Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

De novo metalloprotein design

Abstract

Natural metalloproteins perform many functions — ranging from sensing to electron transfer and catalysis — in which the position and property of each ligand and metal are dictated by protein structure. De novo protein design aims to define an amino acid sequence that encodes a specific structure and function, providing a critical test of the hypothetical inner workings of (metallo)proteins. To date, de novo metalloproteins have used simple, symmetric tertiary structures — uncomplicated by the large size and evolutionary marks of natural proteins — to interrogate structure–function hypotheses. In this Review, we discuss de novo design applications, such as proteins that induce complex, increasingly asymmetric ligand geometries to achieve function, as well as the use of more canonical ligand geometries to achieve stability. De novo design has been used to explore how proteins fine-tune redox potentials and catalyse both oxidative and hydrolytic reactions. With an increased understanding of structure–function relationships, functional proteins including O2-dependent oxidases, fast hydrolases and multi-proton/multielectron reductases have been created. In addition, proteins can now be designed using xenobiological metals or cofactors and principles from inorganic chemistry to derive new-to-nature functions. These results and the advances in computational protein design suggest a bright future for the de novo design of diverse, functional metalloproteins.

Key points

  • The metalloprotein designer must first consider the desired function, then select an appropriate active site to achieve it and the tertiary structure to support it.

  • Design constraints can be usefully drawn from either the inorganic chemistry literature or from a bioinformatics approach.

  • There must be a unifying element to the local symmetry of the protein tertiary structure and the metal active site.

  • The design must balance the energetics of protein folding with metal–ligand binding in order to achieve the desired coordination geometry.

  • The introduction of asymmetry is a key strategy for introducing function into metalloproteins and must be compensated for by the introduction of stabilizing elements elsewhere in the design.

  • The design space beyond coiled coils remains sparsely studied and offers opportunities for more diverse active sites and, hence, functions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Three-helix and four-helix bundles.
Fig. 2: Crystal structures of natural metalloproteins illustrating symmetry elements in helical bundles.
Fig. 3: Tripeptide scaffolds for metalloprotein design.
Fig. 4: Asymmetric active sites in three-helix bundles.
Fig. 5: Functional metalloproteins with four-helix bundles.
Fig. 6: Design strategy for well-structured porphyrin-binding proteins.
Fig. 7: β-Sheet-containing designed metalloproteins.

Similar content being viewed by others

References

  1. Winkler, J. R. & Gray, H. B. Electron flow through metalloproteins. Chem. Rev. 114, 3369–3380 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. Theil, E. C. & Raymond, K. N. in Bioinorganic Chemistry (eds Beritini, I., Gray, H. B., Lippard, S. J. & Valentine, J. S.) 1–35 (University Science Books, 1994).

  3. Shimizu, T. et al. Gaseous O2, NO, and CO in signal transduction: structure and function relationships of heme-based gas sensors and heme-redox sensors. Chem. Rev. 115, 6491–6533 (2015).

    Article  CAS  PubMed  Google Scholar 

  4. Liu, J. et al. Metalloproteins containing cytochrome, iron–sulfur, or copper redox centers. Chem. Rev. 114, 4366–4469 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Holm, R. H., Kennepohl, P. & Solomon, E. I. Structural and functional aspects of metal sites in biology. Chem. Rev. 96, 2239–2314 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. Regan, L. Protein design: novel metal-binding sites. Trends Biochem. Sci. 20, 280–285 (1995).

    Article  CAS  PubMed  Google Scholar 

  7. Hellinga, H. W. The construction of metal centers in proteins by rational design. Fold. Des. 3, R1–R8 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Yu, F. et al. Protein design: toward functional metalloenzymes. Chem. Rev. 114, 3495–3578 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Alford, R. F. et al. The Rosetta all-atom energy function for macromolecular modeling and design. J. Chem. Theory Comput. 13, 3031–3048 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Leman, J. K. et al. Macromolecular modeling and design in Rosetta: recent methods and frameworks. Nat. Methods 17, 665–680 (2020).

    Article  CAS  PubMed  Google Scholar 

  11. Leaver-Fay, A. et al. Rosetta3: an object-oriented software suite for the simulation and design of macromolecules. Methods Enzymol. 487, 545–574 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Vallee, B. L. & Williams, R. J. Metalloenzymes: the entatic nature of their active sites. Proc. Natl Acad. Sci. USA 59, 498–505 (1968).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gomes, C. M. & Wittung-Stashede, P. (eds) in Protein Folding and Metal Ions: Mechanisms, Biology and Disease 3–12 (CRC, 2011).

  14. Handel, T. M., Williams, S. A. & DeGrado, W. F. Metal ion-dependent modulation of the dynamics of a designed protein. Science 261, 879–885 (1993).

    Article  CAS  PubMed  Google Scholar 

  15. Mocny, C. S. & Pecoraro, V. L. De novo protein design as a methodology for synthetic bioinorganic chemistry. Acc. Chem. Res. 48, 2388–2396 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nastri, F. et al. Design and engineering of artificial oxygen-activating metalloenzymes. Chem. Soc. Rev. 45, 5020–5054 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lombardi, A., Pirro, F., Maglio, O., Chino, M. & DeGrado, W. F. De novo design of four-helix bundle metalloproteins: one scaffold, diverse reactivities. Acc. Chem. Res. 52, 1148–1159 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dudev, T. & Lim, C. Principles governing Mg, Ca, and Zn binding and selectivity in proteins. Chem. Rev. 103, 773–788 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Pinter, T. B. J., Koebke, K. J. & Pecoraro, V. L. Catalysis and electron transfer in de novo designed helical scaffolds. Angew. Chem. Int. Ed. 59, 7678–7699 (2020).

    Article  CAS  Google Scholar 

  20. Hosseinzadeh, P. & Lu, Y. Design and fine-tuning redox potentials of metalloproteins involved in electron transfer in bioenergetics. Biochim. Biophys. Acta, Bioenerg. 1857, 557–581 (2016).

    Article  CAS  Google Scholar 

  21. Muñoz Robles, V. et al. Toward the computational design of artificial metalloenzymes: from protein–ligand docking to multiscale approaches. ACS Catal. 5, 2469–2480 (2015).

    Article  Google Scholar 

  22. Berman, H. M. et al. The Protein Data Bank. Nucleic Acids Res. 28, 235–242 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Burley, S. K. et al. RCSB Protein Data Bank: powerful new tools for exploring 3D structures of biological macromolecules for basic and applied research and education in fundamental biology, biomedicine, biotechnology, bioengineering and energy sciences. Nucleic Acids Res. 49, D437–D451 (2021).

    Article  CAS  PubMed  Google Scholar 

  24. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. The Cambridge Structural Database. Acta Crystallogr. B Struct. Sci. Cryst. Eng. Mater. 72, 171–179 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Basler, S. et al. Efficient Lewis acid catalysis of an abiological reaction in a de novo protein scaffold. Nat. Chem. 13, 231–235 (2021). This article demonstrates a successful design around a computational transition state, theozyme, in order to achieve a novel reaction.

    Article  CAS  PubMed  Google Scholar 

  26. Liang, A. D., Serrano-Plana, J., Peterson, R. L. & Ward, T. R. Artificial metalloenzymes based on the biotin–streptavidin technology: enzymatic cascades and directed evolution. Acc. Chem. Res. 52, 585–595 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lewis, J. C. Beyond the second coordination sphere: engineering dirhodium artificial metalloenzymes to enable protein control of transition metal catalysis. Acc. Chem. Res. 52, 576–584 (2019).

