Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Optimizing the semiconductor–metal-single-atom interaction for photocatalytic reactivity

Subjects

Abstract

Metal single-atom (MSA) catalysts with 100% metal atom utilization and unique electronic properties are attractive cocatalysts for efficient photocatalysis when coupled with semiconductors. Owing to the absence of a metal–metal bond, MSA sites are exclusively coordinated with the semiconductor photocatalyst, featuring a chemical-bond-driven tunable interaction between the semiconductor and the metal single atom. This semiconductor–MSA interaction is a platform that can facilitate the separation/transfer of photogenerated charge carriers and promote the subsequent catalytic reactions. In this Review, we first introduce the fundamental physicochemistry related to the semiconductor–MSA interaction. We highlight the ligand effect on the electronic structures, catalytic properties and functional mechanisms of the MSA cocatalyst through the semiconductor–MSA interaction. Then, we categorize the state-of-the-art experimental and theoretical strategies for the construction of the efficient semiconductor–MSA interaction at the atomic scale for a wide range of photocatalytic reactions. The examples described include photocatalytic water splitting, CO2 reduction and organic synthesis. We end by outlining strategies on how to further advance the semiconductor–MSA interaction for complex photocatalytic reactions involving multiple elementary steps. We provide atomic and electronic-scale insights into the working mechanisms of the semiconductor–MSA interaction and guidance for the design of high-performance semiconductor–MSA interface photocatalytic systems.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Fundamental physicochemistry of the semiconductor–MSA interaction.
Fig. 2: Development history of the semiconductor–MSA interaction.
Fig. 3: Construction of the semiconductor–MSA architecture.
Fig. 4: Identification of the semiconductor–MSA interaction.
Fig. 5: Charge separation/transfer and surface catalytic dynamics.
Fig. 6: Tuning the semiconductor–MSA interaction for water splitting.
Fig. 7: Tuning the semiconductor–MSA interaction for CO2 reduction.
Fig. 8: Tuning the semiconductor–MSA interaction for organic synthesis.
Fig. 9: Strategies for constructing an advanced semiconductor–MSA architecture.

References

  1. Chen, S. S., Takata, T. & Domen, K. Particulate photocatalysts for overall water splitting. Nat. Rev. Mater. 2, 17050 (2017).

    Article  CAS  Google Scholar 

  2. Montoya, J. H. et al. Materials for solar fuels and chemicals. Nat. Mater. 16, 70–81 (2017).

    Article  Google Scholar 

  3. Chu, S., Cui, Y. & Liu, N. The path towards sustainable energy. Nat. Mater. 16, 16–22 (2017).

    Article  Google Scholar 

  4. Green, M. A. & Bremner, S. P. Energy conversion approaches and materials for high-efficiency photovoltaics. Nat. Mater. 16, 23–34 (2017).

    Article  Google Scholar 

  5. Ran, J. R., Zhang, J., Yu, J. G., Jaroniec, M. & Qiao, S. Z. Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting. Chem. Soc. Rev. 43, 7787–7812 (2014).

    Article  CAS  PubMed  Google Scholar 

  6. Chen, X. B., Shen, S. H., Guo, L. J. & Mao, S. S. Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 110, 6503–6570 (2010).

    Article  CAS  PubMed  Google Scholar 

  7. Wang, Y. O. et al. Mimicking natural photosynthesis: solar to renewable H2 fuel synthesis by Z-scheme water splitting systems. Chem. Rev. 118, 5201–5241 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kudo, A. & Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 38, 253–278 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Li, X., Yu, J. G. & Jaroniec, M. Hierarchical photocatalysts. Chem. Soc. Rev. 45, 2603–2636 (2016).

    Article  CAS  PubMed  Google Scholar 

  10. Zhang, G., Liu, G., Wang, L. & Irvine, J. T. S. Inorganic perovskite photocatalysts for solar energy utilization. Chem. Soc. Rev. 45, 5951–5984 (2016).

    Article  CAS  PubMed  Google Scholar 

  11. Lang, X., Chen, X. & Zhao, J. Heterogeneous visible light photocatalysis for selective organic transformations. Chem. Soc. Rev. 43, 473–486 (2014).

    Article  CAS  PubMed  Google Scholar 

  12. Zhou, P., Yu, J. G. & Wang, Y. X. The new understanding on photocatalytic mechanism of visible-light response N–S codoped anatase TiO2 by first-principles. Appl. Catal. B 142, 45–53 (2013).

    Article  Google Scholar 

  13. Yu, J. G., Zhou, P. & Li, Q. New insight into the enhanced visible-light photocatalytic activities of B-, C- and B/C-doped anatase TiO2 by first-principles. Phys. Chem. Chem. Phys. 15, 12040–12047 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K. & Taga, Y. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293, 269–271 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Huang, P. et al. Selective CO2 reduction catalyzed by single cobalt sites on carbon nitride under visible-light irradiation. J. Am. Chem. Soc. 140, 16042–16047 (2018). This paper shows that atomically dispersed Co–N4 species on g-C3N4 can selectively reduce CO2 into CO.

    Article  CAS  PubMed  Google Scholar 

  16. Yang, J. H., Wang, D. G., Han, H. X. & Li, C. Roles of cocatalysts in photocatalysis and photoelectrocatalysis. Acc. Chem. Res. 46, 1900–1909 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. Chen, G. X. et al. Interfacial effects in iron-nickel hydroxide-platinum nanoparticles enhance catalytic oxidation. Science 344, 495–499 (2014).

    Article  CAS  PubMed  Google Scholar 

  18. Liu, Z. Y. et al. Water-promoted interfacial pathways in methane oxidation to methanol on a CeO2–Cu2O catalyst. Science 368, 513–517 (2020).

    Article  CAS  PubMed  Google Scholar 

  19. Liu, L. C. & Corma, A. Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chem. Rev. 118, 4981–5079 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yang, X.-F. et al. Single-atom catalysts: a new frontier in heterogeneous catalysis. Acc. Chem. Res. 46, 1740–1748 (2013).

    Article  CAS  PubMed  Google Scholar 

  21. Chen, Y. et al. Engineering the atomic interface with single platinum atoms for enhanced photocatalytic hydrogen production. Angew. Chem. Int. Ed. 59, 1295–1301 (2020).

    Article  CAS  Google Scholar 

  22. Yang, J., Li, W., Wang, D. & Li, Y. Electronic metal–support interaction of single-atom catalysts and applications in electrocatalysis. Adv. Mater. 32, 2003300 (2020).

    Article  CAS  Google Scholar 

  23. Jiang, Z. et al. Atomic interface effect of single atom copper catalyst for enhanced oxygen reduction reaction. Energ. Environ. Sci. 12, 3508–3514 (2019).

    Article  CAS  Google Scholar 

  24. Zhou, P. et al. Partially reduced Pd single atoms on CdS nanorods enable photocatalytic reforming of ethanol into high value-added multicarbon compound. Chem 7, 1033–1049 (2021). This paper demonstrates partially reduced Pd–P3 species with a stable PdSA–P interaction on CdS-enabled photocatalytic ethanol reforming into a high-value-added multicarbon compound and hydrogen.

    Article  CAS  Google Scholar 

  25. Zhou, P. et al. Strengthening reactive metal–support interaction to stabilize high-density Pt single atoms on electron-deficient g-C3N4 for boosting photocatalytic H2 production. Nano Energy 56, 127–137 (2019).

    Article  CAS  Google Scholar 

  26. Gao, C. et al. Heterogeneous single-atom photocatalysts: fundamentals and applications. Chem. Rev. 120, 12175–12216 (2020).

    Article  CAS  PubMed  Google Scholar 

  27. Ji, S. et al. Chemical synthesis of single atomic site catalysts. Chem. Rev. 120, 11900–11955 (2020).

    Article  CAS  PubMed  Google Scholar 

  28. Lang, R. et al. Single-atom catalysts based on the metal–oxide interaction. Chem. Rev. 120, 11986–12043 (2020).

    Article  CAS  PubMed  Google Scholar 

  29. Qin, R., Liu, K., Wu, Q. & Zheng, N. Surface coordination chemistry of atomically dispersed metal catalysts. Chem. Rev. 120, 11810–11899 (2020).

    Article  CAS  PubMed  Google Scholar 

  30. Zhou, P. et al. Single-atom Pt-I3 sites on all-inorganic Cs2SnI6 perovskite for efficient photocatalytic hydrogen production. Nat. Commun. 12, 4412 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang, J. et al. A single Cu-center containing enzyme-mimic enabling full photosynthesis under CO2 reduction. ACS Nano 14, 8584–8593 (2020).

    Article  CAS  PubMed  Google Scholar 

  32. Wan, J. et al. Defect effects on TiO2 nanosheets: stabilizing single atomic site Au and promoting catalytic properties. Adv. Mater. 30, 1705369 (2018).

    Article  Google Scholar 

  33. Liu, P. X. et al. Photochemical route for synthesizing atomically dispersed palladium catalysts. Science 352, 797–801 (2016).

    Article  CAS  PubMed  Google Scholar 

  34. Wei, H. H. et al. Iced photochemical reduction to synthesize atomically dispersed metals by suppressing nanocrystal growth. Nat. Commun. 8, 1490 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Zhou, P. et al. Thermolysis of noble metal nanoparticles into electron-rich phosphorus-coordinated noble metal single atoms at low temperature. Angew. Chem. Int. Ed. 58, 14184–14188 (2019). This paper shows that thermally stable high-density MSA on g-C3N4 can be directly prepared by a nanoparticle-to-single atom thermolysis strategy based on the strong MSA–P interaction.

    Article  CAS  Google Scholar 

  36. Qi, K. et al. Single-atom cobalt array bound to distorted 1T MoS2 with ensemble effect for hydrogen evolution catalysis. Nat. Commun. 10, 5231 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Zhang, L. Z. et al. Graphene defects trap atomic Ni species for hydrogen and oxygen evolution reactions. Chem 4, 285–297 (2018).

    Article  CAS  Google Scholar 

  38. Yu, H. S. et al. The XAFS beamline of SSRF. Nucl. Sci. Tech. 26, 050102 (2015).

    Google Scholar 

  39. Fu, L., Tang, Y. & Lin, Y. Advances in synchrotron radiation-based X-ray absorption spectroscopy to characterize the fine atomic structure of single-atom nanozymes. Chem. Asian J. 15, 2110–2116 (2020).

    Article  CAS  PubMed  Google Scholar 

  40. Li, X. G. et al. Single-atom Pt as co-catalyst for enhanced photocatalytic H2 evolution. Adv. Mater. 28, 2427–2431 (2016). This paper is the first to show that PtSA on g-C3N4 has a higher photocatalytic hydrogen production activity than PtNP on g-C3N4.

    Article  CAS  PubMed  Google Scholar 

  41. Zhang, L. et al. Direct observation of dynamic bond evolution in single-atom Pt/C3N4 catalysts. Angew. Chem. Int. Ed. 59, 6224–6229 (2020).

    Article  CAS  Google Scholar 

  42. Chen, Z. P. et al. Stabilization of single metal atoms on graphitic carbon nitride. Adv. Funct. Mater. 27, 1605785 (2017).

    Article  Google Scholar 

  43. Zhou, P. et al. Synergetic interaction between neighboring platinum and ruthenium monomers boosts CO oxidation. Chem. Sci. 10, 5898–5905 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhou, P. et al. Metal single atom strategy greatly boosts photocatalytic methyl activation and C–C coupling for the coproduction of high-value-added multicarbon compounds and hydrogen. ACS Catal. 10, 9109–9114 (2020).

    Article  CAS  Google Scholar 

  45. Ge, X. et al. Palladium single atoms on TiO2 as a photocatalytic sensing platform for analyzing the organophosphorus pesticide chlorpyrifos. Angew. Chem. Int. Ed. 59, 232–236 (2020).

    Article  CAS  Google Scholar 

  46. Xiao, M. et al. Molten-salt-mediated synthesis of an atomic nickel co-catalyst on TiO2 for improved photocatalytic H2 evolution. Angew. Chem. Int. Ed. 59, 7230–7234 (2020).

    Article  CAS  Google Scholar 

  47. Lee, B. H. et al. Reversible and cooperative photoactivation of single-atom Cu/TiO2 photocatalysts. Nat. Mater. 18, 620–626 (2019).

    Article  CAS  PubMed  Google Scholar 

  48. Wu, J.-C., Zheng, J., Wu, P. & Xu, R. Study of native defects and transition-metal (Mn, Fe, Co, and Ni) doping in a zinc-blende CdS photocatalyst by DFT and hybrid DFT calculations. J. Phys. Chem. C 115, 5675–5682 (2011).

    Article  CAS  Google Scholar 

  49. Wang, Y., Tian, Y., Yan, L. & Su, Z. DFT study on sulfur-doped g-C3N4 nanosheets as a photocatalyst for CO2 reduction reaction. J. Phys. Chem. C 122, 7712–7719 (2018).

    Article  CAS  Google Scholar 

  50. Zhou, P. et al. Vectorial doping-promoting charge transfer in anatase TiO2 {001} surface. Appl. Surf. Sci. 319, 167–172 (2014).

    Article  CAS  Google Scholar 

  51. Selcuk, S. & Selloni, A. Facet-dependent trapping and dynamics of excess electrons at anatase TiO2 surfaces and aqueous interfaces. Nat. Mater. 15, 1107–1112 (2016).

    Article  CAS  PubMed  Google Scholar 

  52. Li, Y. et al. Facile top-down strategy for direct metal atomization and coordination achieving a high turnover number in CO2 photoreduction. J. Am. Chem. Soc. 142, 19259–19267 (2020). This paper shows that Fe–N4O species on g-C3N4 with a strong semiconductor–MSA interaction can produce high-valence FeSA with higher activity than common low-valence Fe–N4 species on g-C3N4 for photocatalytic CO2 reduction.

    Article  CAS  PubMed  Google Scholar 

  53. Cao, Y. et al. Single Pt atom with highly vacant d-orbital for accelerating photocatalytic H2 evolution. ACS Appl. Energ. Mater. 1, 6082–6088 (2018).

    Article  Google Scholar 

  54. Zhang, H. et al. Isolated cobalt centers on W18O49 nanowires perform as a reaction switch for efficient CO2 photoreduction. J. Am. Chem. Soc. 143, 2173–2177 (2021).

    Article  CAS  PubMed  Google Scholar 

  55. Zhou, P. et al. Designing noble metal single-atom-loaded two-dimension photocatalyst for N2 and CO2 reduction via anion vacancy engineering. Sci. Bull. 65, 720–725 (2020).

    Article  CAS  Google Scholar 

  56. Zhou, P. et al. Atomically dispersed Co-P3 on CdS nanorods with electron-rich feature boosts photocatalysis. Adv. Mater. 32, e1904249 (2020).

    Article  PubMed  Google Scholar 

  57. Gao, G. P., Jiao, Y., Waclawik, E. R. & Du, A. J. Single atom (Pd/Pt) supported on graphitic carbon nitride as an efficient photocatalyst for visible-light reduction of carbon dioxide. J. Am. Chem. Soc. 138, 6292–6297 (2016).

    Article  CAS  PubMed  Google Scholar 

  58. Liu, W. et al. Single-site active cobalt-based photocatalyst with a long carrier lifetime for spontaneous overall water splitting. Angew. Chem. Int. Ed. 56, 9312–9317 (2017). Non-noble CoSA on g-C3N4 was first reported to perform the photocatalytic overall water splitting.

    Article  CAS  Google Scholar 

  59. Xiong, X. Y. et al. Photocatalytic CO2 reduction to CO over Ni single atoms supported on defect-rich zirconia. Adv. Energy Mater. 10, 2002928 (2020).

    Article  CAS  Google Scholar 

  60. Xu, Y. & Schoonen, M. A. A. The absolute energy positions of conduction and valence bands of selected semiconducting minerals. Am. Mineral. 85, 543–556 (2000).

    Article  CAS  Google Scholar 

  61. Takata, T. et al. Photocatalytic water splitting with a quantum efficiency of almost unity. Nature 581, 411–414 (2020).

    Article  CAS  PubMed  Google Scholar 

  62. Li, Y. et al. Single-atom nickel terminating sp2 and sp3 nitride in polymeric carbon nitride for visible-light photocatalytic overall water splitting. Chem. Sci. 12, 3633–3643 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Chen, P. et al. Rare-earth single-atom La–N charge-transfer bridge on carbon nitride for highly efficient and selective photocatalytic CO2 reduction. ACS Nano 14, 15841–15852 (2020).

    Article  PubMed  Google Scholar 

  64. Ji, S. et al. Rare-earth single erbium atoms for enhanced photocatalytic CO2 reduction. Angew. Chem. Int. Ed. 59, 10651–10657 (2020).

    Article  CAS  Google Scholar 

  65. Wang, G. et al. Photoinduction of Cu single atoms decorated on UiO-66-NH2 for enhanced photocatalytic reduction of CO2 to liquid fuels. J. Am. Chem. Soc. 142, 19339–19345 (2020).

    Article  CAS  PubMed  Google Scholar 

  66. Wang, G. C. et al. Modulating location of single copper atoms in polymeric carbon nitride for enhanced photoredox catalysis. ACS Catal. 10, 5715–5722 (2020).

    Article  CAS  Google Scholar 

  67. Cao, S., Low, J., Yu, J. & Jaroniec, M. Polymeric photocatalysts based on graphitic carbon nitride. Adv. Mater. 27, 2150–2176 (2015).

    Article  CAS  PubMed  Google Scholar 

  68. Wang, X. C. et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 8, 76–80 (2009).

    Article  CAS  PubMed  Google Scholar 

  69. Liu, J. et al. Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 347, 970–974 (2015).

    Article  CAS  PubMed  Google Scholar 

  70. Liu, Y. et al. Ni single atoms anchored on nitrogen-doped graphene as H2-evolution cocatalyst of SrTiO3(Al)/CoOx for photocatalytic overall water splitting. Carbon 183, 763–773 (2021).

    Article  CAS  Google Scholar 

  71. Zhang, H. et al. Surface modification of carbon nitride with single Co sites via a solvent-driven strategy promoting high-efficiency photocatalytic overall water splitting. Appl. Surf. Sci. 581, 152328 (2022).

    Article  CAS  Google Scholar 

  72. Lv, X., Wei, W., Wang, H., Huang, B. & Dai, Y. Holey graphitic carbon nitride (g-CN) supported bifunctional single atom electrocatalysts for highly efficient overall water splitting. Appl. Catal. B 264, 118521 (2020).

    Article  CAS  Google Scholar 

  73. Wang, J. et al. Porphyrin conjugated polymer grafted onto BiVO4 nanosheets for efficient Z-scheme overall water splitting via cascade charge transfer and single-atom catalytic sites. Adv. Energy Mater. 11, 2003575 (2021).

    Article  CAS  Google Scholar 

  74. Cao, S. W. et al. Single-atom engineering of directional charge transfer channels and active sites for photocatalytic hydrogen evolution. Adv. Funct. Mater. 28, 1802169 (2018). This paper shows that MSA has the dual roles of promoting interlaminar charge transfer and surface catalytic reaction on g-C3N4 through the surface and interlayer semiconductor–MSA interaction.

    Article  Google Scholar 

  75. Gong, Y.-N. et al. Facile synthesis of C3N4-supported metal catalysts for efficient CO2 photoreduction. Nano Res. 15, 551–556 (2022).

    Article  CAS  Google Scholar 

  76. Li, Y., Li, B., Zhang, D., Cheng, L. & Xiang, Q. Crystalline carbon nitride supported copper single atoms for photocatalytic CO2 reduction with nearly 100% CO selectivity. ACS Nano 14, 10552–10561 (2020).

    Article  CAS  PubMed  Google Scholar 

  77. Yang, J. et al. In-situ polymerization induced atomically dispersed manganese sites as cocatalyst for CO2 photoreduction into synthesis gas. Nano Energy 76, 105059 (2020).

    Article  CAS  Google Scholar 

  78. Li, Y. G. et al. Selective light absorber-assisted single nickel atom catalysts for ambient sunlight-driven CO2 methanation. Nat. Commun. 10, 2359 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Cheng, L., Yin, H., Cai, C., Fan, J. & Xiang, Q. Single Ni atoms anchored on porous few-layer g-C3N4 for photocatalytic CO2 reduction: the role of edge confinement. Small 16, e2002411 (2020).

    Article  PubMed  Google Scholar 

  80. Di, J. et al. Isolated single atom cobalt in Bi3O4Br atomic layers to trigger efficient CO2 photoreduction. Nat. Commun. 10, 2840 (2019). This paper shows that CoSA directly substitutes the surface lattice Bi atoms of semiconductor Bi3O4Br to form the stable semiconductor–MSA interaction for CO2 activation and formation of a *COOH intermediate.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Long, R. et al. Isolation of Cu atoms in Pd lattice: forming highly selective sites for photocatalytic conversion of CO2 to CH4. J. Am. Chem. Soc. 139, 4486–4492 (2017).

    Article  CAS  PubMed  Google Scholar 

  82. Cao, X. et al. Engineering lattice disorder on a photocatalyst: photochromic BiOBr nanosheets enhance activation of aromatic C–H bonds via water oxidation. J. Am. Chem. Soc. 144, 3386–3397 (2022).

    Article  CAS  PubMed  Google Scholar 

  83. Xu, C. et al. Turning on visible-light photocatalytic C–H oxidation over metal–organic frameworks by introducing metal-to-cluster charge transfer. J. Am. Chem. Soc. 141, 19110–19117 (2019).

    Article  CAS  PubMed  Google Scholar 

  84. Zheng, Y. W. et al. Photocatalytic hydrogen-evolution cross-couplings: benzene C–H amination and hydroxylation. J. Am. Chem. Soc. 138, 10080–10083 (2016).

    Article  CAS  PubMed  Google Scholar 

  85. Dai, Y. et al. Light-tuned selective photosynthesis of azo- and azoxy-aromatics using graphitic C3N4. Nat. Commun. 9, 60 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Xie, S. et al. Photocatalytic and electrocatalytic transformations of C1 molecules involving C–C coupling. Energ. Environ. Sci. 14, 37–89 (2021).

    Article  CAS  Google Scholar 

  87. Xie, S. et al. Visible light-driven C–H activation and C–C coupling of methanol into ethylene glycol. Nat. Commun. 9, 1181 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Liu, M. X. et al. Direct catalytic methanol-to-ethanol photo-conversion via methyl carbene. Chem 5, 858–867 (2019).

    Article  CAS  Google Scholar 

  89. Wu, X. et al. Selectivity control in photocatalytic valorization of biomass-derived platform compounds by surface engineering of titanium oxide. Chem 6, 3038–3053 (2020).

    Article  CAS  Google Scholar 

  90. Reitz, T. L. et al. Time-resolved XANES investigation of CuO/ZnO in the oxidative methanol reforming reaction. J. Catal. 199, 193–201 (2001).

    Article  CAS  Google Scholar 

  91. Song, H. & Ozkan, U. S. Ethanol steam reforming over Co-based catalysts: role of oxygen mobility. J. Catal. 261, 66–74 (2009).

    Article  CAS  Google Scholar 

  92. Eagan, N. M., Kumbhalkar, M. D., Buchanan, J. S., Dumesic, J. A. & Huber, G. W. Chemistries and processes for the conversion of ethanol into middle-distillate fuels. Nat. Rev. Chem. 3, 223–249 (2019).

    Article  CAS  Google Scholar 

  93. Liu, M. et al. Group-III nitrides catalyzed transformations of organic molecules. Chem 7, 64–92 (2021).

    Article  CAS  Google Scholar 

  94. He, T. W., Zhang, C. M., Zhang, L. & Du, A. J. Single Pt atom decorated graphitic carbon nitride as an efficient photocatalyst for the hydrogenation of nitrobenzene into aniline. Nano Res. 12, 1817–1823 (2019).

    Article  CAS  Google Scholar 

  95. Wang, C. et al. Ultrahigh photocatalytic rate at a single-metal-atom-oxide. Adv. Mater. 31, e1903491 (2019).

    Article  PubMed  Google Scholar 

  96. Xiao, X. et al. A promoted charge separation/transfer system from Cu single atoms and C3N4 layers for efficient photocatalysis. Adv. Mater. 32, e2003082 (2020).

    Article  PubMed  Google Scholar 

  97. Zhou, S. et al. Pd single-atom catalysts on nitrogen-doped graphene for the highly selective photothermal hydrogenation of acetylene to ethylene. Adv. Mater. 31, e1900509 (2019).

    Article  PubMed  Google Scholar 

  98. DeRita, L. et al. Structural evolution of atomically dispersed Pt catalysts dictates reactivity. Nat. Mater. 18, 746–751 (2019).

    Article  CAS  PubMed  Google Scholar 

  99. Jones, J. et al. Thermally stable single-atom platinum-on-ceria catalysts via atom trapping. Science 353, 150–154 (2016).

    Article  CAS  PubMed  Google Scholar 

  100. Tong, T., He, B., Zhu, B., Cheng, B. & Zhang, L. First-principle investigation on charge carrier transfer in transition-metal single atoms loaded g-C3N4. Appl. Surf. Sci. 459, 385–392 (2018).

    Article  CAS  Google Scholar 

  101. Kibria, M. G. et al. Visible light-driven efficient overall water splitting using p-type metal-nitride nanowire arrays. Nat. Commun. 6, 6797 (2015).

    Article  CAS  PubMed  Google Scholar 

  102. Kibria, M. G. et al. Tuning the surface Fermi level on p-type gallium nitride nanowires for efficient overall water splitting. Nat. Commun. 5, 3825 (2014).

    Article  CAS  PubMed  Google Scholar 

  103. Van Dao, D. et al. Plasmonic Au nanoclusters dispersed in nitrogen-doped graphene as a robust photocatalyst for light-to-hydrogen conversion. J. Mater. Chem. A 9, 22810–22819 (2021).

    Article  Google Scholar 

  104. Yu, S. & Jain, P. K. Plasmonic photosynthesis of C1–C3 hydrocarbons from carbon dioxide assisted by an ionic liquid. Nat. Commun. 10, 2022 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Christopher, P., Xin, H. L. & Linic, S. Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures. Nat. Chem. 3, 467–472 (2011).

    Article  CAS  PubMed  Google Scholar 

  106. Teng, Z. et al. Atomically dispersed antimony on carbon nitride for the artificial photosynthesis of hydrogen peroxide. Nat. Catal. 4, 374–384 (2021). This paper shows that single antimony atoms on g-C3N4 can simultaneously perform two-electron oxygen reduction reaction and water oxidation for photosynthesis of H2O2 from a simple water and oxygen mixture.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support of this work from the National Natural Science Fund for Distinguished Young Scholars (grant 52025133), the Tencent Foundation through the XPLORER PRIZE, the Beijing Natural Science Foundation (grant Z220020), the National Natural Science Foundation of China (grant 22002003) and the Fund of the State Key Laboratory of Solidification Processing in NWPU (grant SKLSP202004).

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, contributed substantially to discussion of the content, wrote the article and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Shaojun Guo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Chemistry thanks Aiqin Wang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhou, P., Luo, M. & Guo, S. Optimizing the semiconductor–metal-single-atom interaction for photocatalytic reactivity. Nat Rev Chem 6, 823–838 (2022). https://doi.org/10.1038/s41570-022-00434-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-022-00434-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing