H. Electron spin polarization transfer to the charge-separated state from locally excited triplet configuration: theory and its application to characterization of geometry and electronic coupling in the electron donor-acceptor system. J. Phys. Chem. B 114, 14621–14630 (2010).
Shushin, A. I. CIDEP in triplet–doublet quenching. Quartet–doublet nonadiabatic transitions. Z. Phys. Chem. 182, 9–18 (1993).
Colvin, M. T. et al. Competitive electron transfer and enhanced intersystem crossing in photoexcited covalent TEMPO-perylene-3,4:9,10-bis(dicarboximide) dyads: unusual spin polarization resulting from the radical-triplet interaction. J. Phys. Chem. A 114, 1741–1748 (2010).
Mizuochi, N., Ohba, Y. & Yamauchi, S. The structure and electronic state of photoexcited fullerene linked with a nitroxide radical based on an analysis of a two-dimensional electron paramagnetic resonance nutation spectrum. J. Chem. Phys. 111, 3479–3487 (1999). Derivation of the spin polarization starting from the triplet and doublet density matrices.
van der Est, A., Kandrashkin, Y. E. & Asano, M. S. Light-induced electron spin polarization in vanadyl octaethylporphyrin: I. Characterization of the excited quartet state. J. Phys. Chem. A 110, 9607–9616 (2006).
Brickmann, J. & Kothe, G. ESR of the quartet states of randomly oriented molecules: calculation of the line shape and detection of the zero-field splitting. J. Chem. Phys. 59, 2807–2814 (1973).
Förster, T. Zwischenmolekulare Energiewanderung und Fluoreszenz. Ann. Phys. 437, 55–75 (1948).
Skourtis, S. S., Liu, C., Antoniou, P., Virshup, A. M. & Beratan, D. N. Dexter energy transfer pathways. Proc. Natl Acad. Sci. USA 113, 8115–8120 (2016).
Herbelin, S. E. & Blough, N. V. Intramolecular quenching of excited singlet states in a series of fluorescamine-derivatized nitroxides. J. Phys. Chem. B 102, 8170–8176 (1998).
Green, S. A., Simpson, D. J., Zhou, G., Ho, P. S. & Blough, N. V. Intramolecular quenching of excited singlet states by stable nitroxyl radicals. J. Am. Chem. Soc. 112, 7337–7346 (1990).
Ake, R. & Gouterman, M. Porphyrins XIV. Theory for the luminescent state in VO, Co, Cu complexes. Theor. Chim. Acta 15, 20–42 (1969). Theoretical foundations of EISC based on molecular orbital theory.
Buchachenko, A. L. & Berdinsky, V. L. Spin catalysis of chemical reactions. J. Phys. Chem. 100, 18292–18299 (1996).
Yeganeh, S., Wasielewski, M. R. & Ratner, M. A. Enhanced intersystem crossing in three-spin systems: a perturbation theory treatment. J. Am. Chem. Soc. 131, 2268–2273 (2009).
Ito, A. et al. Excited-state dynamics of pentacene derivatives with stable radical substituents. Angew. Chem. Int. Ed. 53, 6715–6719 (2014).
Ishii, K., Ishizaki, T. & Kobayashi, N. Experimental evidence for a selection rule of intersystem crossing to the excited quartet states: metallophthalocyanines coordinated by 4-amino-TEMPO. J. Phys. Chem. A 103, 6060–6062 (1999).
Poddutoori, P. K., Kandrashkin, Y. E., Karr, P. & van der Est, A. Electron spin polarization in an Al(III) porphyrin complex with an axially bound nitroxide radical. J. Chem. Phys. 151, 204303 (2019).
Franco, L. et al. TR-EPR of single and double spin-labeled C60 derivatives in frozen matrices. Appl. Magn. Reson. 30, 577–590 (2006).
Dyar, S. M. et al. Photogenerated quartet state formation in a compact ring-fused perylene-nitroxide. J. Phys. Chem. B 119, 13560–13569 (2015).
Poddutoori, P. K. et al. Spin–spin interactions in porphyrin-based monoverdazyl radical hybrid spin systems. Inorg. Chem. 49, 3516–3524 (2010).
Kandrashkin, Y. E. & van der Est, A. Electron spin polarization of the excited quartet state of strongly coupled triplet–doublet spin systems. J. Chem. Phys. 120, 4790–4799 (2004).
Teki, Y., Tamekuni, H., Takeuchi, J. & Miura, Y. First evidence for a uniquely spin-polarized quartet photoexcited state of a π-conjugated spin system generated via the ion-pair state. Angew. Chem. Int. Ed. 45, 4666–4670 (2006).
Teki, Y., Tamekuni, H., Haruta, K., Takeuchi, J. & Miura, Y. Design, synthesis, and uniquely electron-spin-polarized quartet photo-excited state of a π-conjugated spin system generated via the ion-pair state. J. Mater. Chem. 18, 381–391 (2008).
Takemoto, Y. & Teki, Y. Unique dynamic electron-spin polarization and spin dynamics in the photoexcited quartet high-spin state of an acceptor–donor–radical triad. ChemPhysChem 12, 104–108 (2011).
Teki, Y. & Matsumoto, T. Theoretical study of dynamic electron-spin-polarization via the doublet-quartet quantum-mixed state and time-resolved ESR spectra of the quartet high-spin state. Phys. Chem. Chem. Phys. 13, 5728–5746 (2011).
Mayländer, M. et al. Accessing the triplet state of perylenediimide by radical-enhanced intersystem crossing. Chem. Sci. 13, 6732–6743 (2022).
Jenks, W. S. & Turro, N. J. Exchange effects and CIDEP. Res. Chem. Intermed. 13, 237–300 (1990).
Rozenshtein, V. et al. Electron spin polarization of functionalized fullerenes. Reversed quartet mechanism. J. Phys. Chem. A 109, 11144–11154 (2005). Detailed discussion of spin polarization-transfer mechanisms.
Gouterman, M. in The Porphyrins, Vol III (ed. Dolphin, D.) 1–165 (Academic, 1978).
Maciejewski, A. et al. Transient absorption experimental set-up with femtosecond time resolution. Femto- and picosecond study of DCM molecule in cyclohexane and methanol solution. J. Mol. Struct. 555, 1–13 (2000).
Megerle, U., Pugliesi, I., Schriever, C., Sailer, C. F. & Riedle, E. Sub-50 fs broadband absorption spectroscopy with tunable excitation: putting the analysis of ultrafast molecular dynamics on solid ground. Appl. Phys. B 96, 215–231 (2009).
Dobryakov, A. L. et al. Femtosecond pump/supercontinuum-probe spectroscopy: optimized setup and signal analysis for single-shot spectral referencing. Rev. Sci. Instrum. 81, 113106 (2010).
Lorenc, M. et al. Artifacts in femtosecond transient absorption spectroscopy. Appl. Phys. B 74, 19–27 (2002).
Ruckebusch, C., Silwa, M., Pernot, P., de Juan, A. & Tauler, R. Comprehensive data analysis of femtosecond transient absorption spectra: a review. J. Photochem. Photobiol. C Photochem. Rev. 13, 1–27 (2012). Review article on the fsTA experiment with a focus on data analysis and interpretation.
Devos, O., Mouton, N., Sliwa, M. & Ruckebusch, C. Baseline correction methods to deal with artifacts in femtosecond transient absorption spectroscopy. Anal. Chim. Acta 705, 64–71 (2011).
Chateauneuf, J., Lusztyk, J. & Ingold, K. U. Photoinduced electron transfer from dialkyl nitroxides to halogenated solvents. J. Org. Chem. 55, 1061–1065 (1990).
van Stokkum, I. H. M., Larsen, D. S. L. & van Grondelle, R. Global and target analysis of time-resolved spectra. Biochim. Biophys. Acta Bioenerg. 1657, 82–104 (2004).
Beckwith, J. S., Rumble, C. A. & Vauthey, E. Data analysis in transient electronic spectroscopy–an experimentalist’s view. Int. Rev. Phys. Chem. 39, 135–216 (2020).
Henry, E. R. The use of matrix methods in the modeling of spectroscopic data sets. Biophys. J. 72, 652–673 (1997).
Satzger, H. & Zinth, W. Visualization of transient absorption dynamics–towards a qualitative view of complex reaction kinetics. Chem. Phys. 295, 287–295 (2003).
Giurleo, J. T. & Talaga, D. S. Global fitting without a global model: regularization based on the continuity of the evolution of parameter distributions. J. Chem. Phys. 128, 114114 (2008).
Torrey, H. C. Transient nutations in nuclear magnetic resonance. Phys. Rev. 76, 1059–1068 (1949).
Furrer, R. et al. Transient ESR nutation signals in excited aromatic triplet states. Chem. Phys. Lett. 75, 332–339 (1980).
Weber, S. Transient EPR. eMagRes 6, 255–270 (2017). Review article on the transient cw EPR method.
van der Est, A. Continuous-wave EPR. eMagRes 5, 1411–1422 (2016).
Eaton, G. R., Eaton, S. S., Barr, D. P. & Weber, R. T. Quantitative EPR, 1st edn (Springer, 2010).
Jeschke, G. in ESR Spectroscopy in Membrane Biophysics. Biological Magnetic Resonance, Vol. 27, 17–47 (Springer, 2007). Very informative book chapter on the practical aspects of cw and pulse EPR.
Conti, F. et al. Time-resolved EPR investigation of [70]fulleropyrrolidine nitroxide isomers. Phys. Chem. Chem. Phys. 11, 495–502 (2009).
Teki, Y., Miyamoto, S., Nakatsuji, M. & Miura, Y. π-topology and spin alignment utilizing the excited molecular field: observation of the excited high-spin quartet (S = 3/2) and quintet (S = 2) states on purely organic π-conjugated spin systems. J. Am. Chem. Soc. 123, 294–305 (2001).
Bencini, A & Gatteschi, D. EPR of Exchange Coupled Systems (Dover, 2012).
Teki, Y., Toichi, T. & Nakajima, S. π topology and spin alignment in unique photoexcited triplet and quintet states arising from four unpaired electrons of an organic spin system. Chem. Eur. J. 12, 2329–2336 (2006).
Stoll, S. & Schweiger, A. EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. J. Magn. Reson. 178, 42–55 (2006).
Schweiger, A & Jeschke, G. Principles of Pulse Electron Paramagnetic Resonance (Oxford Univ. Press, 2001).
Roessler, M. M. & Salvadori, E. Principles and applications of EPR spectroscopy in the chemical sciences. Chem. Soc. Rev. 47, 2534–2553 (2018).
Stoll, S. Pulse EPR. eMagRes 6, 23–38 (2017). Review article on pulse EPR spectroscopy.
Atherton, N. M. Principles of Electron Spin Resonance 1st edn (Ellis Horwood, 1993).
Eaton, S. S. & Eaton, G. R. in Biomedical EPR, Part B: Methodology, Instrumentation, and Dynamics. Biological Magnetic Resonance Vol. 24/B (eds Eaton, S. R., Eaton, G. R. & Berliner, L. J.) Ch. 1, 3–18 (Springer, 2005).
Cernescu, A., Maly, T. & Prisner, T. F. 2D-REFINE spectroscopy: separation of overlapping hyperfine spectra. J. Magn. Reson. 192, 78–84 (2008).
Eaton, S. S. & Eaton, G. R. in Distance Measurements in Biological Systems by EPR, Biological Magnetic Resonance Vol. 19 (eds Berliner, L. J., Eaton, G. R. & Eaton, S. S.) Ch. 2, 29–154 (Springer, 2002).
Eaton, S. S. & Eaton, G. R. Relaxation mechanisms. eMagRes 5, 1543–1556 (2016).
Stoll, S., Jeschke, G., Willer, M. & Schweiger, A. Nutation-frequency correlated EPR spectroscopy: the PEANUT experiment. J. Magn. Reson. 130, 86–96 (1998).
Astashkin, A. V. & Schweiger, A. Electron-spin transient nutation: a new approach to simplify the interpretation of ESR spectra. Chem. Phys. Lett. 174, 595–602 (1990).
Mizuochi, N., Ohba, Y. & Yamauchi, S. A two-dimensional EPR nutation study on excited multiplet states of fullerene linked to a nitroxide radical. J. Phys. Chem. A 101, 5966–5968 (1997).
Evans, D. F. Magnetic perturbation of the lowest triplet states of aromatic molecules by dissolved oxygen. Nature 178, 534–535 (1956).
Evans, D. F. Magnetic perturbation of singlet-triplet transitions. Part II. J. Chem. Soc. 3885–3888 (1957).
Hoijtink, G. J. The influence of paramagnetic molecules on singlet–triplet transitions. Mol. Phys. 3, 67–70 (1960).
Hoijtink, G. J. Intermolecular electron exchange. Acc. Chem. Res. 2, 114–120 (1969).
Murrell, J. N. The effect of paramagnetic molecules on the intensity of spin-forbidden absorption bands of aromatic molecules. Mol. Phys. 3, 319–329 (1960).
Caldwell, R. A. & Schwerzel, R. E. Quenching of excited states by stable free radicals. Effect of di-tert-butyl nitroxide on stilbene and naphthalene triplets. J. Am. Chem. Soc. 94, 1035–1037 (1972).
Green II, J. A., Singed, L. A. & Parks, J. H. Fluorescence quenching by the stable free radical di-t-butylnitroxide. J. Chem. Phys. 58, 2690–2695 (1973).
Kuzmin, V. A. & Tatikolov, A. S. Formation of triplets of aromatic hydrocarbons on quenching of excited singlet states by nitroxyl radicals. Chem. Phys. Lett. 51, 45–47 (1977).
Kollmar, C. & Sixl, H. Theory of a coupled doublet-triplet system: spin Hamiltonian and ESR spectra. Mol. Phys. 45, 1199–1208 (1982). Energy diagrams of coupled doublet and quartet states in different coupling regimes and for different field strengths.
Blättler, C., Jent, F. & Paul, H. A novel radical-triplet pair mechanism for chemically induced electron polarization (CIDEP) of free radicals in solution. Chem. Phys. Lett. 166, 375–380 (1990).
Kawai, A., Okutsu, T. & Obi, K. Spin polarization generated in the triplet–doublet interaction: hyperfine-dependent chemically induced dynamic electron polarization. J. Phys. Chem. 95, 9130–9134 (1991).
Goudsmit, G.-H., Paul, H. & Shushin, A. I. Electron spin polarization in radical-triplet pairs. Size and dependence on diffusion. J. Phys. Chem. 97, 13243–13249 (1993).
Fujisawa, J., Ishii, K., Ohba, Y., Iwaizumi, M. & Yamauchi, S. Electron spin polarization transfer from excited triplet porphyrins to a nitroxide radical via spin exchange mechanism. J. Phys. Chem. 99, 17082–17084 (1995).
Corvaja, C., Maggini, M., Prato, M., Scorrano, G. & Venzin, M. C60 derivative covalently linked to a nitroxide radical: time-resolved EPR evidence of electron spin polarization by intramolecular radical–triplet pair interaction. J. Am. Chem. Soc. 117, 8857–8858 (1995).
Liu, G., Liou, S.-H., Enkin, N., Tkach, I. & Bennati, M. Photo-induced radical polarization and liquid-state dynamic nuclear polarization using fullerene nitroxide derivatives. Phys. Chem. Chem. Phys. 19, 31823–31829 (2017).
Avalos, C. E. et al. Enhanced intersystem crossing and transient electron spin polarization in a photoexcited pentacene–trityl radical. J. Phys. Chem. A 124, 6068–6075 (2020).
Franco, L. et al. TR-EPR of single and double spin-labelled C60 derivatives: observation of quartet and quintet excited states in solution. Mol. Phys. 104, 1543–1550 (2006).
Conti, F. et al. EPR studies on a binitroxide fullerene derivative in the ground triplet and first photoexcited quintet state. J. Phys. Chem. A 104, 4962–4967 (2000).
Mizuochi, N., Ohba, Y. & Yamauchi, S. First observation of the photoexcited quintet state in fullerene linked with two nitroxide radicals. J. Phys. Chem. A 103, 7749–7752 (1999).
Reginsson, G. W., Kunjir, N. C., Sigurdsson, S. T. & Schiemann, O. Trityl radicals: spin labels for nanometer-distance measurements. Chem. Eur. J. 18, 13580–13584 (2012).
Bordignon, E. EPR spectroscopy of nitroxide spin probes. eMagRes 6, 235–254 (2017).
Yang, Y. et al. In-cell trityl–trityl distance measurements on proteins. J. Phys. Chem. Lett. 11, 1141–1147 (2020).
Toyama, N., Asano-Someda, M., Ichino, T. & Kaizu, Y. Enhanced intersystem crossing in gable-type copper(II) porphyrin-free base porphyrin dimers: evidence of through-bond exchange interaction. J. Phys. Chem. A 104, 4857–4865 (2000).
Franz, M., Neese, F. & Richert, S. Calculation of exchange couplings in the electronically excited state of molecular three-spin systems. Chem. Sci. 13, 12358–12366 (2022).
Moons, H. et al. W-band transient EPR and photoinduced absorption on spin-labeled fullerene derivatives. Phys. Chem. Chem. Phys. 13, 3942–3951 (2011). Well-resolved experimental spectra of triplet–radical systems, clear assignment of the transitions and experimental determination of JTR.
Ito, A., Hinoshita, M., Kato, K. & Teki, Y. Excited-state dynamics and spin-exchange coupling of anthracene–verdazyl radical in frozen glass matrix investigated by transient absorption spectroscopy. Chem. Lett. 45, 1324–1326 (2016).
Corvaja, C., Maggini, M., Ruzzi, M., Scorrano, G. & Toffoletti, A. Spin polarization in fullerene derivatives containing a nitroxide group. Observation of the intermediate photoexcited quartet state in radical triplet pair interaction. Appl. Magn. Reson. 12, 477–493 (1997).
Mazzoni, M., Conti, F. & Corvaja, C. The sign of the exchange interaction between triplet excited fullerene and nitroxide free radicals. Appl. Magn. Reson. 18, 351–361 (2000).
Poddutoori, P. K. et al. Excited state dynamics and electron transfer in a phosphorus(V) porphyrin–TEMPO conjugate. J. Chem. Sci. 133, 65 (2021).
Grzegorzek, N. et al. Metalated porphyrin stable free radicals: exploration of electron spin communication and dynamics. J. Phys. Chem. A 124, 6168–6176 (2020).
Ishii, K., Takeuchi, S. & Kobayashi, N. Relationship between electron spin polarization, electron exchange interaction, and lifetime: the excited multiplet states of phthalocyaninatosilicon covalently linked to one nitroxide radical. J. Phys. Chem. A 105, 6794–6799 (2001).
Ishii, K., Hirose, Y., Fujitsuka, H., Ito, O. & Kobayashi, N. Time-resolved EPR, fluorescence, and transient absorption studies on phthalocyaninatosilicon covalently linked to one or two TEMPO radicals. J. Am. Chem. Soc. 123, 702–708 (2001).
Takeuchi, S., Ishii, K. & Kobayashi, N. Time-resolved EPR and transient absorption studies on phthalocyaninatosilicon covalently linked to two PROXYL radicals. J. Phys. Chem. A 108, 3276–3280 (2004).
Teki, Y., Miyamoto, S., Iimura, K., Nakatsuji, M. & Miura, Y. Intramolecular spin alignment utilizing the excited molecular field between the triplet (S = 1) excited state and the dangling stable radicals (S = 1/2) as studied by time-resolved electron spin resonance: observation of the excited quartet (S = 3/2) and quintet (S = 2) states on the purely organic π-conjugated spin systems. J. Am. Chem. Soc. 122, 984–985 (2000).
Teki, Y. Photo-induced spin alignment utilizing the excited molecular field between the excited triplet state of phenyl- or diphenylanthracene and the dangling nitroxide radicals: theoretical investigation of the mechanism for the intramolecular spin alignment. Polyhedron 20, 1163–1168 (2001).
Teki, Y., Nakatsuji, M. & Miura, Y. Excited high spin states of novel π conjugated verdazyl radicals: photoinduced spin alignment utilizing the excited molecular field. Mol. Phys. 100, 1385–1394 (2002).
Mihara, N. & Teki, Y. Electronic ground state, magnetic property, and photo-excited state of ferrocene substituted phenylanthracene verdazyl radical. Inorg. Chim. Acta 361, 3891–3894 (2008).
Teki, Y., Miyamoto, S. & Koide, K. π-topology and spin alignment in the photo-excited states of phenylanthracene-t-butylnitroxide radicals. Phys. Chem. Chem. Phys. 17, 31646–31652 (2015).
Tamekuni, H. & Teki, Y. Design, synthesis and physical properties of the metal complexes using π-radical with photo-excited high-spin state as a ligand. Polyhedron 26, 1984–1988 (2007).
Teki, Y., Kimura, M., Narimatsu, S., Ohara, K. & Mukai, K. Excited high-spin quartet (S = 3/2) state of a novel π-conjugated organic spin system, pyrene-verdazyl radical. Bull. Chem. Soc. Jpn. 77, 95–99 (2004).
Imran, M. et al. Radical-enhanced intersystem crossing in perylene-oxoverdazyl radical dyads. ChemPhysChem 23, e202100912 (2022).
Chernick, E. T. et al. Pentacene appended to a TEMPO stable free radical: the effect of magnetic exchange coupling on photoexcited pentacene. J. Am. Chem. Soc. 137, 857–863 (2015).
Zhang, X. et al. Radical-enhanced intersystem crossing in a bay-substituted perylene bisimide–TEMPO dyad and the electron spin polarization dynamics upon photoexcitation. ChemPhysChem 22, 55–68 (2021).
Jockusch, S., Dedola, G., Lem, G. & Turro, N. J. Electron spin polarization by intramolecular triplet quenching of a nitroxyl radical labeled thioxanthonedioxide. J. Phys. Chem. B 103, 9126–9129 (1999).
Tripathi, A. & Rane, V. Toward achieving the theoretical limit of electron spin polarization in covalently linked radical-chromophore dyads. J. Phys. Chem. B 123, 6830–6841 (2019).
Acknowledgements
This work was supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), project number 417643975.
Author information
Authors and Affiliations
Contributions
T.Q., M.M. and S.R. wrote and edited the final version of this manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Chemistry thanks Yoshio Teki and the other anonymous reviewers for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Quintes, T., Mayländer, M. & Richert, S. Properties and applications of photoexcited chromophore–radical systems. Nat Rev Chem 7, 75–90 (2023). https://doi.org/10.1038/s41570-022-00453-y
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41570-022-00453-y