    Article  CAS  PubMed  Google Scholar 

  28. Roelfes, G. LmrR: a privileged scaffold for artificial metalloenzymes. Acc. Chem. Res. 52, 545–556 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Oohora, K., Onoda, A. & Hayashi, T. Hemoproteins reconstituted with artificial metal complexes as biohybrid catalysts. Acc. Chem. Res. 52, 945–954 (2019).

    Article  CAS  PubMed  Google Scholar 

  30. Natoli, S. N. & Hartwig, J. F. Noble-metal substitution in hemoproteins: an emerging strategy for abiological catalysis. Acc. Chem. Res. 52, 326–335 (2019).

    Article  CAS  PubMed  Google Scholar 

  31. Mirts, E. N., Bhagi-Damodaran, A. & Lu, Y. Understanding and modulating metalloenzymes with unnatural amino acids, non-native metal ions, and non-native metallocofactors. Acc. Chem. Res. 52, 935–944 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Churchfield, L. A. & Tezcan, F. A. Design and construction of functional supramolecular metalloprotein assemblies. Acc. Chem. Res. 52, 345–355 (2019).

    Article  CAS  PubMed  Google Scholar 

  33. Reetz, M. T. Directed evolution of artificial metalloenzymes: a universal means to tune the selectivity of transition metal catalysts? Acc. Chem. Res. 52, 336–344 (2019).

    Article  CAS  PubMed  Google Scholar 

  34. Polizzi, N. F. et al. Photoinduced electron transfer elicits a change in the static dielectric constant of a de novo designed protein. J. Am. Chem. Soc. 138, 2130–2133 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pirro, F. et al. Allosteric cooperation in a de novo-designed two-domain protein. Proc. Natl Acad. Sci. USA 117, 33246–33253 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Regan, L. & Clarke, N. D. A tetrahedral zinc(II)-binding site introduced into a designed protein. Biochemistry 29, 10878–10883 (1990). This work is the first example of a de novo designed metalloprotein.

    Article  CAS  PubMed  Google Scholar 

  37. Lee, M. et al. Zinc-binding structure of a catalytic amyloid from solid-state NMR. Proc. Natl Acad. Sci. USA 114, 6191–6196 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zanghellini, A. et al. New algorithms and an in silico benchmark for computational enzyme design. Protein Sci. 15, 2785–2794 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dou, J. et al. De novo design of a fluorescence-activating β-barrel. Nature 561, 485–491 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kiss, G., Çelebi-Ölçüm, N., Moretti, R., Baker, D. & Houk, K. N. Computational enzyme design. Angew. Chem. Int. Ed. 52, 5700–5725 (2013).

    Article  CAS  Google Scholar 

  41. Ho, S. P. & DeGrado, W. F. Design of a 4-helix bundle protein: synthesis of peptides which self-associate into a helical protein. J. Am. Chem. Soc. 109, 6751–6758 (1987).

    Article  CAS  Google Scholar 

  42. Richardson, J. S. & Richardson, D. C. The de novo design of protein structures. Trends Biochem. Sci. 14, 304–309 (1989).

    Article  CAS  PubMed  Google Scholar 

  43. Grigoryan, G., Reinke, A. W. & Keating, A. E. Design of protein-interaction specificity gives selective bZIP-binding peptides. Nature 458, 859–864 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Slope, L. N. & Peacock, A. F. A. De novo design of xeno-metallo coiled coils. Chem. Asian J. 11, 660–666 (2016).

    Article  CAS  PubMed  Google Scholar 

  45. Crick, F. The fourier transform of a coiled-coil. Acta Crystallogr. 6, 685–689 (1953).

    Article  CAS  Google Scholar 

  46. Crick, F. The packing of α-helices: simple coiled-coils. Acta Crystallogr. 6, 689–697 (1953).

    Article  CAS  Google Scholar 

  47. North, B., Summa, C. M., Ghirlanda, G. & DeGrado, W. F. Dn-symmetrical tertiary templates for the design of tubular proteins. J. Mol. Biol. 311, 1081–1090 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. DeGrado, W. F., Summa, C. M., Pavone, V., Nastri, F. & Lombardi, A. De novo design and structural characterization of proteins and metalloproteins. Annu. Rev. Biochem. 68, 779–819 (1999).

    Article  CAS  PubMed  Google Scholar 

  49. Lupas, A. N., Bassler, J. & Dunin-Horkawicz, S. in Fibrous Proteins: Structures and Mechanisms (eds Parry, D. A. D. & Squire, J. M.) 95–129 (Springer International, 2017).

  50. Lupas, A. N. & Bassler, J. Coiled coils — a model system for the 21st century. Trends Biochem. Sci. 42, 130–140 (2017).

    Article  CAS  PubMed  Google Scholar 

  51. Grigoryan, G. & DeGrado, W. F. Probing designability via a generalized model of helical bundle geometry. J. Mol. Biol. 405, 1079–1100 (2011). This article describes the mathematical parameters that define an ideal coiled coil and their relationship to stability and designability.

    Article  CAS  PubMed  Google Scholar 

  52. Kamtekar, S. & Hecht, M. H. The four-helix bundle: what determines a fold? FASEB J. 9, 1013–1022 (1995).

    Article  CAS  PubMed  Google Scholar 

  53. Schneider, J. P., Lombardi, A. & DeGrado, W. F. Analysis and design of three-stranded coiled coils and three-helix bundles. Fold. Des. 3, R29–R40 (1998).

    Article  CAS  PubMed  Google Scholar 

  54. Moutevelis, E. & Woolfson, D. N. A periodic table of coiled-coil protein structures. J. Mol. Biol. 385, 726–732 (2009).

    Article  CAS  PubMed  Google Scholar 

  55. Chothia, C., Levitt, M. & Richardson, D. Helix to helix packing in proteins. J. Mol. Biol. 145, 215–250 (1981).

    Article  CAS  PubMed  Google Scholar 

  56. Kellis, J. T., Nyberg, K., S˘ail, D. A. & Fersht, A. R. Contribution of hydrophobic interactions to protein stability. Nature 333, 784–786 (1988).

    Article  CAS  PubMed  Google Scholar 

  57. Matthews, B. W. in Advances in Protein Chemistry (eds Anfinsen, C. B., Richards, F. M., Edsall, J. T., & Eisenberg, D. S.) 249–278 (Academic, 1995).

  58. Harbury, P. B., Zhang, T., Kim, P. S. & Alber, T. A switch between two-, three-, and four-stranded coiled coils in GCN4 leucine zipper mutants. Science 262, 1401–1407 (1993).

    Article  CAS  PubMed  Google Scholar 

  59. Bryson, J. W. et al. Protein design: a hierarchic approach. Science 270, 935–941 (1995).

    Article  CAS  PubMed  Google Scholar 

  60. Betz, S. F. & DeGrado, W. F. Controlling topology and native-like behavior of de novo-designed peptides: design and characterization of antiparallel four-stranded coiled coils. Biochemistry 35, 6955–6962 (1996).

    Article  CAS  PubMed  Google Scholar 

  61. Betz, S. F., Liebman, P. A. & DeGrado, W. F. De novo design of native proteins: characterization of proteins intended to fold into antiparallel, ROP-like, four-helix bundles. Biochemistry 36, 2450–2458 (1997).

    Article  CAS  PubMed  Google Scholar 

  62. Barlow, D. J. & Thornton, J. M. Ion-pairs in proteins. J. Mol. Biol. 168, 867–885 (1983).

    Article  CAS  PubMed  Google Scholar 

  63. Schneider, J. P., Lear, J. D. & DeGrado, W. F. A designed buried salt bridge in a heterodimeric coiled coil. J. Am. Chem. Soc. 119, 5742–5743 (1997).

    Article  CAS  Google Scholar 

  64. Marqusee, S. & Sauer, R. T. Contributions of a hydrogen bond/salt bridge network to the stability of secondary and tertiary structure in λ repressor. Protein Sci. 3, 2217–2225 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. O’Shea, E. K., Lumb, K. J. & Kim, P. S. Peptide ‘velcro’: design of a heterodimeric coiled coil. Curr. Biol. 3, 658–667 (1993).

    Article  PubMed  Google Scholar 

  66. Lavigne, P. et al. Interhelical salt bridges, coiled-coil stability, and specificity of dimerization. Science 271, 1136–1138 (1996).

    Article  CAS  PubMed  Google Scholar 

  67. Sindelar, C. V., Hendsch, Z. S. & Tidor, B. Effects of salt bridges on protein structure and design. Protein Sci. 7, 1898–1914 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Grigoryan, G. & Keating, A. E. Structural specificity in coiled-coil interactions. Curr. Opin. Struct. Biol. 18, 477–483 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Predki, P. F., Agrawal, V., Brünger, A. T. & Regan, L. Amino-acid substitutions in a surface turn modulate protein stability. Nat. Struct. Biol. 3, 54–58 (1996).

    Article  CAS  PubMed  Google Scholar 

  70. Efimov, A. V. Patterns of loop regions in proteins. Curr. Opin. Struct. Biol. 3, 379–384 (1993).

    Article  CAS  Google Scholar 

  71. Brown, J. H., Cohen, C. & Parry, D. A. D. Heptad breaks in α-helical coiled coils: stutters and stammers. Proteins 26, 134–145 (1996).

    Article  CAS  PubMed  Google Scholar 

  72. Hartmann, M. D. et al. A coiled-coil motif that sequesters ions to the hydrophobic core. Proc. Natl Acad. Sci. USA 106, 16950–16955 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Schmidt, N. W., Grigoryan, G. & DeGrado, W. F. The accommodation index measures the perturbation associated with insertions and deletions in coiled-coils: application to understand signaling in histidine kinases. Protein Sci. 26, 414–435 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Pinter, T. B. J. et al. Making or breaking metal-dependent catalytic activity: the role of stammers in designed three-stranded coiled coils. Angew. Chem. Int. Ed. 59, 20445–20449 (2020).

    Article  CAS  Google Scholar 

  75. Woolfson, D. N., Bartlett, G. J., Bruning, M. & Thomson, A. R. New currency for old rope: from coiled-coil assemblies to α-helical barrels. Curr. Opin. Struct. Biol. 22, 432–441 (2012).

    Article  CAS  PubMed  Google Scholar 

  76. Lupas, A. Coiled coils: new structures and new functions. Trends Biochem. Sci. 21, 375–382 (1996).

    Article  CAS  PubMed  Google Scholar 

  77. Huang, P.-S. et al. High thermodynamic stability of parametrically designed helical bundles. Science 346, 481–485 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Agnew, C. et al. Correlation of in situ mechanosensitive responses of the Moraxella catarrhalis adhesin UspA1 with fibronectin and receptor CEACAM1 binding. Proc. Natl Acad. Sci. USA 108, 15174–15178 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Xia, D. et al. Crystal structure of the cytochrome bc1 complex from bovine heart mitochondria. Science 277, 60–66 (1997).

    Article  CAS  PubMed  Google Scholar 

  80. Hunte, C., Palsdottir, H. & Trumpower, B. L. Protonmotive pathways and mechanisms in the cytochrome bc1 complex. FEBS Lett. 545, 39–46 (2003).

    Article  CAS  PubMed  Google Scholar 

  81. Berry, E. A. & Walker, F. A. Bis-histidine-coordinated hemes in four-helix bundles: how the geometry of the bundle controls the axial imidazole plane orientations in transmembrane cytochromes of mitochondrial complexes II and III and related proteins. J. Biol. Inorg. Chem. 13, 481–498 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Yun, C. H., Wang, Z., Crofts, A. R. & Gennis, R. B. Examination of the functional roles of 5 highly conserved residues in the cytochrome b subunit of the bc1 complex of Rhodobacter sphaeroides. J. Biol. Chem. 267, 5901–5909 (1992).

    Article  CAS  PubMed  Google Scholar 

  83. Saribaş, A. S., Ding, H., Dutton, P. L. & Daldal, F. Substitutions at position 146 of cytochrome b affect drastically the properties of heme bL and the QO site of Rhodobacter capsulatus cytochrome bc1 complex. Biochim. Biophys. Acta, Bioenerg. 1319, 99–108 (1997).

    Article  Google Scholar 

  84. Schneider, S., Marles-Wright, J., Sharp, K. H. & Paoli, M. Diversity and conservation of interactions for binding heme in b-type heme proteins. Nat. Prod. Rep. 24, 621–630 (2007).

    Article  CAS  PubMed  Google Scholar 

  85. Reedy, C. J. & Gibney, B. R. Heme protein assemblies. Chem. Rev. 104, 617–649 (2004).

    Article  CAS  PubMed  Google Scholar 

  86. Nordlund, P. & Eklund, H. Di-iron-carboxylate proteins. Curr. Opin. Struct. Biol. 5, 758–766 (1995).

    Article  CAS  PubMed  Google Scholar 

  87. Jasniewski, A. J. & Que, L. Dioxygen activation by nonheme diiron enzymes: diverse dioxygen adducts, high-valent intermediates, and related model complexes. Chem. Rev. 118, 2554–2592 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Wahlgren, W. Y. et al. Structural characterization of bacterioferritin from Blastochloris viridis. PLoS ONE 7, e46992 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Macedo, S. et al. The nature of the di-iron site in the bacterioferritin from Desulfovibrio desulfuricans. Nat. Struct. Biol. 10, 285–290 (2003).

    Article  CAS  PubMed  Google Scholar 

  90. Acheson, J. F., Bailey, L. J., Brunold, T. C. & Fox, B. G. In-crystal reaction cycle of a toluene-bound diiron hydroxylase. Nature 544, 191–195 (2017).

    Article  CAS  PubMed  Google Scholar 

  91. Banerjee, R., Jones, J. C. & Lipscomb, J. D. Soluble methane monooxygenase. Annu. Rev. Biochem. 88, 409–431 (2019).

    Article  CAS  PubMed  Google Scholar 

  92. Jones, J. C., Banerjee, R., Shi, K., Aihara, H. & Lipscomb, J. D. Structural studies of the Methylosinus trichosporium OB3b soluble methane monooxygenase hydroxylase and regulatory component complex reveal a transient substrate tunnel. Biochemistry 59, 2946–2961 (2020).

    Article  CAS  PubMed  Google Scholar 

  93. Rardin, R. L. et al. Synthesis and characterization of the linear trinuclear complexes [MII3(O2CCH3)6(biphme)2], M = Mn, Fe. Angew. Chem. Int. Ed. Engl. 29, 812–814 (1990).

    Article  Google Scholar 

  94. Whittington, D. A. & Lippard, S. J. Crystal structures of the soluble methane monooxygenase hydroxylase from Methylococcus capsulatus (Bath) demonstrating geometrical variability at the dinuclear iron active site. J. Am. Chem. Soc. 123, 827–838 (2001).

    Article  CAS  PubMed  Google Scholar 

  95. Wright, J. G., Natan, M. J., MacDonnel, F. M., Ralston, D. M. & O’Halloran, T. V. Mercury(II) — thiolate chemistry and the mechanism of the heavy metal biosensor MerR. Prog. Inorg. Chem. 38, 323–412 (1990).

