Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Control of light, spin and charge with chiral metal halide semiconductors

Abstract

The relationship between the structural asymmetry and optoelectronic properties of functional materials is an active area of research. The movement of charges through an oriented chiral medium depends on the spin configuration of the charges, and such systems can be used to control spin populations without magnetic components — termed the chiral-induced spin selectivity (CISS) effect. CISS has mainly been studied in chiral organic molecules and their assemblies. Semiconductors are non-magnetic extended systems that allow for the control of charge transport, as well as the absorption and emission of light. Therefore, introducing chirality into semiconductors would enable control over charge, spin and light without magnetic components. Chiral metal halide semiconductors (MHSs) are hybrid organic–inorganic materials that combine the properties of small chiral organic molecules with those of extended inorganic semiconductors. Reports of CISS in chiral MHSs have resulted in breakthroughs in our understanding of CISS and in the realization of spin-dependent optoelectronic properties. This Review examines the fundamentals and applications of CISS in chiral MHSs. The structural diversity and key structure–property relationships, such as chiral transfer from the organic to the inorganic components, are summarized. With a focus on the underlying chemistry and physics, the control of spin, light and charge in these semiconductors is explored.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Categories of chiral metal halide semiconductors.
Fig. 2: Examples of morphologically chiral metal halide semiconductors.
Fig. 3: Examples of molecularly chiral metal halide semiconductors.
Fig. 4: Chiral communication in morphologically chiral metal halide semiconductors.
Fig. 5: Chiral communication in molecularly chiral metal halide semiconductors.
Fig. 6: Chiral-induced spin selectivity in chiral metal halide semiconductors.
Fig. 7: Application of chiral metal halide semiconductors in photonic devices.
Fig. 8: Representative optospintronic devices based on chiral metal halide semiconductors.
Fig. 9: Spin polarization in various chiral systems.

Similar content being viewed by others

References

  1. Ben-Moshe, A., Govorov, A. O. & Markovich, G. Enantioselective synthesis of intrinsically chiral mercury sulfide nanocrystals. Angew. Chem. Int. Ed. 52, 1275–1279 (2013).

    CAS  Google Scholar 

  2. Skelton, J. M., Burton, L. A., Oba, F. & Walsh, A. Metastable cubic tin sulfide: a novel phonon-stable chiral semiconductor. Appl. Mater. 5, 036101 (2017).

    Google Scholar 

  3. Ben-Moshe, A. et al. The chain of chirality transfer in tellurium nanocrystals. Science 372, 729–733 (2021).

    CAS  PubMed  Google Scholar 

  4. Saparov, B. & Mitzi, D. B. Organic–inorganic perovskites: structural versatility for functional materials design. Chem. Rev. 116, 4558–4596 (2016).

    CAS  PubMed  Google Scholar 

  5. Mitzi, D. B. Synthesis, structure, and properties of organic-inorganic perovskites and related materials. Prog. Inorg. Chem., https://doi.org/10.1002/9780470166499.ch1 (1999).

    Article  Google Scholar 

  6. Mitzi, D. B. Templating and structural engineering in organic–inorganic perovskites. J. Chem. Soc. Dalton Trans. https://doi.org/10.1039/B007070J (2001).

    Article  Google Scholar 

  7. Brenner, T. M., Egger, D. A., Kronik, L., Hodes, G. & Cahen, D. Hybrid organic–inorganic perovskites: low-cost semiconductors with intriguing charge-transport properties. Nat. Rev. Mater. 1, 15007 (2016).

    CAS  Google Scholar 

  8. Li, W. et al. Chemically diverse and multifunctional hybrid organic–inorganic perovskites. Nat. Rev. Mater. 2, 16099 (2017).

    Google Scholar 

  9. Ma, S., Ahn, J. & Moon, J. Chiral perovskites for next-generation photonics: from chirality transfer to chiroptical activity. Adv. Mater. https://doi.org/10.1002/adma.202005760 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Ma, J., Wang, H. & Li, D. Recent progress of chiral perovskites: materials, synthesis, and properties. Adv. Mater. 33, 2008785 (2021).

    CAS  Google Scholar 

  11. Dang, Y., Liu, X., Cao, B. & Tao, X. Chiral halide perovskite crystals for optoelectronic applications. Matter 4, 794–820 (2021).

    CAS  Google Scholar 

  12. Long, G. et al. Chiral-perovskite optoelectronics. Nat. Rev. Mater. 5, 423–439 (2020).

    Google Scholar 

  13. Dong, Y. et al. Chiral perovskites: promising materials toward next-generation optoelectronics. Small 15, 1902237 (2019).

    Google Scholar 

  14. Guo, Z., Li, J., Chen, R. & He, T. Advances in single crystals and thin films of chiral hybrid metal halides. Prog. Quantum Electron. https://doi.org/10.1016/j.pquantelec.2022.100375 (2022).

    Article  Google Scholar 

  15. Wei, Q. & Ning, Z. Chiral perovskite spin-optoelectronics and spintronics: toward judicious design and application. ACS Mater. Lett. 3, 1266–1275 (2021).

    CAS  Google Scholar 

  16. Feng, T., Wang, Z., Zhang, Z., Xue, J. & Lu, H. Spin selectivity in chiral metal–halide semiconductors. Nanoscale 13, 18925–18940 (2021).

    CAS  PubMed  Google Scholar 

  17. Duim, H. & Loi, M. A. Chiral hybrid organic-inorganic metal halides: a route toward direct detection and emission of polarized light. Matter 4, 3835–3851 (2021).

    CAS  Google Scholar 

  18. Billing, D. G. & Lemmerer, A. Bis[(S)-β-phenethylammonium] tribromoplumbate(II). Acta Crystallogr. E 59, m381–m383 (2003).

    CAS  Google Scholar 

  19. Billing, D. G. & Lemmerer, A. Synthesis and crystal structures of inorganic–organic hybrids incorporating an aromatic amine with a chiral functional group. CrystEngComm 8, 686–695 (2006).

    CAS  Google Scholar 

  20. Lemmerer, A. & Billing, D. G. Inorganic–organic hybrids incorporating a chiral cyclic ammonium cation. J. South Afr. J. Chem. 66, 263–272 (2013).

    CAS  Google Scholar 

  21. Kojima, A., Teshima, K., Shirai, Y. & Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009).

    CAS  PubMed  Google Scholar 

  22. Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N. & Snaith, H. J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643 (2012).

    CAS  PubMed  Google Scholar 

  23. Kim, H.-S. et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2, 591 (2012).

    PubMed  PubMed Central  Google Scholar 

  24. Ahn, J. et al. A new class of chiral semiconductors: chiral-organic-molecule-incorporating organic–inorganic hybrid perovskites. Mater. Horiz. 4, 851–856 (2017).

    CAS  Google Scholar 

  25. Yu, Z. G. Effective-mass model and magneto-optical properties in hybrid perovskites. Sci. Rep. 6, 28576 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Long, G. et al. Spin control in reduced-dimensional chiral perovskites. Nat. Photon. 12, 528–533 (2018).

    CAS  Google Scholar 

  27. Ma, J. et al. Chiral 2D perovskites with a high degree of circularly polarized photoluminescence. ACS Nano 13, 3659–3665 (2019).

    CAS  PubMed  Google Scholar 

  28. Kim, Y.-H. et al. Strategies to achieve high circularly polarized luminescence from colloidal organic–inorganic hybrid perovskite nanocrystals. ACS Nano 14, 8816–8825 (2020).

    CAS  PubMed  Google Scholar 

  29. Shi, Y., Duan, P., Huo, S., Li, Y. & Liu, M. Endowing perovskite nanocrystals with circularly polarized luminescence. Adv. Mater. 30, 1705011 (2018).

    Google Scholar 

  30. Yuan, C. et al. Chiral lead halide perovskite nanowires for second-order nonlinear optics. Nano Lett. 18, 5411–5417 (2018).

    CAS  PubMed  Google Scholar 

  31. Ai, Y. et al. Fluorine substitution induced high Tc of enantiomeric perovskite ferroelectrics: (R)- and (S)-3-(fluoropyrrolidinium)MnCl3. J. Am. Chem. Soc. 141, 4474–4479 (2019).

    CAS  PubMed  Google Scholar 

  32. Zhang, H.-Y., Tang, Y.-Y., Shi, P.-P. & Xiong, R.-G. Toward the targeted design of molecular ferroelectrics: modifying molecular symmetries and homochirality. Acc. Chem. Res. 52, 1928–1938 (2019).

    CAS  PubMed  Google Scholar 

  33. Tang, Y.-Y. et al. H/F-substitution-induced homochirality for designing high-Tc molecular perovskite ferroelectrics. Adv. Mater. 31, 1902163 (2019).

    Google Scholar 

  34. Yang, C.-K. et al. The first 2D homochiral lead iodide perovskite ferroelectrics: [R- and S-1-(4-chlorophenyl)ethylammonium]2PbI4. Adv. Mater. 31, 1808088 (2019).

    Google Scholar 

  35. Huang, P.-J., Taniguchi, K. & Miyasaka, H. Bulk photovoltaic effect in a pair of chiral–polar layered perovskite-type lead iodides altered by chirality of organic cations. J. Am. Chem. Soc. 141, 14520–14523 (2019).

    CAS  PubMed  Google Scholar 

  36. Chen, C. et al. Circularly polarized light detection using chiral hybrid perovskite. Nat. Commun. 10, 1927 (2019).

    PubMed  PubMed Central  Google Scholar 

  37. Ishii, A. & Miyasaka, T. Direct detection of circular polarized light in helical 1D perovskite-based photodiode. Sci. Adv. 6, eabd3274 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang, L. et al. A chiral reduced-dimension perovskite for an efficient flexible circularly polarized light photodetector. Angew. Chem. Int. Ed. 59, 6442–6450 (2020).

    CAS  Google Scholar 

  39. Hao, J. et al. Direct detection of circularly polarized light using chiral copper chloride–carbon nanotube heterostructures. ACS Nano 15, 7608–7617 (2021).

    CAS  PubMed  Google Scholar 

  40. Lu, H. et al. Spin-dependent charge transport through 2D chiral hybrid lead-iodide perovskites. Sci. Adv. 5, eaay0571 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang, J. et al. Spin-dependent photovoltaic and photogalvanic responses of optoelectronic devices based on chiral two-dimensional hybrid organic–inorganic perovskites. ACS Nano 15, 588–595 (2021).

    CAS  PubMed  Google Scholar 

  42. Kim, Y.-H. et al. Chiral-induced spin selectivity enables a room-temperature spin light-emitting diode. Science 371, 1129–1133 (2021).

    CAS  PubMed  Google Scholar 

  43. He, T. et al. Spectroscopic studies of chiral perovskite nanocrystals. Appl. Phys. Lett. 111, 151102 (2017).

    Google Scholar 

  44. Georgieva, Z. N., Bloom, B. P., Ghosh, S. & Waldeck, D. H. Imprinting chirality onto the electronic states of colloidal perovskite nanoplatelets. Adv. Mater. 30, 1800097 (2018).

    Google Scholar 

  45. Chen, W. et al. Two-photon absorption-based upconverted circularly polarized luminescence generated in chiral perovskite nanocrystals. J. Phys. Chem. Lett. 10, 3290–3295 (2019).

    CAS  PubMed  Google Scholar 

  46. Naaman, R. & Waldeck, D. H. Spintronics and chirality: spin selectivity in electron transport through chiral molecules. Annu. Rev. Phys. Chem. 66, 263–281 (2015).

    CAS  PubMed  Google Scholar 

  47. Naaman, R. & Waldeck, D. H. Chiral-induced spin selectivity effect. J. Phys. Chem. Lett. 3, 2178–2187 (2012).

    CAS  PubMed  Google Scholar 

  48. Moloney, M. P., Gun’ko, Y. K. & Kelly, J. M. Chiral highly luminescent CdS quantum dots. Chem. Commun. https://doi.org/10.1039/B704636G (2007).

    Article  Google Scholar 

  49. Baimuratov, A. S., Rukhlenko, I. D., Gun’ko, Y. K., Baranov, A. V. & Fedorov, A. V. Dislocation-induced chirality of semiconductor nanocrystals. Nano Lett. 15, 1710–1715 (2015).

    CAS  PubMed  Google Scholar 

  50. Tohgha, U., Varga, K. & Balaz, M. Achiral CdSe quantum dots exhibit optical activity in the visible region upon post-synthetic ligand exchange with d- or l-cysteine. Chem. Commun. 49, 1844–1846 (2013).

    CAS  Google Scholar 

  51. Moloney, M. P., Gallagher, S. A. & Gun’ko, Y. K. Chiral CdTe quantum dots. MRS Proc. https://doi.org/10.1557/PROC-1241-XX02-10 (2009).

    Article  Google Scholar 

  52. Gao, X., Han, B., Yang, X. & Tang, Z. Perspective of chiral colloidal semiconductor nanocrystals: opportunity and challenge. J. Am. Chem. Soc. 141, 13700–13707 (2019).

    CAS  PubMed  Google Scholar 

  53. Mukhina, M. V. et al. Intrinsic chirality of CdSe/ZnS quantum dots and quantum rods. Nano Lett. 15, 2844–2851 (2015).

    CAS  PubMed  Google Scholar 

  54. Govorov, A. O. & Fan, Z. Theory of chiral plasmonic nanostructures comprising metal nanocrystals and chiral molecular media. ChemPhysChem 13, 2551–2560 (2012).

    CAS  PubMed  Google Scholar 

  55. Kuzyk, A. et al. DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response. Nature 483, 311–314 (2012).

    CAS  PubMed  Google Scholar 

  56. Ben-Moshe, A., Teitelboim, A., Oron, D. & Markovich, G. Probing the interaction of quantum dots with chiral capping molecules using circular dichroism spectroscopy. Nano Lett. 16, 7467–7473 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Kuznetsova, V. A. et al. Effect of chiral ligand concentration and binding mode on chiroptical activity of CdSe/CdS quantum dots. ACS Nano 13, 13560–13572 (2019).

    CAS  PubMed  Google Scholar 

  58. Yeom, J. et al. Chiromagnetic nanoparticles and gels. Science 359, 309–314 (2018).

    CAS  PubMed  Google Scholar 

  59. Mishra, S. et al. Length-dependent electron spin polarization in oligopeptides and DNA. J. Phys. Chem. C 124, 10776–10782 (2020).

    CAS  Google Scholar 

  60. Ren, H., Wu, Y., Wang, C. & Yan, Y. 2D perovskite nanosheets with intrinsic chirality. J. Phys. Chem. Lett. 12, 2676–2681 (2021).

    CAS  PubMed  Google Scholar 

  61. Long, G. et al. Theoretical prediction of chiral 3D hybrid organic–inorganic perovskites. Adv. Mater. 31, 1807628 (2019).

    Google Scholar 

  62. Ye, H.-Y. et al. Metal-free three-dimensional perovskite ferroelectrics. Science 361, 151 (2018).

    CAS  PubMed  Google Scholar 

  63. Lu, H. et al. Highly distorted chiral two-dimensional tin iodide perovskites for spin polarized charge transport. J. Am. Chem. Soc. 142, 13030–13040 (2020).

    CAS  PubMed  Google Scholar 

  64. Moon, T. H., Oh, S.-J. & Ok, K. M. [((R)-C8H12N)4][Bi2Br10] and [((S)-C8H12N)4][Bi2Br10]: chiral hybrid bismuth bromides templated by chiral organic cations. ACS Omega 3, 17895–17903 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Dehnhardt, N. et al. Band gap-tunable, chiral hybrid metal halides displaying second-harmonic generation. Chem. Mater. 32, 4801–4807 (2020).

    CAS  Google Scholar 

  66. Ben Salah, A. M., Sayari, N., Naïli, H. & Norquist, A. J. Chiral and achiral copper(II) complexes: structure, bonding and biological activities. RSC Adv. 6, 59055–59065 (2016).

    Google Scholar 

  67. Takahashi, M., Hoshino, N., Sambe, K., Takeda, T. & Akutagawa, T. Dynamics of chiral cations in two-dimensional CuX4 and PbX4 perovskites (X = Cl and Br). Inorg. Chem. 59, 11606–11615 (2020).

    CAS  PubMed  Google Scholar 

  68. Li, D. et al. Chiral lead-free hybrid perovskites for self-powered circularly polarized light detection. Angew. Chem. Int. Ed. 60, 8415–8418 (2021).

    CAS  Google Scholar 

  69. Zhou, C. et al. Photoluminescence spectral broadening, chirality transfer and amplification of chiral perovskite materials (R-X-p-mBZA)2PbBr4 (X = H, F, Cl, Br) regulated by van der Waals and halogen atoms interactions. Phys. Chem. Chem. Phys. 22, 17299–17305 (2020).

    CAS  PubMed  Google Scholar 

  70. Zhu, L.-L. et al. Stereochemically active lead chloride enantiomers mediated by homochiral organic cation. Polyhedron 158, 445–448 (2019).

    CAS  Google Scholar 

  71. Jana, M. K. et al. Organic-to-inorganic structural chirality transfer in a 2D hybrid perovskite and impact on Rashba–Dresselhaus spin–orbit coupling. Nat. Commun. 11, 4699 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Hu, Y. et al. A chiral switchable photovoltaic ferroelectric 1D perovskite. Sci. Adv. 6, eaay4213 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Peng, Y. et al. White-light emission in a chiral one-dimensional organic–inorganic hybrid perovskite. J. Mater. Chem. C 6, 6033–6037 (2018).

    CAS  Google Scholar 

  74. Yao, L. et al. Circularly polarized luminescence from chiral tetranuclear copper(i) iodide clusters. J. Phys. Chem. Lett. 11, 1255–1260 (2020).

    CAS  PubMed  Google Scholar 

  75. Deng, B.-B. et al. Homochiral nickel nitrite ABX3 (X = NO2–) perovskite ferroelectrics. J. Am. Chem. Soc. 142, 6946–6950 (2020).

    CAS  PubMed  Google Scholar 

  76. Li, P.-F. et al. Organic enantiomeric high-Tc ferroelectrics. Proc. Natl Acad. Sci. USA 116, 5878 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Wang, J. et al. Aqueous synthesis of low-dimensional lead halide perovskites for room-temperature circularly polarized light emission and detection. ACS Nano 13, 9473–9481 (2019).

    CAS  PubMed  Google Scholar 

  78. Guo, Z. et al. Giant optical activity and second harmonic generation in 2D hybrid copper halides. Angew. Chem. Int. Ed. 60, 8441–8445 (2021).

    CAS  Google Scholar 

  79. Yu, Z.-G. Chirality-induced spin–orbit coupling, spin transport, and natural optical activity in hybrid organic–inorganic perovskites. J. Phys. Chem. Lett. 11, 8638–8646 (2020).

    CAS  PubMed  Google Scholar 

  80. Göhler, B. et al. Spin selectivity in electron transmission through self-assembled monolayers of double-stranded DNA. Science 331, 894 (2011).

    PubMed  Google Scholar 

  81. Ray, S. G., Daube, S. S., Leitus, G., Vager, Z. & Naaman, R. Chirality-induced spin-selective properties of self-assembled monolayers of DNA on gold. Phys. Rev. Lett. 96, 036101 (2006).

    CAS  PubMed  Google Scholar 

  82. Kiran, V., Cohen, S. R. & Naaman, R. Structure dependent spin selectivity in electron transport through oligopeptides. J. Chem. Phys. 146, 092302 (2016).

    Google Scholar 

  83. Kiran, V. et al. Helicenes — a new class of organic spin filter. Adv. Mater. 28, 1957–1962 (2016).

    CAS  PubMed  Google Scholar 

  84. Bloom, B. P., Kiran, V., Varade, V., Naaman, R. & Waldeck, D. H. Spin selective charge transport through cysteine capped CdSe quantum dots. Nano Lett. 16, 4583–4589 (2016).

    CAS  PubMed  Google Scholar 

  85. Chen, Y. et al. Robust interlayer coupling in two-dimensional perovskite/monolayer transition metal dichalcogenide heterostructures. ACS Nano 14, 10258–10264 (2020).

    CAS  PubMed  Google Scholar 

  86. Lu, Y. et al. Spin-dependent charge transport in 1D chiral hybrid lead-bromide perovskite with high stability. Adv. Funct. Mater. 31, 2104605 (2021).

    CAS  Google Scholar 

  87. Huang, Z. et al. Magneto-optical detection of photoinduced magnetism via chirality-induced spin selectivity in 2D chiral hybrid organic–inorganic perovskites. ACS Nano 14, 10370–10375 (2020).

    CAS  PubMed  Google Scholar 

  88. Huang, P.-J. et al. Chirality-dependent circular photogalvanic effect in enantiomorphic 2D organic–inorganic hybrid perovskites. Adv. Mater. 33, 2008611 (2021).

    CAS  Google Scholar 

  89. Greenfield, J. et al. Pathways to increase the dissymmetry in the interaction of chiral light and chiral molecules. Chem. Sci. 12, 8589–8602 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Ni, B. & Cölfen, H. Chirality communications between inorganic and organic compounds. SmartMat 2, 17–32 (2021).

    Google Scholar 

  91. Brandt, J. R., Salerno, F. & Fuchter, M. J. The added value of small-molecule chirality in technological applications. Nat. Rev. Chem. 1, 0045 (2017).

    CAS  Google Scholar 

  92. Riehl, J. P. & Richardson, F. S. Circularly polarized luminescence spectroscopy. Chem. Rev. 86, 1–16 (1986).

    CAS  Google Scholar 

  93. Evers, F. et al. Theory of chirality induced spin selectivity: progress and challenges. Adv. Mater. 34, 2106629 (2022).

    CAS  Google Scholar 

  94. Hoff, D. A. & Rego, L. G. C. Chirality-induced propagation velocity asymmetry. Nano Lett. 21, 8190–8196 (2021).

    CAS  PubMed  Google Scholar 

  95. Evers, F. et al. Theory of chirality induced spin selectivity: progress and challenges. Adv. Mater. 34, e2106629 (2022).

    PubMed  Google Scholar 

  96. Fransson, J. Chirality-induced spin selectivity: the role of electron correlations. J. Phys. Chem. Lett. 10, 7126–7132 (2019).

    CAS  PubMed  Google Scholar 

  97. Alwan, S. & Dubi, Y. Spinterface origin for the chirality-induced spin-selectivity effect. J. Am. Chem. Soc. 143, 14235–14241 (2021).

    CAS  PubMed  Google Scholar 

  98. Jin, X. et al. A new strategy to achieve enhanced upconverted circularly polarized luminescence in chiral perovskite nanocrystals. Nano Res. 15, 1047–1053 (2021).

    Google Scholar 

  99. Lin, J.-T. et al. Tuning the circular dichroism and circular polarized luminescence intensities of chiral 2D hybrid organic–inorganic perovskites through halogenation of the organic ions. Angew. Chem. Int. Ed. 60, 21434–21440 (2021).

    CAS  Google Scholar 

  100. Naaman, R., Paltiel, Y. & Waldeck, D. H. Chiral molecules and the electron spin. Nat. Rev. Chem. 3, 250–260 (2019).

    CAS  Google Scholar 

  101. Göhler, B. et al. Spin selectivity in electron transmission through self-assembled monolayers of double-stranded DNA. Science 331, 894–897 (2011).

    PubMed  Google Scholar 

  102. Huizi-Rayo, U. et al. An ideal spin filter: long-range, high-spin selectivity in chiral helicoidal 3-dimensional metal organic frameworks. Nano Lett. 20, 8476–8482 (2020).

    CAS  PubMed  Google Scholar 

  103. Kulkarni, C. et al. Highly efficient and tunable filtering of electrons’ spin by supramolecular chirality of nanofiber-based materials. Adv. Mater. 32, 1904965 (2020).

    CAS  Google Scholar 

  104. Jia, L., Wang, C., Zhang, Y., Yang, L. & Yan, Y. Efficient spin selectivity in self-assembled superhelical conducting polymer microfibers. ACS Nano 14, 6607–6615 (2020).

    CAS  PubMed  Google Scholar 

  105. Mishra, S. et al. Spin filtering along chiral polymers. Angew. Chem. Int. Edn 59, 14671–14676 (2020).

    CAS  Google Scholar 

  106. Niño, M. Á. et al. Enantiospecific spin polarization of electrons photoemitted through layers of homochiral organic molecules. Adv. Mater. 26, 7474–7479 (2014).

    PubMed  Google Scholar 

  107. Ray, K., Ananthavel, S. P., Waldeck, D. H. & Naaman, R. Asymmetric scattering of polarized electrons by organized organic films of chiral molecules. Science 283, 814–816 (1999).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work reviewed here is based on work supported as part of the Center for Hybrid Organic Inorganic Semiconductors for Energy (CHOISE), an Energy Frontier Research Center funded by the Office of Basic Energy Sciences, Office of Science, within the US Department of Energy through contract number DE-AC36-08G028308. Z.V.V. acknowledges funding from the DOE, Office of Science (grant no. DE-SC0014579). H.L. gratefully acknowledges funding from the Hong Kong University of Science and Technology (HKUST) School of Science (SSCI) and the Department of Chemistry via Project Funding R9270, as well as funding from the Early Career Scheme (grant no. 26300721) from the Hong Kong Research Grants Council (RGC). The views expressed in the article do not necessarily represent the views of the DOE or the US Government.

Author information

Authors and Affiliations

Authors

Contributions

All the authors edited the article prior to submission. H.L. researched the data. H.L. and M.C.B. discussed the content and wrote the article.

Corresponding authors

Correspondence to Haipeng Lu or Matthew C. Beard.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Chemistry thanks Ren-Gen Xiong and the other, anonymous, reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Neumann–Curie principle

Defines the relationship between structural symmetry elements and the corresponding properties, namely that if a certain structural cause produces a certain effect, the symmetry elements of the cause must be contained in the effect.

Electronic circular dichroism

(ECD). The differential absorption of left-handed and right-handed circularly polarized light corresponding to electronic transitions.

Vibrational circular dichroism

(VCD). The differential absorption of left-handed and right-handed circularly polarized light corresponding to vibronic transitions.

Cotton effect

The characteristic dispersive feature of circular dichroism spectroscopy.

Spin scattering

Spin-flip process that switches an incoming spin-up state into an outgoing spin-down state, leading to a decay of spin polarization.

Magneto-optical Kerr effect

Electromagnetic phenomenon that occurs when linearly polarized light is reflected off a magnetized surface: after reflection, linearly polarized light becomes ellipsoidally polarized owing to Kerr rotation, which is proportional to the magnetization of the reflecting surface.

Spin valves

Devices in which the electrical resistance switches from high to low depending on the relative alignment of the magnetization in the layers.

Circular photogalvanic effect

(CPGE). Spin-related optoelectronic phenomenon arising from spin–orbit coupling in noncentrosymmetric systems in which photocarriers are asymmetrically distributed in a momentum space upon photoexcitation with circularly polarized light; produces helicity-dependent photocurrents at zero bias voltage.

Rashba splitting

Momentum-dependent splitting of spin bands due to spin–orbit coupling and a lack of inversion symmetry.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, H., Vardeny, Z.V. & Beard, M.C. Control of light, spin and charge with chiral metal halide semiconductors. Nat Rev Chem 6, 470–485 (2022). https://doi.org/10.1038/s41570-022-00399-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-022-00399-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing