Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Studying protein structure and function by native separation–mass spectrometry

Abstract

Alterations in protein structure may have profound effects on biological function. Analytical techniques that permit characterization of proteins while maintaining their conformational and functional state are crucial for studying changes in the higher order structure of proteins and for establishing structure–function relationships. Coupling of native protein separations with mass spectrometry is emerging rapidly as a powerful approach to study these aspects in a reliable, fast and straightforward way. This Review presents the available native separation modes for proteins, covers practical considerations on the hyphenation of these separations with mass spectrometry and highlights the involvement of affinity-based separations to simultaneously obtain structural and functional information of proteins. The impact of these approaches is emphasized by selected applications addressing biomedical and biopharmaceutical research questions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Representation of the implications of denaturing and native protein analysis exemplified by a protein and its non-covalent dimer.
Fig. 2: Hyphenation of native protein separations with mass spectrometry when using volatile or non-volatile eluents.
Fig. 3: Scope of native protein separation–MS techniques for the assessment of proteoform heterogeneity.
Fig. 4: Schematic representation of the concept of affinity capillary electrophoresis coupled to mass spectrometry.
Fig. 5: Example of top-down native CE hyphenated with MS for the characterization of Escherichia coli ribosomal proteins and protein complexes.

Similar content being viewed by others

References

  1. Uversky, V. N. in Brenner’s Encyclopedia of Genetics 2nd edn (eds Maloy, S. & Hughes, K.) 425–430 (Academic, 2013).

  2. Aebersold, R. et al. How many human proteoforms are there? Nat. Chem. Biol. 14, 206–214 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Xu, H. et al. PTMD: a database of human disease-associated post-translational modifications. Genom. Proteom. Bioinform. 16, 244–251 (2018).

    Google Scholar 

  4. Tenreiro, S., Eckermann, K. & Outeiro, T. F. Protein phosphorylation in neurodegeneration: friend or foe? Front. Mol. Neurosci. 7, 42 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Jin, H. & Zangar, R. C. Protein modifications as potential biomarkers in breast cancer. Biomark. Insights 4, 191–200 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Pinho, S. S. & Reis, C. A. Glycosylation in cancer: mechanisms and clinical implications. Nat. Rev. Cancer 15, 540–555 (2015).

    CAS  PubMed  Google Scholar 

  7. Reily, C., Stewart, T. J., Renfrow, M. B. & Novak, J. Glycosylation in health and disease. Nat. Rev. Nephrol. 15, 346–366 (2019).

    PubMed  PubMed Central  Google Scholar 

  8. Ciudad, S. et al. Aβ(1-42) tetramer and octamer structures reveal edge conductivity pores as a mechanism for membrane damage. Nat. Commun. 11, 3014 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Ebrahimi-Fakhari, D., Wahlster, L. & McLean, P. J. Protein degradation pathways in Parkinson’s disease: curse or blessing. Acta Neuropathol. 124, 153–172 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Walsh, G. Biopharmaceutical benchmarks 2018. Nat. Biotechnol. 36, 1136–1145 (2018).

    CAS  PubMed  Google Scholar 

  11. Polaina, J. & MacCabe, A. P. Industrial Enzymes: Structure, Function and Applications (Springer, 2007).

  12. De Groot, A. S. & Scott, D. W. Immunogenicity of protein therapeutics. Trends Immunol. 28, 482–490 (2007).

    PubMed  Google Scholar 

  13. Hintersteiner, B. et al. Charge heterogeneity: basic antibody charge variants with increased binding to Fc receptors. mAbs 8, 1548–1560 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang, Y., Fonslow, B. R., Shan, B., Baek, M. C. & Yates, J. R. 3rd Protein analysis by shotgun/bottom-up proteomics. Chem. Rev. 113, 2343–2394 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Donnelly, D. P. et al. Best practices and benchmarks for intact protein analysis for top-down mass spectrometry. Nat. Methods 16, 587–594 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Berkowitz, S. A., Engen, J. R., Mazzeo, J. R. & Jones, G. B. Analytical tools for characterizing biopharmaceuticals and the implications for biosimilars. Nat. Rev. Drug Discov. 11, 527–540 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Parr, M. K., Montacir, O. & Montacir, H. Physicochemical characterization of biopharmaceuticals. J. Pharm. Biomed. Anal. 130, 366–389 (2016).

    CAS  PubMed  Google Scholar 

  18. Skinner, O. S. et al. Top-down characterization of endogenous protein complexes with native proteomics. Nat. Chem. Biol. 14, 36–41 (2018).

    CAS  PubMed  Google Scholar 

  19. Wohlschlager, T. et al. Native mass spectrometry combined with enzymatic dissection unravels glycoform heterogeneity of biopharmaceuticals. Nat. Commun. 9, 1713 (2018).

    PubMed  PubMed Central  Google Scholar 

  20. Jooss, K., McGee, J. P., Melani, R. D. & Kelleher, N. L. Standard procedures for native CZE-MS of proteins and protein complexes up to 800 kDa. Electrophoresis 42, 1050–1059 (2021).

    CAS  PubMed  Google Scholar 

  21. Haberger, M. et al. Rapid characterization of biotherapeutic proteins by size-exclusion chromatography coupled to native mass spectrometry. mAbs 8, 331–339 (2015).

    PubMed  PubMed Central  Google Scholar 

  22. Bich, C., Baer, S., Jecklin, M. C. & Zenobi, R. Probing the hydrophobic effect of noncovalent complexes by mass spectrometry. J. Am. Soc. Mass Spectrom. 21, 286–289 (2010).

    CAS  PubMed  Google Scholar 

  23. Marie, A. L. et al. Characterization of conformers and dimers of antithrombin by capillary electrophoresis-quadrupole-time-of-flight mass spectrometry. Anal. Chim. Acta 947, 58–65 (2016).

    CAS  PubMed  Google Scholar 

  24. Konermann, L., Ahadi, E., Rodriguez, A. D. & Vahidi, S. Unraveling the mechanism of electrospray ionization. Anal. Chem. 85, 2–9 (2013).

    CAS  PubMed  Google Scholar 

  25. Tong, W. & Wang, G. How can native mass spectrometry contribute to characterization of biomacromolecular higher-order structure and interactions? Methods 144, 3–13 (2018).

    CAS  PubMed  Google Scholar 

  26. Cech, N. B. & Enke, C. G. Practical implications of some recent studies in electrospray ionization fundamentals. Mass Spectrom. Rev. 20, 362–387 (2001).

    CAS  PubMed  Google Scholar 

  27. Awad, H., Khamis, M. M. & El-Aneed, A. Mass spectrometry, review of the basics: ionization. Appl. Spectrosc. 50, 158–175 (2014).

    Google Scholar 

  28. Belov, A. M. et al. Analysis of proteins, protein complexes, and organellar proteomes using sheathless capillary zone electrophoresis-native mass spectrometry. J. Am. Soc. Mass Spectrom. 28, 2614–2634 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Konermann, L. Addressing a common misconception: ammonium acetate as neutral pH “buffer” for native electrospray mass spectrometry. J. Am. Soc. Mass Spectrom. 28, 1827–1835 (2017).

    CAS  PubMed  Google Scholar 

  30. Fekete, S., Beck, A., Veuthey, J. L. & Guillarme, D. Ion-exchange chromatography for the characterization of biopharmaceuticals. J. Pharm. Biomed. Anal. 113, 43–55 (2015).

    CAS  PubMed  Google Scholar 

  31. Queiroz, J. A., Tomaz, C. T. & Cabral, J. M. S. Hydrophobic interaction chromatography of proteins. J. Biotechnol. 87, 143–159 (2001).

    CAS  PubMed  Google Scholar 

  32. Sterling, H. J., Batchelor, J. D., Wemmer, D. E. & Williams, E. R. Effects of buffer loading for electrospray ionization mass spectrometry of a noncovalent protein complex that requires high concentrations of essential salts. J. Am. Soc. Mass Spectrom. 21, 1045–1049 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Metwally, H., McAllister, R. G. & Konermann, L. Exploring the mechanism of salt-induced signal suppression in protein electrospray mass spectrometry using experiments and molecular dynamics simulations. Anal. Chem. 87, 2434–2442 (2015).

    CAS  PubMed  Google Scholar 

  34. Cassou, C. A. & Williams, E. R. Desalting protein ions in native mass spectrometry using supercharging reagents. Analyst 139, 4810–4819 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Susa, A. C., Xia, Z. & Williams, E. R. Small emitter tips for native mass spectrometry of proteins and protein complexes from nonvolatile buffers that mimic the intracellular environment. Anal. Chem. 89, 3116–3122 (2017).

    CAS  PubMed  Google Scholar 

  36. Yan, Y., Xing, T., Wang, S., Daly, T. J. & Li, N. Online coupling of analytical hydrophobic interaction chromatography with native mass spectrometry for the characterization of monoclonal antibodies and related products. J. Pharm. Biomed. Anal. 186, 113313 (2020).

    CAS  PubMed  Google Scholar 

  37. Yan, Y., Xing, T., Wang, S. & Li, N. Versatile, sensitive, and robust native LC-MS platform for intact mass analysis of protein drugs. J. Am. Soc. Mass Spectrom. 31, 2171–2179 (2020).

    CAS  PubMed  Google Scholar 

  38. Konermann, L., Metwally, H., Duez, Q. & Peters, I. Charging and supercharging of proteins for mass spectrometry: recent insights into the mechanisms of electrospray ionization. Analyst 144, 6157–6171 (2019).

    CAS  PubMed  Google Scholar 

  39. Felitsyn, N., Peschke, M. & Kebarle, P. Origin and number of charges observed on multiply-protonated native proteins produced by ESI. Int. J. Mass Spectrom. 219, 39–62 (2002).

    CAS  Google Scholar 

  40. Ventouri, I. K. et al. Probing protein denaturation during size-exclusion chromatography using native mass spectrometry. Anal. Chem. 92, 4292–4300 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Hedges, J. B., Vahidi, S., Yue, X. & Konermann, L. Effects of ammonium bicarbonate on the electrospray mass spectra of proteins: evidence for bubble-induced unfolding. Anal. Chem. 85, 6469–6476 (2013).

    CAS  PubMed  Google Scholar 

  42. Benesch, J. L. P., Ruotolo, D. T., Simmons, D. A. & Robinson, C. V. Protein complexes in the gas phase: technology for structural genomics and proteomics. Chem. Rev. 107, 3544–3567 (2007).

    CAS  PubMed  Google Scholar 

  43. Karas, M., Bahr, U. & Dülcks, T. Nano-electrospray ionization mass spectrometry: addressing analytical problems beyond routine. Fresenius J. Anal. Chem. 366, 669–676 (2000).

    CAS  PubMed  Google Scholar 

  44. Muneeruddin, K., Nazzaro, M. & Kaltashov, I. A. Characterization of intact protein conjugates and biopharmaceuticals using ion-exchange chromatography with online detection by native electrospray ionization mass spectrometry and top-down tandem mass spectrometry. Anal. Chem. 87, 10138–10145 (2015).

    CAS  PubMed  Google Scholar 

  45. Ehkirch, A. et al. Hyphenation of size exclusion chromatography to native ion mobility mass spectrometry for the analytical characterization of therapeutic antibodies and related products. J. Chromatogr. B 1086, 176–183 (2018).

    CAS  Google Scholar 

  46. Chen, B. et al. Online hydrophobic interaction chromatography–mass spectrometry for the analysis of intact monoclonal antibodies. Anal. Chem. 90, 7135–7138 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Chen, B. et al. Online hydrophobic interaction chromatography–mass spectrometry for top-down proteomics. Anal. Chem. 88, 1885–1891 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Ehkirch, A. et al. An online four-dimensional HICxSEC-IMxMS methodology for proof-of-concept characterization of antibody drug conjugates. Anal. Chem. 90, 1578–1586 (2018).

    CAS  PubMed  Google Scholar 

  49. van Schaick, G. et al. Anion exchange chromatography–mass spectrometry for monitoring multiple quality attributes of erythropoietin biopharmaceuticals. Anal. Chim. Acta 1143, 166–172 (2021).

    PubMed  Google Scholar 

  50. Yan, Y., Liu, A. P., Wang, S., Daly, T. J. & Li, N. Ultrasensitive characterization of charge heterogeneity of therapeutic monoclonal antibodies using strong cation exchange chromatography coupled to native mass spectrometry. Anal. Chem. 90, 13013–13020 (2018).

    CAS  PubMed  Google Scholar 

  51. Nguyen, G. T. H. et al. Nanoscale ion emitters in native mass spectrometry for measuring ligand–protein binding affinities. ACS Cent. Sci. 5, 308–318 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Bertoletti, L. et al. Evaluation of capillary electrophoresis-mass spectrometry for the analysis of the conformational heterogeneity of intact proteins using beta2-microglobulin as model compound. Anal. Chim. Acta 945, 102–109 (2016).

    CAS  PubMed  Google Scholar 

  53. Gahoual, R., Busnel, J. M., Wolff, P., Francois, Y. N. & Leize-Wagner, E. Novel sheathless CE-MS interface as an original and powerful infusion platform for nanoESI study: from intact proteins to high molecular mass noncovalent complexes. Anal. Bioanal. Chem. 406, 1029–1038 (2014).

    CAS  PubMed  Google Scholar 

  54. Nguyen, A. & Moini, M. Analysis of major protein–protein and protein–metal complexes of erythrocytes directly from cell lysate utilizing capillary electrophoresis mass spectrometry. Anal. Chem. 80, 7169–7173 (2008).

    CAS  PubMed  Google Scholar 

  55. Shen, X. et al. Investigating native capillary zone electrophoresis-mass spectrometry on a high-end quadrupole-time-of-flight mass spectrometer for the characterization of monoclonal antibodies. Int. J. Mass Spectrom. 462, 116541 (2021).

    CAS  PubMed  Google Scholar 

  56. Farsang, E. et al. Tuning selectivity in cation-exchange chromatography applied for monoclonal antibody separations, part 1: alternative mobile phases and fine tuning of the separation. J. Pharm. Biomed. Anal. 168, 138–147 (2019).

    CAS  PubMed  Google Scholar 

  57. Hopper, J. T., Sokratous, K. & Oldham, N. J. Charge state and adduct reduction in electrospray ionization–mass spectrometry using solvent vapor exposure. Anal. Biochem. 421, 788–790 (2012).

    CAS  PubMed  Google Scholar 

  58. Mehaffey, M. R., Xia, Q. & Brodbelt, J. S. Uniting native capillary electrophoresis and multistage ultraviolet photodissociation mass spectrometry for online separation and characterization of Escherichia coli ribosomal proteins and protein complexes. Anal. Chem. 92, 15202–15211 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Ehkirch, A. et al. A novel online four-dimensional SEC×SEC-IM×MS methodology for characterization of monoclonal antibody size variants. Anal. Chem. 90, 13929–13937 (2018).

    CAS  PubMed  Google Scholar 

  60. Gilroy, J. J. & Eakin, C. M. Characterization of drug load variants in a thiol linked antibody-drug conjugate using multidimensional chromatography. J. Chromatogr. B 1060, 182–189 (2017).

    CAS  Google Scholar 

  61. Zhou, Z. et al. Membrane-based continuous remover of trifluoroacetic acid in mobile phase for LC-ESI-MS analysis of small molecules and proteins. J. Am. Soc. Mass Spectrom. 23, 1289–1292 (2012).

    CAS  PubMed  Google Scholar 

  62. Wouters, S., Eeltink, S., Haselberg, R., Somsen, G. W. & Gargano, A. F. G. Microfluidic ion stripper for removal of trifluoroacetic acid from mobile phases used in HILIC-MS of intact proteins. Anal. Bioanal. Chem. 413, 4379–4386 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Zhang, L., Vasicek, L. A., Hsieh, S., Zhang, S., Bateman, K. P. & Henion, J. Top-down LC–MS quantitation of intact denatured and native monoclonal antibodies in biological samples. Bioanalysis 10, 1039–1054 (2018).

    CAS  PubMed  Google Scholar 

  64. Kaddis, C. S. & Loo, J. A. Large flying proteins with ESI. Anal. Chem. 79, 1778–1784 (2007).

    CAS  PubMed  Google Scholar 

  65. Lossl, P., Snijder, J. & Heck, A. J. Boundaries of mass resolution in native mass spectrometry. J. Am. Soc. Mass Spectrom. 25, 906–917 (2014).

    PubMed  Google Scholar 

  66. Tamara, S., den Boer, M. A. & Heck, A. J. R. High-resolution native mass spectrometry. Chem. Rev. https://doi.org/10.1021/acs.chemrev.1c00212 (2021).

    Article  PubMed  Google Scholar 

  67. Fort, K. L. et al. Expanding the structural analysis capabilities on an Orbitrap-based mass spectrometer for large macromolecular complexes. Analyst 143, 100–105 (2017).

    PubMed  Google Scholar 

  68. Campuzano, I. D. G. et al. High mass analysis with a Fourier transform ion cyclotron resonance mass spectrometer: from inorganic salt clusters to antibody conjugates and beyond. J. Am. Soc. Mass Spectrom. 31, 1155–1162 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Mallis, C. S. et al. Development of native MS capabilities on an extended mass range Q-TOF MS. Int. J. Mass Spectrom. 458, 116451 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Terral, G., Beck, A. & Cianferani, S. Insights from native mass spectrometry and ion mobility-mass spectrometry for antibody and antibody-based product characterization. J. Chromatogr. B 1032, 79–90 (2016).

    CAS  Google Scholar 

  71. Leney, A. C. & Heck, A. J. Native mass spectrometry: what is in the name? J. Am. Soc. Mass Spectrom. 28, 5–13 (2017).

    CAS  PubMed  Google Scholar 

  72. Rose, R. J., Damoc, E., Denisov, E., Makarov, A. & Heck, A. J. R. High-sensitivity Orbitrap mass analysis of intact macromolecular assemblies. Nat. Methods 9, 1084–1086 (2012).

    CAS  PubMed  Google Scholar 

  73. Barth, M. & Schmidt, C. Native mass spectrometry — a valuable tool in structural biology. J. Mass Spectrom. 55, e4578 (2020).

    CAS  PubMed  Google Scholar 

  74. Zhou, M. et al. Higher-order structural characterisation of native proteins and complexes by top-down mass spectrometry. Chem. Sci. 11, 12918–12936 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Belov, M. E. et al. From protein complexes to subunit backbone fragments: a multi-stage approach to native mass spectrometry. Anal. Chem. 85, 11163–11173 (2013).

    CAS  PubMed  Google Scholar 

  76. Konijnenberg, A. et al. Top-down mass spectrometry of intact membrane protein complexes reveals oligomeric state and sequence information in a single experiment. Protein Sci. 24, 1292–1300 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Macias, L. A., Santos, I. C. & Brodbelt, J. S. Ion activation methods for peptides and proteins. Anal. Chem. 92, 227–251 (2020).

    CAS  PubMed  Google Scholar 

  78. Brodbelt, J. S., Morrison, L. J. & Santos, I. Ultraviolet photodissociation mass spectrometry for analysis of biological molecules. Chem. Rev. 120, 3328–3380 (2020).

    CAS  PubMed  Google Scholar 

  79. Deslignière, E. et al. Pushing the limits of native MS: Online SEC-native MS for structural biology applications. Int. J. Mass Spectrom. 461, 116502 (2021).

    Google Scholar 

  80. Ruotolo, B. T. et al. Evidence for macromolecular protein rings in the absence of bulk water. Science 310, 1658–1661 (2005).

    CAS  PubMed  Google Scholar 

  81. Desligniere, E. et al. Toward automation of collision-induced unfolding experiments through online size exclusion chromatography coupled to native mass spectrometry. Anal. Chem. 92, 12900–12908 (2020).

    CAS  PubMed  Google Scholar 

  82. Desligniere, E. et al. State-of-the-art native mass spectrometry and ion mobility methods to monitor homogeneous site-specific antibody-drug conjugates synthesis. Pharmaceuticals 14, 498 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. D’Atri, V. et al. Adding a new separation dimension to MS and LC–MS: what is the utility of ion mobility spectrometry? J. Sep. Sci. 41, 20–67 (2018).

    PubMed  Google Scholar 

  84. Bobaly, B. et al. Current possibilities of liquid chromatography for the characterization of antibody-drug conjugates. J. Pharm. Biomed. Anal. 147, 493–505 (2018).

    CAS  PubMed  Google Scholar 

  85. Muneeruddin, K., Thomas, J. J., Salinas, P. A. & Kaltashov, I. A. Characterization of small protein aggregates and oligomers using size exclusion chromatography with online detection by native electrospray ionization mass spectrometry. Anal. Chem. 86, 10692–10699 (2014).

    CAS  PubMed  Google Scholar 

  86. Astefanei, A., Dapic, I. & Camenzuli, M. Different stationary phase selectivities and morphologies for intact protein separations. Chromatographia 80, 665–687 (2017).

    CAS  PubMed  Google Scholar 

  87. Goyon, A. et al. Evaluation of size exclusion chromatography columns packed with sub-3 μm particles for the analysis of biopharmaceutical proteins. J. Chromatogr. A 1498, 80–89 (2017).

    CAS  PubMed  Google Scholar 

  88. Goyon, A., Fekete, S., Beck, A., Veuthey, J. L. & Guillarme, D. Unraveling the mysteries of modern size exclusion chromatography-the way to achieve confident characterization of therapeutic proteins. J. Chromatogr. B 1092, 368–378 (2018).

    CAS  Google Scholar 

  89. Goyon, A. et al. Characterization of 30 therapeutic antibodies and related products by size exclusion chromatography: feasibility assessment for future mass spectrometry hyphenation. J. Chromatogr. B 1065–1066, 35–43 (2017).

    Google Scholar 

  90. Fekete, S., Beck, A., Veuthey, J. L. & Guillarme, D. Theory and practice of size exclusion chromatography for the analysis of protein aggregates. J. Pharm. Biomed. Anal. 101, 161–173 (2014).

    CAS  PubMed  Google Scholar 

  91. Lakayan, D., Haselberg, R., Gahoual, R., Somsen, G. W. & Kool, J. Affinity profiling of monoclonal antibody and antibody-drug-conjugate preparations by coupled liquid chromatography-surface plasmon resonance biosensing. Anal. Bioanal. Chem. 410, 7837–7848 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Yan, Y., Xing, T., Wang, S., Daly, T. J. & Li, N. Coupling mixed-mode size exclusion chromatography with native mass spectrometry for sensitive detection and quantitation of homodimer impurities in bispecific IgG. Anal. Chem. 91, 11417–11424 (2019).

    CAS  PubMed  Google Scholar 

  93. Valliere-Douglass, J. F., McFee, W. A. & Salas-Solano, O. Native intact mass determination of antibodies conjugated with monomethyl Auristatin E and F at interchain cysteine residues. Anal. Chem. 84, 2843–2849 (2012).

    CAS  PubMed  Google Scholar 

  94. VanAernum, Z. L. et al. Rapid online buffer exchange for screening of proteins, protein complexes and cell lysates by native mass spectrometry. Nat. Protoc. 15, 1132–1157 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Cavanagh, J., Benson, L. M., Thompson, R. & Naylor, S. In-line desalting mass spectrometry for the study of noncovalent biological complexes. Anal. Chem. 75, 3281–3286 (2003).

    CAS  PubMed  Google Scholar 

  96. Fekete, S., Ganzler, K. & Guillarme, D. Critical evaluation of fast size exclusion chromatographic separations of protein aggregates, applying sub-2 μm particles. J. Pharm. Biomed. Anal. 78–79, 141–149 (2013).

    PubMed  Google Scholar 

  97. Botzanowski, T. et al. Insights from native mass spectrometry approaches for top- and middle-level characterization of site-specific antibody-drug conjugates. mAbs 9, 801–811 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. van der Rest, G. & Halgand, F. Size exclusion chromatography-ion mobility-mass spectrometry coupling: a step toward structural biology. J. Am. Soc. Mass Spectrom. 28, 2519–2522 (2017).

    PubMed  Google Scholar 

  99. Haberger, M. et al. Assessment of chemical modifications of sites in the CDRs of recombinant antibodies: susceptibility vs. functionality of critical quality attributes. mAbs 6, 327–339 (2014).

    PubMed  PubMed Central  Google Scholar 

  100. Leblanc, Y., Ramon, C., Bihoreau, N. & Chevreux, G. Charge variants characterization of a monoclonal antibody by ion exchange chromatography coupled on-line to native mass spectrometry: case study after a long-term storage at +5 °C. J. Chromatogr. B 1048, 130–139 (2017).

    CAS  Google Scholar 

  101. Bertoletti, L. et al. Separation and characterisation of beta2-microglobulin folding conformers by ion-exchange liquid chromatography and ion-exchange liquid chromatography–mass spectrometry. Anal. Chim. Acta 771, 108–114 (2013).

    CAS  PubMed  Google Scholar 

  102. Leblanc, Y., Bihoreau, N. & Chevreux, G. Characterization of human serum albumin isoforms by ion exchange chromatography coupled on-line to native mass spectrometry. J. Chromatogr. B 1095, 87–93 (2018).

    CAS  Google Scholar 

  103. Muneeruddin, K. et al. Characterization of a PEGylated protein therapeutic by ion exchange chromatography with on-line detection by native ESI MS and MS/MS. Analyst 142, 336–344 (2017).

    CAS  PubMed  Google Scholar 

  104. Füssl, F. et al. Charge variant analysis of monoclonal antibodies using direct coupled pH gradient cation exchange chromatography to high-resolution native mass spectrometry. Anal. Chem. 90, 4669–4676 (2018).

    PubMed  Google Scholar 

  105. Füssl, F. et al. Comprehensive characterisation of the heterogeneity of adalimumab via charge variant analysis hyphenated on-line to native high resolution Orbitrap mass spectrometry. mAbs 11, 116–128 (2019).

    PubMed  Google Scholar 

  106. Sankaran, P. K. et al. Identification and quantification of product-related quality attributes in bio-therapeutic monoclonal antibody via a simple, and robust cation-exchange HPLC method compatible with direct online detection of UV and native ESI-QTOF-MS analysis. J. Chromatogr. B 1102–1103, 83–95 (2018).

    Google Scholar 

  107. Bailey, A. O. et al. Charge variant native mass spectrometry benefits mass precision and dynamic range of monoclonal antibody intact mass analysis. mAbs 10, 1214–1225 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Füssl, F., Trappe, A., Carillo, S., Jakes, C. & Bones, J. Comparative elucidation of Cetuximab heterogeneity on the intact protein level by cation exchange chromatography and capillary electrophoresis coupled to mass spectrometry. Anal. Chem. 92, 5431–5438 (2020).

    PubMed  Google Scholar 

  109. Haberger, M. et al. Multiattribute monitoring of antibody charge variants by cation-exchange chromatography coupled to native mass spectrometry. J. Am. Soc. Mass Spectrom. 32, 2062–2071 (2021).

    CAS  PubMed  Google Scholar 

  110. Füssl, F., Criscuolo, A., Cook, K., Scheffler, K. & Bones, J. Cracking proteoform complexity of ovalbumin with anion-exchange chromatography–high-resolution mass spectrometry under native conditions. J. Proteome Res. 18, 3689–3702 (2019).

    PubMed  Google Scholar 

  111. Leblanc, Y. et al. A generic method for intact and subunit level characterization of mAb charge variants by native mass spectrometry. J. Chromatogr. B 1133, 121814 (2019).

    CAS  Google Scholar 

  112. Sharma, P., Panchal, A., Yadav, N. & Narang, J. Analytical techniques for the detection of glycated haemoglobin underlining the sensors. Int. J. Biol. Macromol. 155, 685–696 (2020).

    CAS  PubMed  Google Scholar 

  113. Yan, J., Springsteen, G., Deeter, S. & Wang, B. The relationship among pKa, pH, and binding constants in the interactions between boronic acids and diols — it is not as simple as it appears. Tetrahedron 60, 11205–11209 (2004).

    CAS  Google Scholar 

  114. Haverick, M., Mengisen, S., Shameem, M. & Ambrogelly, A. Separation of mAbs molecular variants by analytical hydrophobic interaction chromatography HPLC: overview and applications. mAbs 6, 852–858 (2014).

    PubMed  PubMed Central  Google Scholar 

  115. Lamanna, W. C. et al. The structure-function relationship of disulfide bonds in etanercept. Sci. Rep. 7, 3951 (2017).

    PubMed  PubMed Central  Google Scholar 

  116. Fekete, S., Veuthey, J. L., Beck, A. & Guillarme, D. Hydrophobic interaction chromatography for the characterization of monoclonal antibodies and related products. J. Pharm. Biomed. Anal. 130, 3–18 (2016).

    CAS  PubMed  Google Scholar 

  117. Boyd, D., Kaschak, T. & Yan, B. HIC resolution of an IgG1 with an oxidized Trp in a complementarity determining region. J. Chromatogr. B 879, 955–960 (2011).

    CAS  Google Scholar 

  118. Xiu, L., Valeja, S. G., Alpert, A. J., Jin, S. & Ge, Y. Effective protein separation by coupling hydrophobic interaction and reverse phase chromatography for top-down proteomics. Anal. Chem. 86, 7899–7906 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Wei, B., Han, G., Tang, J., Sandoval, W. & Zhang, Y. T. Native hydrophobic interaction chromatography hyphenated to mass spectrometry for characterization of monoclonal antibody minor variants. Anal. Chem. 91, 15360–15364 (2019).

    CAS  PubMed  Google Scholar 

  120. Haselberg, R., de Jong, G. J. & Somsen, G. W. Capillary electrophoresis–mass spectrometry for the analysis of intact proteins. J. Chromatogr. A 1159, 81–109 (2007).

    CAS  PubMed  Google Scholar 

  121. Le-Minh, V. et al. Capillary zone electrophoresis-native mass spectrometry for the quality control of intact therapeutic monoclonal antibodies. J. Chromatogr. A 1601, 375–384 (2019).

    CAS  PubMed  Google Scholar 

  122. Shen, X. et al. Capillary zone electrophoresis-mass spectrometry for top-down proteomics. Trends Anal. Chem. 120, 115644 (2019).

    CAS  Google Scholar 

  123. Bonvin, G., Schappler, J. & Rudaz, S. Capillary electrophoresis–electrospray ionization-mass spectrometry interfaces: fundamental concepts and technical developments. J. Chromatogr. A 1267, 17–31 (2012).

    CAS  PubMed  Google Scholar 

  124. Shen, X. et al. Native proteomics in discovery mode using size-exclusion chromatography–capillary zone electrophoresis–tandem mass spectrometry. Anal. Chem. 90, 10095–10099 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Stepanova, S. & Kasicka, V. Recent applications of capillary electromigration methods to separation and analysis of proteins. Anal. Chim. Acta 933, 23–42 (2016).

    CAS  PubMed  Google Scholar 

  126. Marie, A. L. et al. Capillary zone electrophoresis and capillary electrophoresis-mass spectrometry for analyzing qualitative and quantitative variations in therapeutic albumin. Anal. Chim. Acta 800, 103–110 (2013).

    CAS  PubMed  Google Scholar 

  127. Shen, Y., Zhao, X., Wang, G. & Chen, D. D. Y. Differential hydrogen/deuterium exchange during proteoform separation enables characterization of conformational differences between coexisting protein states. Anal. Chem. 91, 3805–3809 (2019).

    CAS  PubMed  Google Scholar 

  128. Sun, L. et al. Ultrasensitive and fast bottom-up analysis of femtogram amounts of complex proteome digests. Angew. Chem. Int. Ed. 52, 13661–13664 (2013).

    CAS  Google Scholar 

  129. Peuchen, E. H., Zhu, G., Sun, L. & Dovichi, N. J. Evaluation of a commercial electro-kinetically pumped sheath-flow nanospray interface coupled to an automated capillary zone electrophoresis system. Anal. Bioanal. Chem. 409, 1789–1795 (2017).

    CAS  PubMed  Google Scholar 

  130. Haselberg, R., Ratnayake, C. K., de Jong, G. J. & Somsen, G. W. Performance of a sheathless porous tip sprayer for capillary electrophoresis–electrospray ionization-mass spectrometry of intact proteins. J. Chromatogr. A 1217, 7605–7611 (2010).

    CAS  PubMed  Google Scholar 

  131. Jooss, K. et al. Separation and characterization of endogenous nucleosomes by native capillary zone electrophoresis–top-down mass spectrometry. Anal. Chem. 93, 5151–5160 (2021).

    CAS  PubMed  Google Scholar 

  132. He, M. et al. Structural analysis of biomolecules through a combination of mobility capillary electrophoresis and mass spectrometry. ACS Omega 4, 2377–2386 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Lucy, C. A., MacDonald, A. M. & Gulcev, M. D. Non-covalent capillary coatings for protein separations in capillary electrophoresis. J. Chromatogr. A 1184, 81–105 (2008).

    CAS  PubMed  Google Scholar 

  134. Hajba, L. & Guttman, A. Recent advances in column coatings for capillary electrophoresis of proteins. Trends Anal. Chem. 90, 38–44 (2017).

    CAS  Google Scholar 

  135. Haselberg, R., Brinks, V., Hawe, A., de Jong, G. J. & Somsen, G. W. Capillary electrophoresis-mass spectrometry using noncovalently coated capillaries for the analysis of biopharmaceuticals. Anal. Bioanal. Chem. 400, 295–303 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Haselberg, R., de Jong, G. J. & Somsen, G. W. Low-flow sheathless capillary electrophoresis–mass spectrometry for sensitive glycoform profiling of intact pharmaceutical proteins. Anal. Chem. 85, 2289–2296 (2013).

    CAS  PubMed  Google Scholar 

  137. Grodzki, A. C. & Berenstein, E. in Immunocytochemical Methods and Protocols (eds Oliver, C. & Jamur, M. C.) 33–41 (Humana, 2010).

  138. Dashivets, T. et al. Multi-angle effector function analysis of human monoclonal IgG glycovariants. PLoS ONE 10, e0143520 (2015).

    PubMed  PubMed Central  Google Scholar 

  139. Schlothauer, T. et al. Analytical FcRn affinity chromatography for functional characterization of monoclonal antibodies. mAbs 5, 576–586 (2014).

    Google Scholar 

  140. Lippold, S. et al. Glycoform-resolved FcRIIIa affinity chromatography–mass spectrometry. mAbs 11, 1191–1196 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Thomann, M. et al. In vitro glycoengineering of IgG1 and its effect on Fc receptor binding and ADCC activity. PLoS ONE 10, e0134949 (2015).

    PubMed  PubMed Central  Google Scholar 

  142. Gahoual, R. et al. Detailed characterization of monoclonal antibody receptor interaction using affinity liquid chromatography hyphenated to native mass spectrometry. Anal. Chem. 89, 5404–5412 (2017).

    CAS  PubMed  Google Scholar 

  143. Roopenian, D. C. & Akilesh, S. FcRn: the neonatal Fc receptor comes of age. Nat. Rev. Immunol. 7, 715–725 (2007).

    CAS  PubMed  Google Scholar 

  144. Stracke, J. et al. A novel approach to investigate the effect of methionine oxidation on pharmacokinetic properties of therapeutic antibodies. mAbs 6, 1229–1242 (2014).

    PubMed  PubMed Central  Google Scholar 

  145. Bao, J. et al. Pre-equilibration kinetic size-exclusion chromatography with mass spectrometry detection (peKSEC-MS) for label-free solution-based kinetic analysis of protein-small molecule interactions. Analyst 140, 990–994 (2015).

    CAS  PubMed  Google Scholar 

  146. Bao, J. et al. Kinetic size-exclusion chromatography with mass spectrometry detection: an approach for solution-based label-free kinetic analysis of protein–small molecule interactions. Anal. Chem. 86, 10016–10020 (2014).

    CAS  PubMed  Google Scholar 

  147. Ren, C. et al. Quantitative determination of protein–ligand affinity by size exclusion chromatography directly coupled to high-resolution native mass spectrometry. Anal. Chem. 91, 903–911 (2019).

    CAS  PubMed  Google Scholar 

  148. Wang, B. et al. Untargeted defining protein–metabolites interaction based on label-free kinetic size exclusion chromatography-mass spectrometry. Anal. Chem. 92, 7657–7665 (2020).

    CAS  PubMed  Google Scholar 

  149. Dubsky, P., Dvorak, M. & Ansorge, M. Affinity capillary electrophoresis: the theory of electromigration. Anal. Bioanal. Chem. 408, 8623–8641 (2016).

    CAS  PubMed  Google Scholar 

  150. Chen, Z. & Weber, S. G. Determination of binding constants by affinity capillary electrophoresis, electrospray ionization mass spectrometry and phase-distribution methods. Trends Anal. Chem. 27, 738–748 (2008).

    CAS  Google Scholar 

  151. Vuignier, K., Schappler, J., Veuthey, J. L., Carrupt, P. & Martel, S. Improvement of a capillary electrophoresis/frontal analysis (CE/FA) method for determining binding constants: discussion on relevant parameters. J. Pharm. Biomed. Anal. 53, 1288–1297 (2010).

    CAS  PubMed  Google Scholar 

  152. Dominguez-Vega, E., Haselberg, R., Somsen, G. W. & de Jong, G. J. Simultaneous assessment of protein heterogeneity and affinity by capillary electrophoresis–mass spectrometry. Anal. Chem. 87, 8781–8788 (2015).

    CAS  PubMed  Google Scholar 

  153. Vuignier, K., Veuthey, J. L., Carrupt, P. A. & Schappler, J. Characterization of drug–protein interactions by capillary electrophoresis hyphenated to mass spectrometry. Electrophoresis 33, 3306–3315 (2012).

    CAS  PubMed  Google Scholar 

  154. Sladkov, V. Effect of non-thermostated capillary inlet in affinity capillary electrophoresis: Uranyl-selenate system at variable temperatures. J. Chromatogr. A 1263, 189–193 (2012).

    CAS  PubMed  Google Scholar 

  155. Wang, X. et al. On-line screening of matrix metalloproteinase inhibitors by capillary electrophoresis coupled to ESI mass spectrometry. J. Chromatogr. B 930, 48–53 (2013).

    CAS  Google Scholar 

  156. Mironov, G. G., Clouthier, C. M., Akbar, A., Keillor, J. W. & Berezovski, M. V. Simultaneous analysis of enzyme structure and activity by kinetic capillary electrophoresis–MS. Nat. Chem. Biol. 12, 918–922 (2016).

    CAS  PubMed  Google Scholar 

  157. Fermas, S. et al. Sulfated oligosaccharides (heparin and fucoidan) binding and dimerization of stromal cell-derived factor-1 (SDF-1/CXCL 12) are coupled as evidenced by affinity CE-MS analysis. Glycobiology 18, 1054–1064 (2008).

    CAS  PubMed  Google Scholar 

  158. Langmajerová, M., Řemínek, R., Pelcová, M., Foret, F. & Glatz, Z. Combination of on-line CE assay with MS detection for the study of drug metabolism by cytochromes P450. Electrophoresis 36, 1365–1373 (2015).

    PubMed  Google Scholar 

  159. Jiang, C. & Armstrong, D. W. Use of CE for the determination of binding constants. Electrophoresis 31, 17–27 (2010).

    CAS  PubMed  Google Scholar 

  160. Wang, Y. et al. Affinity capillary electrophoresis: a critical review of the literature from 2018 to 2020. Anal. Chem. 93, 295–310 (2020).

    PubMed  Google Scholar 

  161. Fayad, S. et al. Hyaluronidase reaction kinetics evaluated by capillary electrophoresis with UV and high-resolution mass spectrometry (HRMS) detection. Anal. Chim. Acta 951, 140–150 (2017).

    CAS  PubMed  Google Scholar 

  162. Wang, W. et al. Impact of methionine oxidation in human IgG1 Fc on serum half-life of monoclonal antibodies. Mol. Immunol. 48, 860–866 (2011).

    CAS  PubMed  Google Scholar 

  163. Jones, J., Pack, L., Hunter, J. H. & Valliere-Douglass, J. F. Native size-exclusion chromatography-mass spectrometry: suitability for antibody–drug conjugate drug-to-antibody ratio quantitation across a range of chemotypes and drug-loading levels. mAbs 12, 1682895 (2020).

    PubMed  Google Scholar 

  164. van Schaick, G. et al. Native structural and functional proteoform characterization of the prolyl-alanyl-specific endoprotease EndoPro from Aspergillus niger. J. Proteome Res. 20, 4875–4885 (2021).

    PubMed  PubMed Central  Google Scholar 

  165. Gomes, F. P. & Yates, J. R. III Recent trends of capillary electrophoresis-mass spectrometry in proteomics research. Mass Spectrom. Rev. 38, 445–460 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Netherlands Organization for Scientific Research (NWO; SATIN project, grant no. 731.017.202) and the LUMC Fellowship 2020 (E.D.-V.).

Author information

Authors and Affiliations

Authors

Contributions

G.v.S. researched data for the article, contributed to discussion of content and writing. E.D.-V. contributed to discussion of content, writing and reviewing/editing the manuscript before submission. R.H., G.W.S. and M.W. contributed to the reviewing and editing of the manuscript before submission.

Corresponding author

Correspondence to Elena Domínguez-Vega.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Chemistry thanks Z. VanAernum and the other, anonymous, reviewers for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Post-translational modifications

Reversible or irreversible chemical changes of proteins occurring after protein biosynthesis.

Proteoforms

Different molecular forms of a protein derived from a single gene, including changes due to genetic variations, alternatively spliced RNA transcripts and post-translational modifications.

Bottom-up

Mass spectrometry approach for protein characterization that relies on the use of (enzymatic) cleavage of proteins into peptides prior to (liquid chromatography) tandem mass spectrometry analysis.

Top-down

Mass spectrometry approach for protein identification based on gas-phase fragmentation of intact protein ions.

Higher order structure

(HOS). The overall tertiary and quaternary structure of a protein, including folding, spatial conformation, complexation and aggregation.

Native mass spectrometry

(nMS). Mass spectrometry approach for the analysis of proteins and protein complexes while largely preserving their native and higher order structure.

Electrospray ionization

(ESI). Spray ionization process in which molecules in solution are ionized and transferred to the gas phase via formation and desolvation of highly charged droplets that are formed by application of a potential difference.

Ionization suppression

The reduced ionization efficiency of a molecule due to the presence of an interfering species, such as buffers or salts.

Post-column flow splitter

In liquid chromatography–mass spectrometry, a device installed after the separation column that splits the column effluent to achieve a reduced flow rate for enhanced electrospray ionization prior to mass spectrometry detection.

Membrane ion suppressors

In liquid chromatography–mass spectrometry, a device that can be used between the separation column and the electrospray source to remove non-mass-spectrometry-compatible components prior to ionization.

Charge-state distributions

In mass spectrometry, the various ions with different m/z values observed for one protein after electrospray ionization.

Mass-to-charge ratios m/z

In mass spectrometry, ions are separated according the ratio of their mass m (in atomic mass units) to their charge z, potentially providing information on the molecular mass upon deconvolution. Each ion of the same species with a different m/z is commonly denoted as charge state.

Ion desolvation

The removal of solvent molecules clustered around gas-phase ions by, for example, heating and/or collisions with gas molecules.

Mass resolution

The ability of a mass spectrometer to separate ions with different m/z values.

Complex-down

In mass spectrometry, the use of ion activation to eject a monomer or ligand from a biomolecular complex while inducing significant cleavage of covalent bonds, providing information on the sequence of the species.

Isocratic

Type of liquid chromatographic separation where the mobile phase has a constant composition throughout the entire analysis.

Monoclonal antibodies

(mAbs). Antibodies pool with a single, shared polypeptide sequence, often produced recombinantly in a mammalian cell line.

Gradient elution

Type of chromatographic separation where the mobile phase composition is changed during the analysis according a preset scheme.

2D LC

An analytical approach in which samples are analysed by two sequential liquid chromatography (LC) modes in order to achieve higher separation power.

Electrophoretic mobility

The specific rate of migration of charged analytes in a solution upon application of an electric field.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van Schaick, G., Haselberg, R., Somsen, G.W. et al. Studying protein structure and function by native separation–mass spectrometry. Nat Rev Chem 6, 215–231 (2022). https://doi.org/10.1038/s41570-021-00353-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-021-00353-7

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research