    CAS  Google Scholar 

  96. Lovejoy, B. et al. Crystal structure of a synthetic triple-stranded α-helical bundle. Science 259, 1288–1293 (1993).

    Article  CAS  PubMed  Google Scholar 

  97. Neil, K. T. & DeGrado, W. F. A thermodynamic scale for the helix-forming tendencies of the commonly occurring amino acids. Science 250, 646–651 (1990).

    Article  Google Scholar 

  98. Dieckmann, G. R. et al. De novo design of mercury-binding two- and three-helical bundles. J. Am. Chem. Soc. 119, 6195–6196 (1997).

    Article  CAS  Google Scholar 

  99. Chakraborty, S., Touw, D. S., Peacock, A. F. A., Stuckey, J. & Pecoraro, V. L. Structural comparisons of apo- and metalated three-stranded coiled coils clarify metal binding determinants in thiolate containing designed peptides. J. Am. Chem. Soc. 132, 13240–13250 (2010). This article highlights the interplay between protein structure and metal binding using crystallographically determined structures.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Suzuki, K., Hiroaki, H., Kohda, D. & Tanaka, T. An isoleucine zipper peptide forms a native-like triple stranded coiled coil in solution. Protein Eng. Des. Sel. 11, 1051–1055 (1998).

    Article  CAS  Google Scholar 

  101. Dieckmann, G. R. et al. The role of protonation and metal chelation preferences in defining the properties of mercury-binding coiled coils. J. Mol. Biol. 280, 897–912 (1998).

    Article  CAS  PubMed  Google Scholar 

  102. Peacock, A. F. A., Stuckey, J. A. & Pecoraro, V. L. Switching the chirality of the metal environment alters the coordination mode in designed peptides. Angew. Chem. Int. Ed. 48, 7371–7374 (2009).

    Article  CAS  Google Scholar 

  103. Ghosh, D. & Pecoraro, V. L. Understanding metalloprotein folding using a de novo design strategy. Inorg. Chem. 43, 7902–7915 (2004).

    Article  CAS  PubMed  Google Scholar 

  104. Ghosh, D., Lee, K.-H., Demeler, B. & Pecoraro, V. L. Linear free-energy analysis of mercury(II) and cadmium(II) binding to three-stranded coiled coils. Biochemistry 44, 10732–10740 (2005).

    Article  CAS  PubMed  Google Scholar 

  105. Boyle, A. L. et al. Selective coordination of three transition metal ions within a coiled-coil peptide scaffold. Chem. Sci. 10, 7456–7465 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Lee, S. C., Lo, W. & Holm, R. H. Developments in the biomimetic chemistry of cubane-type and higher nuclearity iron–sulfur clusters. Chem. Rev. 114, 3579–3600 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Tsui, E. Y., Kanady, J. S. & Agapie, T. Synthetic cluster models of biological and heterogeneous manganese catalysts for O2 evolution. Inorg. Chem. 52, 13833–13848 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Buchwalter, P., Rosé, J. & Braunstein, P. Multimetallic catalysis based on heterometallic complexes and clusters. Chem. Rev. 115, 28–126 (2015).

    Article  CAS  PubMed  Google Scholar 

  109. Wei, K. Y. et al. Computational design of closely related proteins that adopt two well-defined but structurally divergent folds. Proc. Natl Acad. Sci. USA 117, 7208–7215 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Falke, J. J., Drake, S. K., Hazard, A. L. & Peersen, O. B. Molecular tuning of ion binding to calcium signaling proteins. Q. Rev. Biophys. 27, 219–290 (1994).

    Article  CAS  PubMed  Google Scholar 

  111. Lee, K.-H., Matzapetakis, M., Mitra, S., Marsh, E. N. G. & Pecoraro, V. L. Control of metal coordination number in de novo designed peptides through subtle sequence modifications. J. Am. Chem. Soc. 126, 9178–9179 (2004).

    Article  CAS  PubMed  Google Scholar 

  112. Lee, K.-H., Cabello, C., Hemmingsen, L., Marsh, E. N. G. & Pecoraro, V. L. Using nonnatural amino acids to control metal-coordination number in three-stranded coiled coils. Angew. Chem. Int. Ed. 45, 2864–2868 (2006).

    Article  CAS  Google Scholar 

  113. Ruckthong, L., Deb, A., Hemmingsen, L., Penner-Hahn, J. E. & Pecoraro, V. L. Incorporation of second coordination sphere D-amino acids alters Cd(II) geometries in designed thiolate-rich proteins. J. Biol. Inorg. Chem. 23, 123–135 (2018).

    Article  CAS  PubMed  Google Scholar 

  114. Ruckthong, L., Stuckey, J. A. & Pecoraro, V. L. How outer coordination sphere modifications can impact metal structures in proteins: a crystallographic evaluation. Chemistry 25, 6773–6787 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Iranzo, O., Chakraborty, S., Hemmingsen, L. & Pecoraro, V. L. Controlling and fine tuning the physical properties of two identical metal coordination sites in de novo designed three stranded coiled coil peptides. J. Am. Chem. Soc. 133, 239–251 (2011).

    Article  CAS  PubMed  Google Scholar 

  116. Kiyokawa, T. et al. Binding of Cu(II) or Zn(II) in a de novo designed triple-stranded α-helical coiled-coil toward a prototype for a metalloenzyme. J. Pept. Res. 63, 347–353 (2004).

    Article  CAS  PubMed  Google Scholar 

  117. Tanaka, T. et al. Two-metal ion, Ni(II) and Cu(II), binding α-helical coiled coil peptide. J. Am. Chem. Soc. 126, 14023–14028 (2004).

    Article  CAS  PubMed  Google Scholar 

  118. Supuran, C. T. Structure and function of carbonic anhydrases. Biochem. J. 473, 2023–2032 (2016).

    Article  CAS  PubMed  Google Scholar 

  119. Horrell, S., Kekilli, D., Strange, R. W. & Hough, M. A. Recent structural insights into the function of copper nitrite reductases. Metallomics 9, 1470–1482 (2017).

    Article  CAS  PubMed  Google Scholar 

  120. Zastrow, M. L., Peacock, A. F. A., Stuckey, J. A. & Pecoraro, V. L. Hydrolytic catalysis and structural stabilization in a designed metalloprotein. Nat. Chem. 4, 118–123 (2012). This work demonstrates that de novo metalloenzymes can recapitulate native-like activity in non-natural folds.

    Article  CAS  Google Scholar 

  121. Zastrow, M. L. & Pecoraro, V. L. Influence of active site location on catalytic activity in de novo-designed zinc metalloenzymes. J. Am. Chem. Soc. 135, 5895–5903 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Koebke, K. J. & Pecoraro, V. L. Development of de novo copper nitrite reductases: where we are and where we need to go. ACS Catal. 8, 8046–8057 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Tegoni, M., Yu, F., Bersellini, M., Penner-Hahn, J. E. & Pecoraro, V. L. Designing a functional type 2 copper center that has nitrite reductase activity within α-helical coiled coils. Proc. Natl Acad. Sci. USA 109, 21234–21239 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Yu, F., Penner-Hahn, J. E. & Pecoraro, V. L. De novo-designed metallopeptides with type 2 copper centers: modulation of reduction potentials and nitrite reductase activities. J. Am. Chem. Soc. 135, 18096–18107 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Koebke, K. J. et al. Modifying the steric properties in the second coordination sphere of designed peptides leads to enhancement of nitrite reductase activity. Angew. Chem. Int. Ed. 57, 3954–3957 (2018).

    Article  CAS  Google Scholar 

  126. Koebke, K. J. et al. Methylated histidines alter tautomeric preferences that influence the rates of Cu nitrite reductase catalysis in designed peptides. J. Am. Chem. Soc. 141, 7765–7775 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Suzuki, K., Hiroaki, H., Kohda, D., Nakamura, H. & Tanaka, T. Metal ion induced self-assembly of a designed peptide into a triple-stranded α-helical bundle: a novel metal binding site in the hydrophobic core. J. Am. Chem. Soc. 120, 13008–13015 (1998).

    Article  CAS  Google Scholar 

  128. Berwick, M. R. et al. De novo design of Ln(III) coiled coils for imaging applications. J. Am. Chem. Soc. 136, 1166–1169 (2014). The authors achieve a functional, xenobiological active site via the application of rules from protein structure and inorganic chemistry.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Berwick, M. R. et al. Location dependent coordination chemistry and MRI relaxivity, in de novo designed lanthanide coiled coils. Chem. Sci. 7, 2207–2216 (2016).

    Article  CAS  PubMed  Google Scholar 

  130. Slope, L. N. et al. Tuning coordination chemistry through the second sphere in designed metallocoiled coils. Chem. Commun. 56, 3729–3732 (2020).

    Article  CAS  Google Scholar 

  131. Teare, P. et al. pH dependent binding in de novo hetero bimetallic coiled coils. Dalton Trans. 47, 10784–10790 (2018).

    Article  CAS  PubMed  Google Scholar 

  132. Ogihara, N. L. et al. Design of three-dimensional domain-swapped dimers and fibrous oligomers. Proc. Natl Acad. Sci. USA 98, 1404–1409 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Roy, A., Sarrou, I., Vaughn, M. D., Astashkin, A. V. & Ghirlanda, G. De novo design of an artificial bis[4Fe-4S] binding protein. Biochemistry 52, 7586–7594 (2013).

    Article  CAS  PubMed  Google Scholar 

  134. Roy, A. et al. A de novo designed 2[4Fe-4S] ferredoxin mimic mediates electron transfer. J. Am. Chem. Soc. 136, 17343–17349 (2014).

    Article  CAS  PubMed  Google Scholar 

  135. Sommer, D. J., Roy, A., Astashkin, A. & Ghirlanda, G. Modulation of cluster incorporation specificity in a de novo iron–sulfur cluster binding peptide. Pept. Sci. 104, 412–418 (2015).

    Article  CAS  Google Scholar 

  136. Beinert, H., Kennedy, M. C. & Stout, C. D. Aconitase as iron−sulfur protein, enzyme, and iron-regulatory protein. Chem. Rev. 96, 2335–2374 (1996).

    Article  CAS  PubMed  Google Scholar 

  137. Nautiyal, S., Woolfson, D. N., King, D. S. & Alber, T. A designed heterotrimeric coiled coil. Biochemistry 34, 11645–11651 (1995).

    Article  CAS  PubMed  Google Scholar 

  138. Lombardi, A., Bryson, J. W. & DeGrado, W. F. De novo design of heterotrimeric coiled coils. Pept. Sci. 40, 495–504 (1996).

    Article  CAS  Google Scholar 

  139. Kashiwada, A., Hiroaki, H., Kohda, D., Nango, M. & Tanaka, T. Design of a heterotrimeric α-helical bundle by hydrophobic core engineering. J. Am. Chem. Soc. 122, 212–215 (2000).

    Article  CAS  Google Scholar 

  140. Kashiwada, A., Ishida, K. & Matsuda, K. Lanthanide ion-induced folding of de novo designed coiled-coil polypeptides. Bull. Chem. Soc. Jpn 80, 2203–2207 (2007).

    Article  CAS  Google Scholar 

  141. Tolbert, A. E. et al. Heteromeric three-stranded coiled coils designed using a Pb(II)(Cys)3 template mediated strategy. Nat. Chem. 12, 405–411 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Walsh, S. T. R., Cheng, H., Bryson, J. W., Roder, H. & DeGrado, W. F. Solution structure and dynamics of a de novo designed three-helix bundle protein. Proc. Natl Acad. Sci. USA 96, 5486–5491 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Chakraborty, S. et al. Design of a three-helix bundle capable of binding heavy metals in a triscysteine environment. Angew. Chem. Int. Ed. 50, 2049–2053 (2011).

    Article  CAS  Google Scholar 

  144. Plegaria, J. S., Dzul, S. P., Zuiderweg, E. R. P., Stemmler, T. L. & Pecoraro, V. L. Apoprotein structure and metal binding characterization of a de novo designed peptide, α3div, that sequesters toxic heavy metals. Biochemistry 54, 2858–2873 (2015).

    Article  CAS  PubMed  Google Scholar 

  145. Tebo, A. G. et al. Development of a rubredoxin-type center embedded in a de dovo-designed three-helix bundle. Biochemistry 57, 2308–2316 (2018).

    Article  CAS  PubMed  Google Scholar 

  146. Koebke, K. J. et al. Clarifying the copper coordination environment in a de novo designed red copper protein. Inorg. Chem. 57, 12291–12302 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Plegaria, J. S., Herrero, C., Quaranta, A. & Pecoraro, V. L. Electron transfer activity of a de novo designed copper center in a three-helix bundle fold. Biochim. Biophys. Acta 1857, 522–530 (2016).

    Article  CAS  PubMed  Google Scholar 

  148. Plegaria, J. S. et al. De novo design and characterization of copper metallopeptides inspired by native cupredoxins. Inorg. Chem. 54, 9470–9482 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Summa, C. M., Lombardi, A., Lewis, M. & DeGrado, W. F. Tertiary templates for the design of diiron proteins. Curr. Opin. Struct. Biol. 9, 500–508 (1999).

    Article  CAS  PubMed  Google Scholar 

  150. Lombardi, A. et al. Retrostructural analysis of metalloproteins: application to the design of a minimal model for diiron proteins. Proc. Natl Acad. Sci. USA 97, 6298–6305 (2000). This paper is an early example of how complicated natural metalloproteins can be distilled to a few principles and reconstructed in a simpler, de novo scaffold.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Maglio, O., Nastri, F., Pavone, V., Lombardi, A. & DeGrado, W. F. Preorganization of molecular binding sites in designed diiron proteins. Proc. Natl Acad. Sci. USA 100, 3772–3777 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Kaplan, J. & DeGrado, W. F. De novo design of catalytic proteins. Proc. Natl Acad. Sci. USA 101, 11566–11570 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Law, N. A., Tyler Caudle, M. & Pecoraro, V. L. Manganese redox enzymes and model systems: properties, structures, and reactivity. Adv. Inorg. Chem. 46, 305–440 (1998).

    Article  CAS  Google Scholar 

  154. Davey, J. A., Damry, A. M., Euler, C. K., Goto, N. K. & Chica, R. A. Prediction of stable globular proteins using negative design with non-native backbone ensembles. Structure 23, 2011–2021 (2015).

    Article  CAS  PubMed  Google Scholar 

  155. Leaver-Fay, A., Jacak, R., Stranges, P. B. & Kuhlman, B. A generic program for multistate protein design. PLoS ONE 6, e20937 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Joh, N. H. et al. De novo design of a transmembrane Zn2+-transporting four-helix bundle. Science 346, 1520–1524 (2014). This work is a clear case of applying the principle of negative design and a rare example of a de novo, membrane metalloprotein.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Löffler, P., Schmitz, S., Hupfeld, E., Sterner, R. & Merkl, R. Rosetta:MSF: a modular framework for multi-state computational protein design. PLoS Comp. Biol. 13, e1005600 (2017).

    Article  Google Scholar 

  158. Bradley, P., Misura, K. M. & Baker, D. Toward high-resolution de novo structure prediction for small proteins. Science 309, 1868–1871 (2005).

    Article  CAS  PubMed  Google Scholar 

  159. Joh, N. H., Grigoryan, G., Wu, Y. & DeGrado, W. F. Design of self-assembling transmembrane helical bundles to elucidate principles required for membrane protein folding and ion transport. Phil. Trans. R. Soc. B 372, 20160214 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Calhoun, J. R. et al. Computational design and characterization of a monomeric helical dinuclear metalloprotein. J. Mol. Biol. 334, 1101–1115 (2003).

    Article  CAS  PubMed  Google Scholar 

  161. Choi, Y. S., Zhang, H., Brunzelle, J. S., Nair, S. K. & Zhao, H. In vitro reconstitution and crystal structure of p-aminobenzoate N-oxygenase (AurF) involved in aureothin biosynthesis. Proc. Natl Acad. Sci. USA 105, 6858–6863 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Reig, A. J. et al. Alteration of the oxygen-dependent reactivity of de novo Due Ferri proteins. Nat. Chem. 4, 900–906 (2012). This study highlights that natural and de novo proteins function via the same fundamental rules by showing that an active site alteration of the de novo scaffold recapitulates reactivity differences observed in natural proteins.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Chakraborty, S., Iranzo, O., Zuiderweg, E. R. P. & Pecoraro, V. L. Experimental and theoretical evaluation of multisite cadmium(II) exchange in designed three-stranded coiled-coil peptides. J. Am. Chem. Soc. 134, 6191–6203 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Der, B. S. et al. Metal-mediated affinity and orientation specificity in a computationally designed protein homodimer. J. Am. Chem. Soc. 134, 375–385 (2012).

    Article  CAS  PubMed  Google Scholar 

  165. Ghadiri, M. R. & Case, M. A. De novo design of a novel heterodinuclear three-helix bundle metalloprotein. Angew. Chem. Int. Ed. Engl. 32, 1594–1597 (1993).

    Article  Google Scholar 

  166. Lombardi, A. et al. Miniaturized metalloproteins: application to iron–sulfur proteins. Proc. Natl Acad. Sci. USA 97, 11922–11927 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Gibney, B. R., Mulholland, S. E., Rabanal, F. & Dutton, P. L. Ferredoxin and ferredoxin–heme maquettes. Proc. Natl Acad. Sci. USA 93, 15041–15046 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Kennedy, M. L. & Gibney, B. R. Proton coupling to [4Fe–4S]2+/+ and [4Fe–4Se]2+/+ oxidation and reduction in a designed protein. J. Am. Chem. Soc. 124, 6826–6827 (2002).

    Article  CAS  PubMed  Google Scholar 

  169. Nanda, V. et al. De novo design of a redox-active minimal rubredoxin mimic. J. Am. Chem. Soc. 127, 5804–5805 (2005).

    Article  CAS  PubMed  Google Scholar 

  170. Eck, R. V. & Dayhoff, M. O. Evolution of the structure of ferredoxin based on living relics of primitive amino acid sequences. Science 152, 363 (1966).

    Article  CAS  PubMed  Google Scholar 

  171. Laplaza, C. E. & Holm, R. H. Helix−loop−helix peptides as scaffolds for the construction of bridged metal assemblies in proteins: the spectroscopic A-cluster structure in carbon monoxide dehydrogenase. J. Am. Chem. Soc. 123, 10255–10264 (2001).

    Article  CAS  PubMed  Google Scholar 

  172. Kim, J. D. et al. Minimal heterochiral de novo designed 4Fe–4S binding peptide capable of robust electron transfer. J. Am. Chem. Soc. 140, 11210–11213 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Xie, F., Sutherland, D. E. K., Stillman, M. J. & Ogawa, M. Y. Cu(I) binding properties of a designed metalloprotein. J. Inorg. Biochem. 104, 261–267 (2010).

    Article  CAS  PubMed  Google Scholar 

  174. Kharenko, O. A., Kennedy, D. C., Demeler, B., Maroney, M. J. & Ogawa, M. Y. Cu(I) luminescence from the tetranuclear Cu4S4 cofactor of a synthetic 4-helix bundle. J. Am. Chem. Soc. 127, 7678–7679 (2005).

    Article  CAS  PubMed  Google Scholar 

  175. Shiga, D. et al. Creation of a binuclear purple copper site within a de novo coiled-coil protein. Biochemistry 51, 7901–7907 (2012).

    Article  CAS  PubMed  Google Scholar 

  176. Grzyb, J. et al. De novo design of a non-natural fold for an iron–sulfur protein: α-helical coiled-coil with a four-iron four-sulfur cluster binding site in its central core. Biochim. Biophys. Acta 1797, 406–413 (2010).

    Article  CAS  PubMed  Google Scholar 

  177. Grzyb, J. et al. Empirical and computational design of iron–sulfur cluster proteins. Biochim. Biophys. Acta 1817, 1256–1262 (2012).

    Article  CAS  PubMed  Google Scholar 

  178. Nanda, V. et al. Structural principles for computational and de novo design of 4Fe–4S metalloproteins. Biochim. Biophys. Acta 1857, 531–538 (2016).

    Article  CAS  PubMed  Google Scholar 

  179. Jagilinki, B. P. et al. In vivo biogenesis of a de novo designed iron–sulfur protein. ACS Synth. Biol. 9, 3400–3407 (2020).

    Article  CAS  PubMed  Google Scholar 

  180. Mutter, A. C. et al. De novo design of symmetric ferredoxins that shuttle electrons in vivo. Proc. Natl Acad. Sci. USA 116, 14557–14562 (2019). This article demonstrates that de novo proteins can perform essential functions in vivo.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Summa, C. M. Computational Methods and Their Applications for De Novo Functional Protein Design and Membrane Protein Solubilization. Thesis, Univ. of Pennsylvania (2002).

  182. Pike, D. H. & Nanda, V. Empirical estimation of local dielectric constants: toward atomistic design of collagen mimetic peptides. Biopolymers 104, 360–370 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Chino, M. et al. Spectroscopic and metal binding properties of a de novo metalloprotein binding a tetrazinc cluster. Biopolymers 109, e23339 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  184. Zhang, S.-Q. et al. De novo design of tetranuclear transition metal clusters stabilized by hydrogen-bonded networks in helical bundles. J. Am. Chem. Soc. 140, 1294–1304 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Zhou, L. et al. A protein engineered to bind uranyl selectively and with femtomolar affinity. Nat. Chem. 6, 236–241 (2014).

    Article  CAS  PubMed  Google Scholar 

  186. Song, W. J. & Tezcan, F. A. A designed supramolecular protein assembly with in vivo enzymatic activity. Science 346, 1525–1528 (2014).

    Article  CAS  PubMed  Google Scholar 

  187. Song, W. J., Yu, J. & Tezcan, F. A. Importance of scaffold flexibility/rigidity in the design and directed evolution of artificial metallo-β-lactamases. J. Am. Chem. Soc. 139, 16772–16779 (2017).

    Article  CAS  PubMed  Google Scholar 

  188. Golub, E. et al. Constructing protein polyhedra via orthogonal chemical interactions. Nature 578, 172–176 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Hansen, W. A. & Khare, S. D. Benchmarking a computational design method for the incorporation of metal ion-binding sites at symmetric protein interfaces. Protein Sci. 26, 1584–1594 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Der, B. S., Edwards, D. R. & Kuhlman, B. Catalysis by a de novo zinc-mediated protein interface: implications for natural enzyme evolution and rational enzyme engineering. Biochemistry 51, 3933–3940 (2012).

    Article  CAS  PubMed  Google Scholar 

  191. Studer, S. et al. Evolution of a highly active and enantiospecific metalloenzyme from short peptides. Science 362, 1285–1288 (2018). This study highlights how de novo design of a malleable scaffold affords opportunities for using evolution to achieve remarkably active metalloenzymes from scratch.

    Article  CAS  PubMed  Google Scholar 

  192. Huang, X. & Groves, J. T. Oxygen activation and radical transformations in heme proteins and metalloporphyrins. Chem. Rev. 118, 2491–2553 (2018).

    Article  CAS  PubMed  Google Scholar 

  193. Lu, H. & Zhang, X. P. Catalytic C–H functionalization by metalloporphyrins: recent developments and future directions. Chem. Soc. Rev. 40, 1899–1909 (2011).

    Article  CAS  PubMed  Google Scholar 

  194. Leone, L. et al. Mimochrome, a metalloporphyrin-based catalytic Swiss knife. Biotechnol. Appl. Biochem. 67, 495–515 (2020).

    Article  CAS  PubMed  Google Scholar 

  195. Rosenblatt, M. M., Wang, J. & Suslick, K. S. De novo designed cyclic–peptide heme complexes. Proc. Natl Acad. Sci. USA 100, 13140–13145 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Choma, C. T. et al. Design of a heme-binding four-helix bundle. J. Am. Chem. Soc. 116, 856–865 (1994).

    Article  CAS  Google Scholar 

  197. Robertson, D. E. et al. Design and synthesis of multi-haem proteins. Nature 368, 425–432 (1994).

    Article  CAS  PubMed  Google Scholar 

  198. Farid, T. A. et al. Elementary tetrahelical protein design for diverse oxidoreductase functions. Nat. Chem. Biol. 9, 826–833 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Koder, R. L. et al. Design and engineering of an O2 transport protein. Nature 458, 305–309 (2009). This work highlights the advantage of intentionally introducing strain into a de novo protein to allow switching between states.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Anderson, J. L. R. et al. Constructing a man-made c-type cytochrome maquette in vivo: electron transfer, oxygen transport and conversion to a photoactive light harvesting maquette. Chem. Sci. 5, 507–514 (2014).

    Article  CAS  PubMed  Google Scholar 

  201. Watkins, D. W. et al. A suite of de novo c-type cytochromes for functional oxidoreductase engineering. Biochim. Biophys. Acta 1857, 493–502 (2016).

    Article  CAS  PubMed  Google Scholar 

  202. Watkins, D. W. et al. Construction and in vivo assembly of a catalytically proficient and hyperthermostable de novo enzyme. Nat. Commun. 8, 358 (2017). This work demonstrates the in vivo maturation of a de novo haemoprotein and its ability to perform catalysis.

    Article  PubMed  PubMed Central  Google Scholar 

  203. Stenner, R., Steventon, J. W., Seddon, A. & Anderson, J. L. R. A de novo peroxidase is also a promiscuous yet stereoselective carbene transferase. Proc. Natl Acad. Sci. USA 117, 1419–1428 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Stenner, R. & Anderson, J. L. R. Chemoselective N−H insertion catalyzed by a de novo carbene transferase. Biotechnol. Appl. Biochem. 67, 527–535 (2020).

    Article  PubMed  Google Scholar 

  205. Liu, Z. & Arnold, F. H. New-to-nature chemistry from old protein machinery: carbene and nitrene transferases. Curr. Opin. Biotechnol. 69, 43–51 (2021).

    Article  CAS  PubMed  Google Scholar 

  206. Kamtekar, S., Schiffer, J. M., Xiong, H., Babik, J. M. & Hecht, M. H. Protein design by binary patterning of polar and nonpolar amino acids. Science 262, 1680–1685 (1993). This work presents an early strategy for developing libraries of proteins that can be readily interrogated for function.

    Article  CAS  PubMed  Google Scholar 

  207. Hecht, M. H., Das, A., Go, A., Bradley, L. H. & Wei, Y. De novo proteins from designed combinatorial libraries. Protein Sci. 13, 1711–1723 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Hecht, M. H., Zarzhitsky, S., Karas, C. & Chari, S. Are natural proteins special? Can we do that? Curr. Opin. Struct. Biol. 48, 124–132 (2018).

    Article  CAS  PubMed  Google Scholar 

  209. Rojas, N. R. et al. De novo heme proteins from designed combinatorial libraries. Protein Sci. 6, 2512–2524 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  210. Polizzi, N. F. et al. De novo design of a hyperstable non-natural protein–ligand complex with sub-Å accuracy. Nat. Chem. 9, 1157–1164 (2017). This work highlights the importance of stabilizing the active site through design of a complementary well-folded region of a de novo protein.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Kaufmann, K. W., Lemmon, G. H., DeLuca, S. L., Sheehan, J. H. & Meiler, J. Practically useful: what the Rosetta protein modeling suite can do for you. Biochemistry 49, 2987–2998 (2010).

    Article  CAS  PubMed  Google Scholar 

  212. Bender, B. J. et al. Protocols for molecular modeling with Rosetta3 and RosettaScripts. Biochemistry 55, 4748–4763 (2016).

    Article  CAS  PubMed  Google Scholar 

  213. Mann, S. I., Nayak, A., Gassner, G. T., Therien, M. J. & DeGrado, W. F. De novo design, solution characterization, and crystallographic structure of an abiological Mn-porphyrin-binding protein capable of stabilizing a Mn(V) species. J. Am. Chem. Soc. 143, 252–259 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  214. Mahajan, M. & Bhattacharjya, S. β-Hairpin peptides: heme binding, catalysis, and structure in detergent micelles. Angew. Chem. Int. Ed. 52, 6430–6434 (2013).

    Article  CAS  Google Scholar 

  215. D’Souza, A., Mahajan, M. & Bhattacharjya, S. Designed multi-stranded heme binding β-sheet peptides in membrane. Chem. Sci. 7, 2563–2571 (2016).

    Article  PubMed  Google Scholar 

  216. D’Souza, A., Wu, X., Yeow, E. K. L. & Bhattacharjya, S. Designed heme-cage β-sheet miniproteins. Angew. Chem. Int. Ed. 56, 5904–5908 (2017).

    Article  Google Scholar 

  217. D’Souza, A., Torres, J. & Bhattacharjya, S. Expanding heme-protein folding space using designed multi-heme β-sheet mini-proteins. Commun. Chem. 1, 78 (2018).

    Article  Google Scholar 

  218. D’Souza, A. & Bhattacharjya, S. De novo-designed β-sheet heme proteins. Biochemistry 60, 431–439 (2021).

    Article  PubMed  Google Scholar 

  219. Rufo, C. M. et al. Short peptides self-assemble to produce catalytic amyloids. Nat. Chem. 6, 303–309 (2014). The authors demonstrate the first de novo designed, catalytic metalloamyloids.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Lengyel, Z., Rufo, C. M., Moroz, Y. S., Makhlynets, O. V. & Korendovych, I. V. Copper-containing catalytic amyloids promote phosphoester hydrolysis and tandem reactions. ACS Catal. 8, 59–62 (2018).

    Article  CAS  PubMed  Google Scholar 

  221. Zozulia, O. & Korendovych, I. V. Semi-rationally designed short peptides self-assemble and bind hemin to promote cyclopropanation. Angew. Chem. Int. Ed. 59, 8108–8112 (2020).

    Article  CAS  Google Scholar 

  222. Voet, A. R. D. et al. Computational design of a self-assembling symmetrical β-propeller protein. Proc. Natl Acad. Sci. USA 111, 15102–15107 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Voet, A. R. D., Noguchi, H., Addy, C., Zhang, K. Y. J. & Tame, J. R. H. Biomineralization of a cadmium chloride nanocrystal by a designed symmetrical protein. Angew. Chem. Int. Ed. 54, 9857–9860 (2015).

    Article  CAS  Google Scholar 

  224. Vrancken, J. P. M., Noguchi, H., Zhang, K. Y. J., Tame, J. R. H. & Voet, A. R. D. The symmetric designer protein pizza as a scaffold for metal coordination. Proteins 89, 945–951 (2021).

    Article  CAS  Google Scholar 

  225. Huang, P.-S. et al. De novo design of a four-fold symmetric TIM-barrel protein with atomic-level accuracy. Nat. Chem. Biol. 12, 29–34 (2016).

    Article  CAS  PubMed  Google Scholar 

  226. Caldwell, S. J. et al. Tight and specific lanthanide binding in a de novo TIM barrel with a large internal cavity designed by symmetric domain fusion. Proc. Natl Acad. Sci. USA 117, 30362–30369 (2020). This work is an excellent example of de novo design of a high-symmetry active site that does not use a coiled coil.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Vorobieva, A. A. et al. De novo design of transmembrane β barrels. Science 371, abc8182 (2021).

    Article  Google Scholar 

  228. Pan, X. et al. Expanding the space of protein geometries by computational design of de novo fold families. Science 369, 1132–1136 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Yang, C. et al. Bottom-up de novo design of functional proteins with complex structural features. Nat. Chem. Biol. 17, 492–500 (2021).

    Article  CAS  PubMed  Google Scholar 

  230. Paredes, A., Loh, B. M., Peduzzi, O. M., Reig, A. J. & Buettner, K. M. DNA cleavage by a de novo designed protein–titanium complex. Inorg. Chem. 59, 11248–11252 (2020).

    Article  CAS  PubMed  Google Scholar 

  231. Ball, Z. T. Molecular recognition in protein modification with rhodium metallopeptides. Curr. Opin. Chem. Biol. 25, 98–102 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Ohata, J. & Ball, Z. T. Rhodium at the chemistry–biology interface. Dalton Trans. 47, 14855–14860 (2018).

    Article  CAS  PubMed  Google Scholar 

  233. Behrendt, R., White, P. & Offer, J. Advances in Fmoc solid-phase peptide synthesis. J. Pept. Sci. 22, 4–27 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Chin, J. W. Expanding and reprogramming the genetic code of cells and animals. Annu. Rev. Biochem. 83, 379–408 (2014).

    Article  CAS  PubMed  Google Scholar 

  235. Mukai, T., Lajoie, M. J., Englert, M. & Söll, D. Rewriting the genetic code. Annu. Rev. Microbiol. 71, 557–577 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Wang, L. Engineering the genetic code in cells and animals: biological considerations and impacts. Acc. Chem. Res. 50, 2767–2775 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Yu, Y., Hu, C., Xia, L. & Wang, J. Artificial metalloenzyme design with unnatural amino acids and non-native cofactors. ACS Catal. 8, 1851–1863 (2018).

    Article  CAS  Google Scholar 

  238. Lu, Y. Design and engineering of metalloproteins containing unnatural amino acids or non-native metal-containing cofactors. Curr. Opin. Chem. Biol. 9, 118–126 (2005).

    Article  CAS  PubMed  Google Scholar 

  239. Agostini, F. et al. Biocatalysis with unnatural amino acids: enzymology meets xenobiology. Angew. Chem. Int. Ed. 56, 9680–9703 (2017).

    Article  CAS  Google Scholar 

  240. Yoon, J. H. et al. Uno Ferro, a de novo designed protein, binds transition metals with high affinity and stabilizes semiquinone radical anion. Chem. Eur. J. 25, 15252–15256 (2019).

    Article  CAS  PubMed  Google Scholar 

  241. Leveson-Gower, R. B., Mayer, C. & Roelfes, G. The importance of catalytic promiscuity for enzyme design and evolution. Nat. Rev. Chem. 3, 687–705 (2019).

    Article  CAS  Google Scholar 

  242. Chen, K. & Arnold, F. H. Engineering new catalytic activities in enzymes. Nat. Catal. 3, 203–213 (2020).

    Article  CAS  Google Scholar 

  243. Pavlovicz, R. E., Park, H. & DiMaio, F. Efficient consideration of coordinated water molecules improves computational protein–protein and protein–ligand docking discrimination. PLoS Comp. Biol. 16, e1008103 (2020).

    Article  CAS  Google Scholar 

  244. Lai, J. K., Ambia, J., Wang, Y. & Barth, P. Enhancing structure prediction and design of soluble and membrane proteins with explicit solvent–protein interactions. Structure 25, 1758–1770 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Polizzi, N. F. & DeGrado, W. F. A defined structural unit enables de novo design of small-molecule-binding proteins. Science 369, 1227–1233 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Huang, L. S., Cobessi, D., Tung, E. Y. & Berry, E. A. Binding of the respiratory chain inhibitor antimycin to the mitochondrial bc1 complex: a new crystal structure reveals an altered intramolecular hydrogen-bonding pattern. J. Mol. Biol. 351, 573–597 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Håkansson, K., Carlsson, M., Svensson, L. A. & Liljas, A. Structure of native and apo carbonic anhydrase II and structure of some of its anion–ligand complexes. J. Mol. Biol. 227, 1192–1204 (1992).

    Article  PubMed  Google Scholar 

  248. Zaytsev, D. V. et al. Metal-binding properties and structural characterization of a self-assembled coiled coil: formation of a polynuclear Cd–thiolate cluster. J. Inorg. Biochem. 119, 1–9 (2013).

    Article  CAS  PubMed  Google Scholar 

  249. Lahr, S. J. et al. Analysis and design of turns in α-helical hairpins. J. Mol. Biol. 346, 1441–1454 (2005).

    Article  CAS  PubMed  Google Scholar 

  250. Wood, C. W. & Woolfson, D. N. CCBuilder 2.0: powerful and accessible coiled-coil modeling. Protein Sci. 27, 103–111 (2018).

    Article  CAS  PubMed  Google Scholar 

  251. Zhou, J. & Grigoryan, G. Rapid search for tertiary fragments reveals protein sequence–structure relationships. Protein Sci. 24, 508–524 (2015).

    Article  CAS  PubMed  Google Scholar 

  252. Raman, S. et al. Structure prediction for CASP8 with all-atom refinement using Rosetta. Proteins 77, 89–99 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Baek, M. et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science 373, 871 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from National Institutes of Health (NIH) grants GMR35 122603, F32GM130029 and F32GM139379. They thank the many coworkers who have contributed to the field, as well as reviewers for helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to William F. DeGrado.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Chemistry thanks G. Jiménez-Osés, A. Peacock, R. Anderson, V. Nanda, J. Timm and the other, anonymous, reviewers for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Rotamers

Preferred orientations of an amino acid side chain relative to the main chain.

Allostery

A biological phenomenon in which regulation occurs at a distal site often triggered by a ligand binding event, such as a metal ion.

Maquette

A simple peptide model that can be progressively altered to test the characteristics of the construction that has been commonly studied in the de novo design of proteins.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chalkley, M.J., Mann, S.I. & DeGrado, W.F. De novo metalloprotein design. Nat Rev Chem 6, 31–50 (2022). https://doi.org/10.1038/s41570-021-00339-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-021-00339-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing