Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

MOFs in the time domain

Abstract

Many of the proposed applications of metal–organic framework (MOF) materials may fail to materialize if the community does not fully address the difficult fundamental work needed to map out the ‘time gap’ in the literature — that is, the lack of investigation into the time-dependent behaviours of MOFs as opposed to equilibrium or steady-state properties. Although there are a range of excellent investigations into MOF dynamics and time-dependent phenomena, these works represent only a tiny fraction of the vast number of MOF studies. This Review provides an overview of current research into the temporal evolution of MOF structures and properties by analysing the time-resolved experimental techniques that can be used to monitor such behaviours. We focus on innovative techniques, while also discussing older methods often used in other chemical systems. Four areas are examined: MOF formation, guest motion, electron motion and framework motion. In each area, we highlight the disparity between the relatively small amount of (published) research on key time-dependent phenomena and the enormous scope for acquiring the wider and deeper understanding that is essential for the future of the field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Methods for investigating dynamic phenomena in MOFs.
Fig. 2: MOF synthesis reaction and the dynamic techniques used to probe each stage.
Fig. 3: Experimental techniques for studying translational guest diffusion in MOFs.
Fig. 4: Experimental methods for probing electron motion in MOFs.
Fig. 5: In situ methods for probing framework motion in MOFs.

Similar content being viewed by others

References

  1. Horike, S., Umeyama, D. & Kitagawa, S. Ion conductivity and transport by porous coordination polymers and metal–organic frameworks. Acc. Chem. Res. 46, 2376–2384 (2013).

    Article  CAS  PubMed  Google Scholar 

  2. Bhardwaj, S. K. et al. An overview of different strategies to introduce conductivity in metal–organic frameworks and miscellaneous applications thereof. J. Mater. Chem. A 6, 14992–15009 (2018).

    Article  CAS  Google Scholar 

  3. Heinke, L. Diffusion and photoswitching in nanoporous thin films of metal-organic frameworks. J. Phys. D 50, 193004 (2017).

    Article  Google Scholar 

  4. Rice, A. M. et al. Photophysics modulation in photoswitchable metal–organic frameworks. Chem. Rev. 120, 8790–8813 (2020).

    Article  CAS  PubMed  Google Scholar 

  5. Dolgopolova, E. A., Rice, A. M., Martin, C. R. & Shustova, N. B. Photochemistry and photophysics of MOFs: steps towards MOF-based sensing enhancements. Chem. Soc. Rev. 47, 4710–4728 (2018).

    Article  CAS  PubMed  Google Scholar 

  6. Mazaj, M., Kaucic, V. & Logar, N. Z. Chemistry of metal–organic frameworks monitored by advanced X-ray diffraction and scattering techniques. Acta Chim. Slovenica 63, 440–458 (2016).

    Article  CAS  Google Scholar 

  7. Lee, J. H., Jeoung, S., Chung, Y. G. & Moon, H. R. Elucidation of flexible metal–organic frameworks: research progresses and recent developments. Coord. Chem. Rev. 389, 161–188 (2019).

    Article  CAS  Google Scholar 

  8. Hanna, L. & Lockard, J. V. From IR to X-rays: gaining molecular level insights on metal–organic frameworks through spectroscopy. J. Phys. Condens. Matter 31, 483001 (2019).

    Article  CAS  PubMed  Google Scholar 

  9. Bon, V., Brunner, E., Poppl, A. & Kaskel, S. Unraveling structure and dynamics in porous frameworks via advanced in situ characterization techniques. Adv. Funct. Mater. 30, 1907847 (2020).

    Article  CAS  Google Scholar 

  10. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. The Cambridge Structural Database. Acta Crystallogr. B 72, 171–179 (2016).

    Article  CAS  Google Scholar 

  11. Tansell, A. J., Jones, C. L. & Easun, T. L. MOF the beaten track: unusual structures and uncommon applications of metal–organic frameworks. Chem. Cent. J. 11, 100 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Easun, T. L. & Nevin, A. C. in Organometallic Chemistry Vol. 42 (eds Patmore, N. J. & Elliott, P. I. P.) 54–79 (The Royal Society of Chemistry, 2019).

  13. Easun, T. L., Moreau, F., Yan, Y., Yang, S. & Schröder, M. Structural and dynamic studies of substrate binding in porous metal–organic frameworks. Chem. Soc. Rev. 46, 239–274 (2017).

    Article  CAS  PubMed  Google Scholar 

  14. Lin, R. B., Xiang, S. C., Xing, H. B., Zhou, W. & Chen, B. L. Exploration of porous metal–organic frameworks for gas separation and purification. Coord. Chem. Rev. 378, 87–103 (2019).

    Article  CAS  Google Scholar 

  15. Kang, Z. X., Fan, L. L. & Sun, D. F. Recent advances and challenges of metal–organic framework membranes for gas separation. J. Mater. Chem. A 5, 10073–10091 (2017).

    Article  CAS  Google Scholar 

  16. Ma, S. Q. & Zhou, H. C. Gas storage in porous metal–organic frameworks for clean energy applications. Chem. Commun. 46, 44–53 (2010).

    Article  CAS  Google Scholar 

  17. Dhakshinamoorthy, A., Asiri, A. M. & Garcia, H. Metal–organic framework (MOF) compounds: photocatalysts for redox reactions and solar fuel production. Angew. Chem. Int. Ed. 55, 5414–5445 (2016).

    Article  CAS  Google Scholar 

  18. Zhang, T. & Lin, W. B. Metal–organic frameworks for artificial photosynthesis and photocatalysis. Chem. Soc. Rev. 43, 5982–5993 (2014).

    Article  CAS  PubMed  Google Scholar 

  19. Sun, Y. J. et al. Metal–organic framework nanocarriers for drug delivery in biomedical applications. Nanomicro Lett. 12, 103 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Lazaro, I. A. & Forgan, R. S. Application of zirconium MOFs in drug delivery and biomedicine. Coord. Chem. Rev. 380, 230–259 (2019).

    Article  Google Scholar 

  21. Horcajada, P. et al. Metal–organic frameworks in biomedicine. Chem. Rev. 112, 1232–1268 (2012).

    Article  CAS  PubMed  Google Scholar 

  22. Wang, L., Zheng, M. & Xie, Z. G. Nanoscale metal–organic frameworks for drug delivery: a conventional platform with new promise. J. Mater. Chem. B 6, 707–717 (2018).

    Article  CAS  PubMed  Google Scholar 

  23. Lustig, W. P. et al. Metal–organic frameworks: functional luminescent and photonic materials for sensing applications. Chem. Soc. Rev. 46, 3242–3285 (2017).

    Article  CAS  PubMed  Google Scholar 

  24. Osman, D. I. et al. Nucleic acids biosensors based on metal–organic framework (MOF): paving the way to clinical laboratory diagnosis. Biosens. Bioelectron. 141, 111451 (2019).

    Article  CAS  PubMed  Google Scholar 

  25. Koo, W. T., Jang, J. S. & Kim, I. D. Metal–organic frameworks for chemiresistive sensors. Sens. Chem. 5, 1938–1963 (2019).

    CAS  Google Scholar 

  26. Wen, X. D., Zhang, Q. Q. & Guan, J. Q. Applications of metal–organic framework-derived materials in fuel cells and metal–air batteries. Coord. Chem. Rev. 409, 21321 (2020).

    Article  Google Scholar 

  27. Yang, L., Zeng, X. F., Wang, W. C. & Cao, D. P. Recent progress in MOF-derived, heteroatom-doped porous carbons as highly efficient electrocatalysts for oxygen reduction reaction in fuel cells. Adv. Funct. Mater. 28, 17045 (2018).

    Google Scholar 

  28. Horike, S., Shimomura, S. & Kitagawa, S. Soft porous crystals. Nat. Chem. 1, 695–704 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Boutin, A. et al. Temperature-induced structural transitions in the gallium-based MIL-53 metal–organic framework. J. Phys. Chem. C 117, 8180–8188 (2013).

    Article  CAS  Google Scholar 

  30. Spencer, E. C. et al. Pressure-induced bond rearrangement and reversible phase transformation in a metal–organic framework. Angew. Chem. Int. Ed. 53, 5583–5586 (2014).

    Article  CAS  Google Scholar 

  31. Allendorf, M. D. et al. Guest-induced emergent properties in metal-organic frameworks. J. Phys. Chem. Lett. 6, 1182–1195 (2015).

    Article  CAS  PubMed  Google Scholar 

  32. Jones, C. L., Tansell, A. J. & Easun, T. L. The lighter side of MOFs: structurally photoresponsive metal-organic frameworks. J. Mater. Chem. A 4, 6714–6723 (2016).

    Article  CAS  Google Scholar 

  33. Ehrling, S., Miura, H., Senkovska, I. & Kaskel, S. From macro- to nanoscale: finite size effects on metal-organic framework switchability. Trends Chem. 3, 291–304 (2021).

    Article  CAS  Google Scholar 

  34. Fraux, G. & Coudert, F. X. Recent advances in the computational chemistry of soft porous crystals. Chem. Commun. 53, 7211–7221 (2017).

    Article  CAS  Google Scholar 

  35. Goeminne, R., Krause, S., Kaskel, S., Verstraelen, T. & Evans, J. D. Charting the complete thermodynamic landscape of gas adsorption for a responsive metal–organic framework. J. Am. Chem. Soc. 143, 4143–4147 (2021).

    Article  CAS  PubMed  Google Scholar 

  36. Tiba, A., Tivanski, A. V. & MacGillivray, L. R. Size-dependent mechanical properties of a metal-organic framework: increase in flexibility of ZIF-8 by crystal downsizing. Nano Lett. 19, 6140–6143 (2019).

    Article  CAS  PubMed  Google Scholar 

  37. Krause, S. et al. The impact of crystal size and temperature on the adsorption-induced flexibility of the Zr-based metal–organic framework DUT-98. Beilstein J. Nanotechnol. 10, 1737–1744 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Evans, J. D., Bon, V., Senkovska, I., Lee, H. C. & Kaskel, S. Four-dimensional metal–organic frameworks. Nat. Commun. 11, 2690 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Laybourn, A. et al. Metal–organic frameworks in seconds via selective microwave heating. J. Mater. Chem. A 5, 7333–7338 (2017).

    Article  CAS  Google Scholar 

  40. Stock, N. & Biswas, S. Synthesis of metal–organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chem. Rev. 112, 933–969 (2012).

    Article  CAS  PubMed  Google Scholar 

  41. Marshall, C. R., Staudhammer, S. A. & Brozek, C. K. Size control over metal–organic framework porous nanocrystals. Chem. Sci. 10, 9396–9408 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Shearer, G. C. et al. Defect engineering: tuning the porosity and composition of the metal–organic framework UiO-66 via modulated synthesis. Chem. Mater. 28, 3749–3761 (2016).

    Article  CAS  Google Scholar 

  43. Kang, X. C. et al. Integration of mesopores and crystal defects in metal–organic frameworks via templated electrosynthesis. Nat. Commun. 10, 4466 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Fang, Z. L., Bueken, B., De Vos, D. E. & Fischer, R. A. Defect-engineered metal–organic frameworks. Angew. Chem. Int. Ed. 54, 7234–7254 (2015).

    Article  CAS  Google Scholar 

  45. Bennett, T. D., Cheetham, A. K., Fuchs, A. H. & Coudert, F. X. Interplay between defects, disorder and flexibility in metal-organic frameworks. Nat. Chem. 9, 11–16 (2017).

    Article  CAS  Google Scholar 

  46. Zacher, D., Schmid, R., Woll, C. & Fischer, R. A. Surface chemistry of metal–organic frameworks at the liquid–solid interface. Angew. Chem. Int. Ed. 50, 176–199 (2011).

    Article  CAS  Google Scholar 

  47. Seetharaj, R., Vandana, P. V., Arya, P. & Mathew, S. Dependence of solvents, pH, molar ratio and temperature in tuning metal organic framework architecture. Arab. J. Chem. 12, 295–315 (2019).

    Article  CAS  Google Scholar 

  48. Asghar, A. et al. Efficient electrochemical synthesis of a manganese-based metal–organic framework for H2 and CO2 uptake. Green Chem. 23, 1220–1227 (2021).

    Article  CAS  Google Scholar 

  49. Asghar, A., Iqbal, N., Noor, T., Ali, M. & Easun, T. L. Efficient one-pot synthesis of a hexamethylenetetramine-doped Cu-BDC metal–organic framework with enhanced CO2 adsorption. Nanomaterials 9, 1063 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  50. Asghar, A. et al. Ethylenediamine loading into a manganese-based metal–organic framework enhances water stability and carbon dioxide uptake of the framework. R. Soc. Open Sci. 7, 191934 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Van Vleet, M. J., Weng, T. T., Li, X. Y. & Schmidt, J. R. In situ, time-resolved, and mechanistic studies of metal–organic framework nucleation and growth. Chem. Rev. 118, 3681–3721 (2018).

    Article  PubMed  Google Scholar 

  52. Khawam, A. & Flanagan, D. R. Solid-state kinetic models: basics and mathematical fundamentals. J. Phys. Chem. B 110, 17315–17328 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Davies, A. T., Sankar, G., Catlow, C. R. A. & Clark, S. M. Following the crystallization of microporous solids using EDXRD techniques. J. Phys. Chem. B 101, 10115–10120 (1997).

    Article  CAS  Google Scholar 

  54. Muncaster, G. et al. On the advantages of the use of the three-element detector system for measuring EDXRD patterns to follow the crystallisation of open-framework structures. Phys. Chem. Chem. Phys. 2, 3523–3527 (2000).

    Article  CAS  Google Scholar 

  55. Wu, Y. et al. Time-resolved in situ X-ray diffraction reveals metal-dependent metal-organic framework formation. Angew. Chem. Int. Ed. 55, 14081–14084 (2016).

    Article  CAS  Google Scholar 

  56. Wu, Y., Moorhouse, S. J. & O’Hare, D. Time-resolved in situ diffraction reveals a solid-state rearrangement during solvothermal MOF synthesis. Chem. Mater. 27, 7236–7239 (2015).

    Article  CAS  Google Scholar 

  57. Wu, Y., Breeze, M. I., O’Hare, D. & Walton, R. I. High energy X-rays for following metal–organic framework formation: identifying intermediates in interpenetrated MOF-5 crystallisation. Microporous Mesoporous Mater. 254, 178–183 (2017).

    Article  CAS  Google Scholar 

  58. Ragon, F. et al. In situ energy-dispersive X-ray diffraction for the synthesis optimization and scale-up of the porous zirconium terephthalate UiO-66. Inorg. Chem. 53, 2491–2500 (2014).

    Article  CAS  PubMed  Google Scholar 

  59. Ragon, F., Chevreau, H., Devic, T., Serre, C. & Horcajada, P. Impact of the nature of the organic spacer on the crystallization kinetics of UiO-66(Zr)-type MOFs. Chem. Eur. J. 21, 7135–7143 (2015).

    Article  CAS  PubMed  Google Scholar 

  60. Wells, S. A., Cessford, N. F., Seaton, N. A. & Duren, T. Early stages of phase selection in MOF formation observed in molecular Monte Carlo simulations. RSC Adv. 9, 14382–14390 (2019).

    Article  CAS  Google Scholar 

  61. Mazaj, M. & Logar, N. Z. Phase formation study of Ca-terephthalate MOF-type materials. Cryst. Growth Des. 15, 617–624 (2015).

    Article  CAS  Google Scholar 

  62. Zheng, C. M., Greer, H. F., Chianga, C. Y. & Zhou, W. Z. Microstructural study of the formation mechanism of metal–organic framework MOF-5. CrystEngComm 16, 1064–1070 (2014).

    Article  CAS  Google Scholar 

  63. Yeung, H. H. M. et al. In situ observation of successive crystallizations and metastable intermediates in the formation of metal–organic frameworks. Angew. Chem. Int. Ed. 55, 2012–2016 (2016).

    Article  CAS  Google Scholar 

  64. Yeung, H. H. M. et al. Control of metal–organic framework crystallization by metastable intermediate pre-equilibrium species. Angew. Chem. Int. Ed. 58, 566–571 (2019).

    Article  CAS  Google Scholar 

  65. Boldon, L., Laliberte, F. & Liu, L. Review of the fundamental theories behind small angle X-ray scattering, molecular dynamics simulations, and relevant integrated application. Nano Rev. 6, 25661 (2015).

    Article  PubMed  Google Scholar 

  66. Narayanan, T. et al. A multipurpose instrument for time-resolved ultra-small-angle and coherent X-ray scattering. J. Appl. Crystallogr. 51, 1511–1524 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Carraro, F. et al. Continuous-flow synthesis of ZIF-8 biocomposites with tunable particle size. Angew. Chem. Int. Ed. 59, 8123–8127 (2020).

    Article  CAS  Google Scholar 

  68. Cravillon, J. et al. Fast nucleation and growth of ZIF-8 nanocrystals monitored by time-resolved in situ small-angle and wide-angle X-ray scattering. Angew. Chem. Int. Ed. 50, 8067–8071 (2011).

    Article  CAS  Google Scholar 

  69. Stavitski, E. et al. Kinetic control of metal–organic framework crystallization investigated by time-resolved in situ X-ray scattering. Angew. Chem. Int. Ed. 50, 9624–9628 (2011).

    Article  CAS  Google Scholar 

  70. Saha, S. et al. Insight into fast nucleation and growth of zeolitic imidazolate framework-71 by in situ time-resolved light and X-ray scattering experiments. Cryst. Growth Des. 16, 2002–2010 (2016).

    Article  CAS  Google Scholar 

  71. Chen, D., Zhao, J., Zhang, P. & Dai, S. Mechanochemical synthesis of metal–organic frameworks. Polyhedron 162, 59–64 (2019).

    Article  CAS  Google Scholar 

  72. Stolar, T. & Užarević, K. Mechanochemistry: an efficient and versatile toolbox for synthesis, transformation, and functionalization of porous metal–organic frameworks. CrystEngComm 22, 4511–4525 (2020).

    Article  CAS  Google Scholar 

  73. Julien, P. A. et al. In situ monitoring and mechanism of the mechanochemical formation of a microporous MOF-74 framework. J. Am. Chem. Soc. 138, 2929–2932 (2016).

    Article  CAS  PubMed  Google Scholar 

  74. Katsenis, A. D. et al. In situ X-ray diffraction monitoring of a mechanochemical reaction reveals a unique topology metal–organic framework. Nat. Commun. 6, 6662 (2015).

    Article  CAS  PubMed  Google Scholar 

  75. Holder, C. F. & Schaak, R. E. Tutorial on powder X-ray diffraction for characterizing nanoscale materials. ACS Nano 13, 7359–7365 (2019).

    Article  CAS  PubMed  Google Scholar 

  76. Holton, J. M. & Frankel, K. A. The minimum crystal size needed for a complete diffraction data set. Acta Crystallogr. D 66, 393–408 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Joy, D. C. The theory and practice of high-resolution scanning electron microscopy. Ultramicroscopy 37, 216–233 (1991).

    Article  Google Scholar 

  78. Gross, L., Mohn, F., Moll, N., Liljeroth, P. & Meyer, G. The chemical structure of a molecule resolved by atomic force microscopy. Science 325, 1110–1114 (2009).

    Article  CAS  PubMed  Google Scholar 

  79. Xing, J. F., Schweighauser, L., Okada, S., Harano, K. & Nakamura, E. Atomistic structures and dynamics of prenucleation clusters in MOF-2 and MOF-5 syntheses. Nat. Commun. 10, 3608 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Hermes, S. et al. Trapping metal–organic framework nanocrystals: an in-situ time-resolved light scattering study on the crystal growth of MOF-5 in solution. J. Am. Chem. Soc. 129, 5324–5325 (2007).

    Article  CAS  PubMed  Google Scholar 

  81. Patterson, J. P. et al. Observing the growth of metal–organic frameworks by in situ liquid cell transmission electron microscopy. J. Am. Chem. Soc. 137, 7322–7328 (2015).

    Article  CAS  PubMed  Google Scholar 

  82. Moh, P. Y., Cubillas, P., Anderson, M. W. & Attfield, M. P. Revelation of the molecular assembly of the nanoporous metal organic framework ZIF-8. J. Am. Chem. Soc. 133, 13304–13307 (2011).

    Article  CAS  PubMed  Google Scholar 

  83. Mandemaker, L. D. B. et al. Time-resolved in situ liquid-phase atomic force microscopy and infrared nanospectroscopy during the formation of metal–organic framework thin films. J. Phys. Chem. Lett. 9, 1838–1844 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Falke, S. & Betzel, C. in Radiation in Bioanalysis: Spectroscopic Techniques and Theoretical Methods (eds Pereira, A. S., Tavares, P. & Limão-Vieira, P.) 173–193 (Springer, 2019).

  85. van der Veen, M. A., Verbiest, T. & De Vos, D. E. Probing microporous materials with second-harmonic generation. Microporous Mesoporous Mater. 166, 102–108 (2013).

    Article  Google Scholar 

  86. Van Cleuvenbergen, S. et al. Morphology and structure of ZIF-8 during crystallisation measured by dynamic angle-resolved second harmonic scattering. Nat. Commun. 9, 3418 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Nikitenko, S. et al. Implementation of a combined SAXS/WAXS/QEXAFS set-up for time-resolved in situ experiments. J. Synchrotron Radiat. 15, 632–640 (2008).

    Article  CAS  PubMed  Google Scholar 

  88. Goesten, M. et al. The molecular pathway to ZIF-7 microrods revealed by in situ time-resolved small- and wide-angle X-ray scattering, quick-scanning extended X-ray absorption spectroscopy, and DFT calculations. Chem. Eur. J. 19, 7809–7816 (2013).

    Article  CAS  PubMed  Google Scholar 

  89. Hughes, C. E., Williams, P. A. & Harris, K. D. M. “CLASSIC NMR”: an in-situ NMR strategy for mapping the time-evolution of crystallization processes by combined liquid-state and solid-state measurements. Angew. Chem. Int. Ed. 53, 8939–8943 (2014).

    Article  CAS  Google Scholar 

  90. Jones, C. L. et al. Exploiting in situ NMR to monitor the formation of a metal–organic framework. Chem. Sci. 12, 1486–1494 (2021).

    Article  CAS  Google Scholar 

  91. Zhao, J. J., Kalanyan, B., Barton, H. F., Sperling, B. A. & Parsons, G. N. In situ time-resolved attenuated total reflectance infrared spectroscopy for probing metal–organic framework thin film growth. Chem. Mater. 29, 8804–8810 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Embrechts, H. et al. Elucidation of the formation mechanism of metal–organic frameworks via in-situ Raman and FTIR spectroscopy under solvothermal conditions. J. Phys. Chem. C. 122, 12267–12278 (2018).

    Article  CAS  Google Scholar 

  93. Embrechts, H. et al. In situ Raman and FTIR spectroscopic study on the formation of the isomers MIL-68(Al) and MIL-53(Al). RSC Adv. 10, 7336–7348 (2020).

    Article  CAS  Google Scholar 

  94. Li, H. et al. Recent advances in gas storage and separation using metal–organic frameworks. Mater. Today 21, 108–121 (2018).

    Article  CAS  Google Scholar 

  95. Cai, W. et al. Metal–organic framework-based stimuli-responsive systems for drug delivery. Adv. Sci. 6, 1801526 (2019).

    Article  Google Scholar 

  96. Xie, L. S., Skorupskii, G. & Dinca, M. Electrically conductive metal–organic frameworks. Chem. Rev. 120, 8536–8580 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Escorihuela, J., Narducci, R., Compan, V. & Costantino, F. Proton conductivity of composite polyelectrolyte membranes with metal–organic frameworks for fuel cell applications. Adv. Mater. Interfaces 6, 1801146 (2019).

    Google Scholar 

  98. Johnson, C. S. Diffusion ordered nuclear magnetic resonance spectroscopy: principles and applications. Prog. Nucl. Magn. Reson. Spectrosc. 34, 203–256 (1999).

    Article  CAS  Google Scholar 

  99. Stallmach, F. & Karger, J. The potentials of pulsed field gradient NMR for investigation of porous media. Adsorption 5, 117–133 (1999).

    Article  CAS  Google Scholar 

  100. Price, W. S. Pulsed-field gradient nuclear magnetic resonance as a tool for studying translational diffusion.1. Basic theory. Concepts Magn. Reson. 9, 299–336 (1997).

    Article  CAS  Google Scholar 

  101. Chmelik, C., Freude, D., Bux, H. & Haase, J. Ethene/ethane mixture diffusion in the MOF sieve ZIF-8 studied by MAS PFG NMR diffusometry. Microporous Mesoporous Mater. 147, 135–141 (2012).

    Article  Google Scholar 

  102. Kundu, A., Sillar, K. & Sauer, J. Predicting adsorption selectivities from pure gas isotherms for gas mixtures in metal–organic frameworks. Chem. Sci. 11, 643–655 (2020).

    Article  CAS  Google Scholar 

  103. Freude, D. et al. NMR study of the host structure and guest dynamics investigated with alkane/alkene mixtures in metal organic frameworks ZIF-8. J. Phys. Chem. C. 123, 1904–1912 (2019).

    Article  CAS  Google Scholar 

  104. Dvoyashkina, N. et al. Alkane/alkene mixture diffusion in silicalite-1 studied by MAS PFG NMR. Microporous Mesoporous Mater. 257, 128–134 (2018).

    Article  CAS  Google Scholar 

  105. Forman, E. M. et al. Ethylene diffusion in crystals of zeolitic imidazole Framework-11 embedded in polymers to form mixed-matrix membranes. Microporous Mesoporous Mater. 274, 163–170 (2019).

    Article  CAS  Google Scholar 

  106. Forse, A. C. et al. Unexpected diffusion anisotropy of carbon dioxide in the metal–organic framework Zn2(dobpdc). J. Am. Chem. Soc. 140, 1663–1673 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Popp, T. M. O., Plantz, A. Z., Yaghi, O. M. & Reimer, J. A. Precise control of molecular self-diffusion in isoreticular and multivariate metal–organic frameworks. ChemPhysChem 21, 32–35 (2020).

    Article  Google Scholar 

  108. Walenszus, F., Bon, V., Evans, J. D., Kaskel, S. & Dvoyashkin, M. Molecular diffusion in a flexible mesoporous metal–organic framework over the course of structural contraction. J. Phys. Chem. Lett. 11, 9696–9701 (2020).

    Article  CAS  PubMed  Google Scholar 

  109. Tan, K. & Chabal, Y. J. in Metal–Organic Frameworks Ch. 2 (eds Zafar, F. & Sharmin, E.) (IntechOpen, 2016).

  110. Drenchev, N. L. et al. In situ FTIR spectroscopy as a tool for investigation of gas/solid interaction: water-enhanced CO2 adsorption in UiO-66 metal-organic framework. Jove 156, e60285 (2020).

    Google Scholar 

  111. Musto, P., Ragosta, G. & Mensitieri, G. Time-resolved FTIR/FTNIR spectroscopy: powerful tools to investigate diffusion processes in polymeric films and membranes. e-Polym. 2, 16 (2002).

    Google Scholar 

  112. Karge, H. G. Infrared spectroscopic investigation of diffusion, co-diffusion and counter-diffusion of hydrocarbon molecules in zeolites. C. R. Chim. 8, 303–319 (2005).

    Article  CAS  Google Scholar 

  113. Karimi, M., Tashvigh, A. A., Asadi, F. & Ashtiani, F. Z. Determination of concentration-dependent diffusion coefficient of seven solvents in polystyrene systems using FTIR-ATR technique: experimental and mathematical studies. RSC Adv. 6, 9013–9022 (2016).

    Article  CAS  Google Scholar 

  114. Sharp, C. H. et al. Alkane-OH hydrogen bond formation and diffusion energetics of n-butane within UiO-66. J. Phys. Chem. C 121, 8902–8906 (2017).

    Article  CAS  Google Scholar 

  115. Grissom, T. G. et al. Benzene, toluene, and xylene transport through UiO-66: diffusion rates, energetics, and the role of hydrogen bonding. J. Phys. Chem. C 122, 16060–16069 (2018).

    Article  CAS  Google Scholar 

  116. Embs, J. P., Juranyi, F. & Hempelmann, R. Introduction to quasielastic neutron scattering. Z. Phys. Chem. 224, 5–32 (2010).

    Article  CAS  Google Scholar 

  117. Bee, M. Localized and long-range diffusion in condensed matter: state of the art of QENS studies and future prospects. Chem. Phys. 292, 121–141 (2003).

    Article  CAS  Google Scholar 

  118. Kolokolov, D. I. et al. Diffusion of benzene in the breathing metal-organic framework MIL-53(Cr): a joint experimental-computational investigation. J. Phys. Chem. C 119, 8217–8225 (2015).

    Article  CAS  Google Scholar 

  119. Rosenbach, N. et al. Quasi-elastic neutron scattering and molecular dynamics study of methane diffusion in metal organic frameworks MIL-47(V) and MIL-53(Cr). Angew. Chem. Int. Ed. 47, 6611–6615 (2008).

    Article  CAS  Google Scholar 

  120. Yang, Q. Y. et al. Understanding the thermodynamic and kinetic behavior of the CO2/CH4 gas mixture within the porous zirconium terephthalate UiO-66(Zr): a joint experimental and modeling approach. J. Phys. Chem. C 115, 13768–13774 (2011).

    Article  CAS  Google Scholar 

  121. Krishna, R. & van Baten, J. M. Insights into diffusion of gases in zeolites gained from molecular dynamics simulations. Microporous Mesoporous Mater. 109, 91–108 (2008).

    Article  CAS  Google Scholar 

  122. Forman, E. M., Pimentel, B. R., Ziegler, K. J., Lively, R. P. & Vasenkov, S. Microscopic diffusion of pure and mixed methane and carbon dioxide in ZIF-11 by high field diffusion NMR. Microporous Mesoporous Mater. 248, 158–163 (2017).

    Article  CAS  Google Scholar 

  123. Ghoufi, A. & Maurin, G. Single-file diffusion of neo-pentane confined in the MIL-47(V) metal-organic framework. J. Phys. Chem. C 123, 17360–17367 (2019).

    Article  CAS  Google Scholar 

  124. Kärger, J., Heinke, L., Kortunov, P. & Vasenkov, S. in Studies in Surface Science and Catalysis Vol. 170 (eds Xu, R., Gao, Z., Chen, J. & Yan, W.) 739–747 (Elsevier, 2007).

  125. Schemmert, U., Karger, J. & Weitkamp, J. Interference microscopy as a technique for directly measuring intracrystalline transport diffusion in zeolites. Microporous Mesoporous Mater. 32, 101–110 (1999).

    Article  CAS  Google Scholar 

  126. Heinke, L., Kortunov, P., Tzoulaki, D. & Karger, J. The options of interference microscopy to explore the significance of intracrystalline diffusion and surface permeation for overall mass transfer on nanoporous materials. Adsorption 13, 215–223 (2007).

    Article  CAS  Google Scholar 

  127. Karger, J. & Ruthven, D. M. Diffusion in nanoporous materials: fundamental principles, insights and challenges. N. J. Chem. 40, 4027–4048 (2016).

    Article  Google Scholar 

  128. Chmelik, C., Glaser, R., Haase, J., Hwang, S. & Karger, J. Application of microimaging to diffusion studies in nanoporous materials. Adsorption 27, 819–840 (2020).

    Article  Google Scholar 

  129. Heinke, L. et al. Three-dimensional diffusion in nanoporous host-guest materials monitored by interference microscopy. EPL 81, 26002 (2008).

    Article  Google Scholar 

  130. Kortunov, P. V. et al. Intracrystalline diffusivities and surface permeabilities deduced from transient concentration profiles: methanol in MOF manganese formate. J. Am. Chem. Soc. 129, 8041–8047 (2007).

    Article  CAS  PubMed  Google Scholar 

  131. Briggs, L. et al. Binding and separation of CO2, SO2 and C2H2 in homo- and hetero-metallic metal–organic framework materials. J. Mater. Chem. A 9, 7190–7197 (2021).

    Article  CAS  Google Scholar 

  132. Krap, C. P. et al. Enhancement of CO2 adsorption and catalytic properties by Fe-doping of [Ga2(OH)2(L)] (H4L = biphenyl-3,3′,5,5′-tetracarboxylic acid), MFM-300(Ga2). Inorg. Chem. 55, 1076–1088 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Savage, M. et al. Selective adsorption of sulfur dioxide in a robust metal–organic framework material. Adv. Mater. 28, 8705–8711 (2016).

    Article  CAS  PubMed  Google Scholar 

  134. Smith, G. L. et al. Reversible coordinative binding and separation of sulfur dioxide in a robust metal–organic framework with open copper sites. Nat. Mater. 18, 1358–1365 (2019).

    Article  CAS  PubMed  Google Scholar 

  135. Greenaway, A. et al. In situ synchrotron IR microspectroscopy of CO2 adsorption on single crystals of the functionalized MOF Sc2(BDC-NH2)3. Angew. Chem. Int. Ed. 53, 13483–13487 (2014).

    Article  CAS  Google Scholar 

  136. Godfrey, H. G. W. et al. Ammonia storage by reversible host–guest site exchange in a robust metal–organic framework. Angew. Chem. Int. Ed. 57, 14778–14781 (2018).

    Article  CAS  Google Scholar 

  137. Humby, J. D. et al. Host–guest selectivity in a series of isoreticular metal–organic frameworks: observation of acetylene-to-alkyne and carbon dioxide-to-amide interactions. Chem. Sci. 10, 1098–1106 (2019).

    Article  CAS  PubMed  Google Scholar 

  138. Souza, B. E. et al. Elucidating the drug release from metal-organic framework nanocomposites via in situ synchrotron microspectroscopy and theoretical modeling. ACS Appl. Mater. Interfaces 12, 5147–5156 (2020).

    Article  CAS  PubMed  Google Scholar 

  139. Bux, H., Chmelik, C., Krishna, R. & Caro, J. Ethene/ethane separation by the MOF membrane ZIF-8: molecular correlation of permeation, adsorption, diffusion. J. Membr. Sci. 369, 284–289 (2011).

    Article  CAS  Google Scholar 

  140. Baniani, A. et al. Anomalous relationship between molecular size and diffusivity of ethane and ethylene inside crystals of zeolitic imidazolate framework-11. J. Phys. Chem. C 123, 16813–16822 (2019).

    Article  CAS  Google Scholar 

  141. Berens, S. et al. Ethane diffusion in mixed linker zeolitic imidazolate framework-7-8 by pulsed field gradient NMR in combination with single crystal IR microscopy. Phys. Chem. Chem. Phys. 20, 23967–23975 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Sauerbrey, G. Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung. Z. Phys. 155, 206–222 (1959).

    Article  CAS  Google Scholar 

  143. Czanderna, A. W. & Lu, C. in Methods and Phenomena Vol. 7 (eds Lu, C. & Czanderna, A. W.) 1–18 (Elsevier, 1984).

  144. Kanazawa, K. & Cho, N.-J. Quartz crystal microbalance as a sensor to characterize macromolecular assembly dynamics. J. Sens. 2009, 824947 (2009).

    Article  Google Scholar 

  145. Tuantranont, A., Wisitsora-at, A., Sritongkham, P. & Jaruwongrungsee, K. A review of monolithic multichannel quartz crystal microbalance: a review. Anal. Chim. Acta 687, 114–128 (2011).

    Article  CAS  PubMed  Google Scholar 

  146. O’Sullivan, C. K. & Guilbault, G. G. Commercial quartz crystal microbalances — theory and applications. Biosens. Bioelectron. 14, 663–670 (1999).

    Article  Google Scholar 

  147. Wang, L. Y. Metal-organic frameworks for QCM-based gas sensors: a review. Sens. Actuator A Phys. 307, 111984 (2020).

    Article  CAS  Google Scholar 

  148. Zybaylo, O. et al. A novel method to measure diffusion coefficients in porous metal-organic frameworks. Phys. Chem. Chem. Phys. 12, 8092–8097 (2010).

    Article  CAS  PubMed  Google Scholar 

  149. Heinke, L., Gu, Z. G. & Woll, C. The surface barrier phenomenon at the loading of metal–organic frameworks. Nat. Commun. 5, 4562 (2014).

    Article  CAS  PubMed  Google Scholar 

  150. Zhou, W. C., Woell, C. & Heinke, L. Liquid- and gas-phase diffusion of ferrocene in thin films of metal-organic frameworks. Materials 8, 3767–3775 (2015).

    Article  CAS  PubMed Central  Google Scholar 

  151. Heinke, L. & Woll, C. Adsorption and diffusion in thin films of nanoporous metal-organic frameworks: ferrocene in SURMOF Cu2(ndc)2(dabco). Phys. Chem. Chem. Phys. 15, 9295–9299 (2013).

    Article  CAS  PubMed  Google Scholar 

  152. Muller, K., Vankova, N., Schottner, L., Heine, T. & Heinke, L. Dissolving uptake-hindering surface defects in metal-organic frameworks. Chem. Sci. 10, 153–160 (2019).

    Article  PubMed  Google Scholar 

  153. Ramaswamy, P., Wong, N. E. & Shimizu, G. K. H. MOFs as proton conductors — challenges and opportunities. Chem. Soc. Rev. 43, 5913–5932 (2014).

    Article  CAS  PubMed  Google Scholar 

  154. Lim, D. W. & Kitagawa, H. Proton transport in metal–organic frameworks. Chem. Rev. 120, 8416–8467 (2020).

    Article  CAS  PubMed  Google Scholar 

  155. Sadakiyo, M., Yamada, T. & Kitagawa, H. Rational designs for highly proton-conductive metal–organic frameworks. J. Am. Chem. Soc. 131, 9906–9907 (2009).

    Article  CAS  PubMed  Google Scholar 

  156. Macdonald, J. R. Impedance spectroscopy. Ann. Biomed. Eng. 20, 289–305 (1992).

    Article  CAS  PubMed  Google Scholar 

  157. Lee, Y. J., Murakhtina, T., Sebastiani, D. & Spiess, H. W. 2H solid-state NMR of mobile protons: it is not always the simple way. J. Am. Chem. Soc. 129, 12406–12407 (2007).

    Article  CAS  PubMed  Google Scholar 

  158. Vilciauskas, L., Tuckerman, M. E., Bester, G., Paddison, S. J. & Kreuer, K. D. The mechanism of proton conduction in phosphoric acid. Nat. Chem. 4, 461–466 (2012).

    Article  CAS  PubMed  Google Scholar 

  159. Agmon, N. The Grotthuss mechanism. Chem. Phys. Lett. 244, 456–462 (1995).

    Article  CAS  Google Scholar 

  160. Kreuer, K. D., Rabenau, A. & Weppner, W. Vehicle mechanism, a new model for the interpretation of the conductivity of fast proton conductors. Angew. Chem. Int. Ed. Engl. 21, 208–209 (1982).

    Article  Google Scholar 

  161. Pili, S. et al. Proton conduction in a phosphonate-based metal-organic framework mediated by intrinsic “free diffusion inside a sphere”. J. Am. Chem. Soc. 138, 6352–6355 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Rought, P. et al. Modulating proton diffusion and conductivity in metal–organic frameworks by incorporation of accessible free carboxylic acid groups. Chem. Sci. 10, 1492–1499 (2019).

    Article  CAS  PubMed  Google Scholar 

  163. Liu, Q. Y. et al. Metal organic frameworks modified proton exchange membranes for fuel cells. Front. Chem. 8, 694 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Kang, D. W., Kang, M. & Hong, C. S. Post-synthetic modification of porous materials: superprotonic conductivities and membrane applications in fuel cells. J. Mater. Chem. A 8, 7474–7494 (2020).

    Article  CAS  Google Scholar 

  165. Liang, X. et al. Potential applications of metal organic framework-based materials for proton exchange membrane fuel cells. Prog. Chem. 30, 1770–1783 (2018).

    Google Scholar 

  166. Baumann, A. E., Burns, D. A., Liu, B. Q. & Thoi, V. S. Metal–organic framework functionalization and design strategies for advanced electrochemical energy storage devices. Commun. Chem. 2, 86 (2019).

    Article  Google Scholar 

  167. Choi, K. M. et al. Supercapacitors of nanocrystalline metal-organic frameworks. ACS Nano 8, 7451–7457 (2014).

    Article  CAS  PubMed  Google Scholar 

  168. Liang, H. Q. et al. A light-responsive metal-organic framework hybrid membrane with high on/off photoswitchable proton conductivity. Angew. Chem. Int. Ed. 59, 7732–7737 (2020).

    Article  CAS  Google Scholar 

  169. Kanj, A. B. et al. Proton-conduction photomodulation in spiropyran-functionalized MOFs with large on-off ratio. Chem. Sci. 11, 1404–1410 (2020).

    Article  CAS  Google Scholar 

  170. Liang, H. Q., Guo, Y., Peng, X. S. & Chen, B. L. Light-gated cation-selective transport in metal-organic framework membranes. J. Mater. Chem. A 8, 11399–11405 (2020).

    Article  CAS  Google Scholar 

  171. Muller, K. et al. Switching the proton conduction in nanoporous, crystalline materials by light. Adv. Mater. 30, 1706551 (2018).

    Article  Google Scholar 

  172. Song, Y. et al. Transformation of a proton insulator to a conductor via reversible amorphous to crystalline structure transformation of MOFs. Chem. Commun. 56, 4468–4471 (2020).

    Article  CAS  Google Scholar 

  173. Wei, Y. S. et al. Unique proton dynamics in an efficient MOF-based proton conductor. J. Am. Chem. Soc. 139, 3505–3512 (2017).

    Article  CAS  PubMed  Google Scholar 

  174. Shen, L. et al. Creating lithium-ion electrolytes with biomimetic ionic channels in metal–organic frameworks. Adv. Mater. 30, 1707476 (2018).

    Article  Google Scholar 

  175. Fujie, K., Yamada, T., Ikeda, R. & Kitagawa, H. Introduction of an ionic liquid into the micropores of a metal–organic framework and its anomalous phase behavior. Angew. Chem. Int. Ed. 53, 11302–11305 (2014).

    Article  CAS  Google Scholar 

  176. Kinik, F. P., Uzun, A. & Keskin, S. Ionic liquid/metal–organic framework composites: from synthesis to applications. ChemSusChem 10, 2842–2863 (2017).

    Article  CAS  PubMed  Google Scholar 

  177. Kanj, A. B. et al. Bunching and immobilization of ionic liquids in nanoporous metal–organic framework. Nano Lett. 19, 2114–2120 (2019).

    Article  CAS  PubMed  Google Scholar 

  178. Wang, H. F., Chen, L. Y., Pang, H., Kaskel, S. & Xu, Q. MOF-derived electrocatalysts for oxygen reduction, oxygen evolution and hydrogen evolution reactions. Chem. Soc. Rev. 49, 1414–1448 (2020).

    Article  CAS  PubMed  Google Scholar 

  179. Cheng, W. R. et al. Lattice-strained metal-organic-framework arrays for bifunctional oxygen electrocatalysis. Nat. Energy 5, 346–347 (2020).

    Article  Google Scholar 

  180. Yan, Z. H. et al. Photo-generated dinuclear {Eu(II)}2 active sites for selective CO2 reduction in a photosensitizing metal–organic framework. Nat. Commun. 9, 3353 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Xia, B. Y. et al. A metal–organic framework-derived bifunctional oxygen electrocatalyst. Nat. Energy 1, 15006 (2016).

    Article  CAS  Google Scholar 

  182. Zhao, Y. et al. Metal organic frameworks for energy storage and conversion. Energy Storage Mater. 2, 35–62 (2016).

    Article  Google Scholar 

  183. Wang, L. et al. Metal–organic frameworks for energy storage: batteries and supercapacitors. Coord. Chem. Rev. 307, 361–381 (2016).

    Article  CAS  Google Scholar 

  184. Feng, D. W. et al. Robust and conductive two-dimensional metal-organic frameworks with exceptionally high volumetric and areal capacitance. Nat. Energy 3, 30–36 (2018).

    Article  CAS  Google Scholar 

  185. Sheberla, D. et al. Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Nat. Mater. 16, 220–224 (2017).

    Article  CAS  PubMed  Google Scholar 

  186. Deng, R., Han, W. & Yeung, K. L. Confined PFSA/MOF composite membranes in fuel cells for promoted water management and performance. Catal. Today 331, 12–17 (2019).

    Article  CAS  Google Scholar 

  187. Cai, K. et al. An acid-stable hexaphosphate ester based metal-organic framework and its polymer composite as proton exchange membrane. J. Mater. Chem. A 5, 12943–12950 (2017).

    Article  CAS  Google Scholar 

  188. Anahidzade, N., Abdolmaleki, A., Dinari, M., Tadavani, K. F. & Zhiani, M. Metal-organic framework anchored sulfonated poly(ether sulfone) as a high temperature proton exchange membrane for fuel cells. J. Membr. Sci. 565, 281–292 (2018).

    Article  CAS  Google Scholar 

  189. Murase, R., Ding, B. W., Gu, Q. Y. & D’Alessandro, D. M. Prospects for electroactive and conducting framework materials. Phil. Trans. R. Soc. A 377, 20180226 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Chueh, C. C. et al. Harnessing MOF materials in photovoltaic devices: recent advances, challenges, and perspectives. J. Mater. Chem. A 7, 17079–17095 (2019).

    Article  CAS  Google Scholar 

  191. Heidary, N., Harris, T., Ly, K. H. & Kornienko, N. Artificial photosynthesis with metal and covalent organic frameworks (MOFs and COFs): challenges and prospects in fuel-forming electrocatalysis. Physiol. Plant. 166, 460–471 (2019).

    Article  CAS  PubMed  Google Scholar 

  192. Khitrova, G., Berman, P. R. & Sargent, M. Theory of pump probe spectroscopy. J. Opt. Soc. Am. B 5, 160–170 (1988).

    Article  CAS  Google Scholar 

  193. Lytle, F. E., Parrish, R. M. & Barnes, W. T. An introduction to time-resolved pump/probe spectroscopy. Appl. Spectrosc. 39, 444–451 (1985).

    Article  CAS  Google Scholar 

  194. Tromp, M. et al. Energy dispersive XAFS: characterization of electronically excited states of copper(I) complexes. J. Phys. Chem. B 117, 7381–7387 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Easun, T. L. et al. Photochemistry in a 3D metal-organic framework (MOF): monitoring intermediates and reactivity of the fac-to-mer photoisomerization of Re(diimine)(CO)3Cl incorporated in a MOF. Inorg. Chem. 53, 2606–2612 (2014).

    Article  CAS  PubMed  Google Scholar 

  196. Blake, A. J. et al. Photoreactivity examined through incorporation in metal–organic frameworks. Nat. Chem. 2, 688–694 (2010).

    Article  CAS  PubMed  Google Scholar 

  197. Easun, T. L. et al. Modification of coordination networks through a photoinduced charge transfer process. Chem. Sci. 5, 539–544 (2014).

    Article  CAS  Google Scholar 

  198. Pattengale, B. et al. Exceptionally long-lived charge separated state in zeolitic imidazolate framework: implication for photocatalytic applications. J. Am. Chem. Soc. 138, 8072–8075 (2016).

    Article  CAS  PubMed  Google Scholar 

  199. Pattengale, B. et al. Metal–organic framework photoconductivity via time-resolved terahertz spectroscopy. J. Am. Chem. Soc. 141, 9793–9797 (2019).

    Article  CAS  PubMed  Google Scholar 

  200. Hanna, L., Kucheryavy, P., Liu, C. M., Zhang, X. Y. & Lockard, J. V. Long-lived photoinduced charge separation in a trinuclear iron-μ3-oxo-based metal–organic framework. J. Phys. Chem. C 121, 13570–13576 (2017).

    Article  CAS  Google Scholar 

  201. Yu, J. R., Park, J., Van Wyk, A., Rumbles, G. & Deria, P. Excited-state electronic properties in Zr-based metal-organic frameworks as a function of a topological network. J. Am. Chem. Soc. 140, 10488–10496 (2018).

    Article  CAS  PubMed  Google Scholar 

  202. Li, X. X. et al. Ultrafast relaxation dynamics in zinc tetraphenylporphyrin surface-mounted metal organic framework. J. Phys. Chem. C 122, 50–61 (2018).

    Article  CAS  Google Scholar 

  203. Rodriguez, A. M. B. et al. Ligand-to-diimine/metal-to-diimine charge-transfer excited states of Re(NCS)(CO)3(α-diimine) (α-diimine = 2,2′-bipyridine, di-iPr-N,N-1,4-diazabutadiene). A spectroscopic and computational study. J. Phys. Chem. A 109, 5016–5025 (2005).

    Article  CAS  Google Scholar 

  204. Mitra, T. et al. Characterisation of redox states of metal–organic frameworks by growth on modified thin-film electrodes. Chem. Sci. 9, 6572–6579 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Hua, C. et al. Through-space intervalence charge transfer as a mechanism for charge delocalization in metal-organic frameworks. J. Am. Chem. Soc. 140, 6622–6630 (2018).

    Article  CAS  PubMed  Google Scholar 

  206. Ding, B. W., Hua, C., Kepert, C. J. & D’Alessandro, D. M. Influence of structure-activity relationships on through-space intervalence charge transfer in metal–organic frameworks with cofacial redox-active units. Chem. Sci. 10, 1392–1400 (2019).

    Article  CAS  PubMed  Google Scholar 

  207. Usov, P. M. et al. Probing charge transfer characteristics in a donor-acceptor metal-organic framework by Raman spectroelectrochemistry and pressure-dependence studies. Phys. Chem. Chem. Phys. 20, 25772–25779 (2018).

    Article  CAS  PubMed  Google Scholar 

  208. Garg, S. et al. Conductance photoswitching of metal–organic frameworks with embedded spiropyran. Angew. Chem. Int. Ed. 58, 1193–1197 (2019).

    Article  CAS  Google Scholar 

  209. Yu, F. et al. Photostimulus-responsive large-area two-dimensional covalent organic framework films. Angew. Chem. Int. Ed. 58, 16101–16104 (2019).

    Article  CAS  Google Scholar 

  210. Sun, L., Park, S. S., Sheberla, D. & Dinca, M. Measuring and reporting electrical conductivity in metal organic frameworks: Cd2(TTFTB) as a case study. J. Am. Chem. Soc. 138, 14772–14782 (2016).

    Article  CAS  PubMed  Google Scholar 

  211. Narayan, T. C., Miyakai, T., Seki, S. & Dinca, M. High charge mobility in a tetrathiafulvalene-based microporous metal–organic framework. J. Am. Chem. Soc. 134, 12932–12935 (2012).

    Article  CAS  PubMed  Google Scholar 

  212. Aubrey, M. L. et al. Electron delocalization and charge mobility as a function of reduction in a metal–organic framework. Nat. Mater. 17, 625–632 (2018).

    Article  CAS  PubMed  Google Scholar 

  213. Dong, R. et al. High-mobility band-like charge transport in a semiconducting two-dimensional metal–organic framework. Nat. Mater. 17, 1027–1032 (2018).

    Article  CAS  PubMed  Google Scholar 

  214. Cai, M., Loague, Q. & Morris, A. J. Design rules for efficient charge transfer in metal–organic framework films: the pore size effect. J. Phys. Chem. Lett. 11, 702–709 (2020).

    Article  CAS  PubMed  Google Scholar 

  215. Halder, A. & Ghoshal, D. Structure and properties of dynamic metal-organic frameworks: a brief accounts of crystalline-to-crystalline and crystalline-to-amorphous transformations. CrystEngComm 20, 1322–1345 (2018).

    Article  CAS  Google Scholar 

  216. Jiang, J. W. Concluding remarks: cooperative phenomena in framework materials. Faraday Discuss. 225, 442–454 (2021).

    Article  CAS  PubMed  Google Scholar 

  217. Schneemann, A. et al. Flexible metal–organic frameworks. Chem. Soc. Rev. 43, 6062–6096 (2014).

    Article  CAS  PubMed  Google Scholar 

  218. Krause, S., Hosono, N. & Kitagawa, S. Chemistry of soft porous crystals: structural dynamics and gas adsorption properties. Angew. Chem. Int. Ed. 59, 15325–15341 (2020).

    Article  CAS  Google Scholar 

  219. Alhamami, M., Doan, H. & Cheng, C. H. A review on breathing behaviors of metal-organic-frameworks (MOFs) for gas adsorption. Materials 7, 3198–3250 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  220. Hyun, S. M. et al. Exploration of gate-opening and breathing phenomena in a tailored flexible metal–organic framework. Inorg. Chem. 55, 1920–1925 (2016).

    Article  CAS  PubMed  Google Scholar 

  221. Chang, Z., Yang, D. H., Xu, J., Hu, T. L. & Bu, X. H. Flexible metal–organic frameworks: recent advances and potential applications. Adv. Mater. 27, 5432–5441 (2015).

    Article  CAS  PubMed  Google Scholar 

  222. Burtch, N. C. et al. In situ visualization of loading-dependent water effects in a stable metal–organic framework. Nat. Chem. 12, 186–192 (2020).

    Article  CAS  PubMed  Google Scholar 

  223. Lo, S. H. et al. Rapid desolvation-triggered domino lattice rearrangement in a metal–organic framework. Nat. Chem. 12, 90–97 (2020).

    Article  PubMed  Google Scholar 

  224. Krause, S. et al. Towards general network architecture design criteria for negative gas adsorption transitions in ultraporous frameworks. Nat. Commun. 10, 3632 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  225. Krause, S. et al. The effect of crystallite size on pressure amplification in switchable porous solids. Nat. Commun. 9, 1573 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  226. Carrington, E. J. et al. Solvent-switchable continuous-breathing behaviour in a diamondoid metal–organic framework and its influence on CO2 versus CH4 selectivity. Nat. Chem. 9, 882–889 (2017).

    Article  CAS  PubMed  Google Scholar 

  227. Serra-Crespo, P. et al. Experimental evidence of negative linear compressibility in the MIL-53 metal–organic framework family. CrystEngComm 17, 276–280 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Li, W. et al. Negative linear compressibility of a metal–organic framework. J. Am. Chem. Soc. 134, 11940–11943 (2012).

    Article  CAS  PubMed  Google Scholar 

  229. Zeng, Q. X., Wang, K., Qiao, Y. C., Li, X. D. & Zou, B. Negative linear compressibility due to layer sliding in a layered metal–organic framework. J. Phys. Chem. Lett. 8, 1436–1441 (2017).

    Article  CAS  PubMed  Google Scholar 

  230. Cai, W. Z. & Katrusiak, A. Giant negative linear compression positively coupled to massive thermal expansion in a metal–organic framework. Nat. Commun. 5, 4337 (2014).

    Article  CAS  PubMed  Google Scholar 

  231. Yousef, H. et al. Timepix3 as X-ray detector for time resolved synchrotron experiments. Nucl. Instrum. Methods Phys. Res. A 845, 639–643 (2017).

    Article  CAS  Google Scholar 

  232. Poikela, T. et al. Timepix3: a 65K channel hybrid pixel readout chip with simultaneous ToA/ToT and sparse readout. J. Instrum. 9, C05013 (2014).

    Article  Google Scholar 

  233. Castillo-Blas, C., Moreno, J. M., Romero-Muñiz, I. & Platero-Prats, A. E. Applications of pair distribution function analyses to the emerging field of non-ideal metal–organic framework materials. Nanoscale 12, 15577–15587 (2020).

    Article  CAS  PubMed  Google Scholar 

  234. Mao, H. Y., Xu, J., Hu, Y., Huang, Y. N. & Song, Y. The effect of high external pressure on the structure and stability of MOF α-Mg3(HCOO)6 probed by in situ Raman and FT-IR spectroscopy. J. Mater. Chem. A 3, 11976–11984 (2015).

    Article  CAS  Google Scholar 

  235. Ryder, M. R. et al. Tracking thermal-induced amorphization of a zeolitic imidazolate framework via synchrotron in situ far-infrared spectroscopy. Chem. Commun. 53, 7041–7044 (2017).

    Article  CAS  Google Scholar 

  236. Nishida, J. et al. Structural dynamics inside a functionalized metal–organic framework probed by ultrafast 2D IR spectroscopy. Proc. Natl Acad. Sci. USA 111, 18442–18447 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Nishida, J. & Fayer, M. D. Guest hydrogen bond dynamics and interactions in the metal-organic framework MIL-53(AI) measured with ultrafast infrared spectroscopy. J. Phys. Chem. C 121, 11880–11890 (2017).

    Article  CAS  Google Scholar 

  238. Le Sueur, A. L., Horness, R. E. & Thielges, M. C. Applications of two-dimensional infrared spectroscopy. Analyst 140, 4336–4349 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  239. Coudert, F.-X. Responsive metal–organic frameworks and framework materials: under pressure, taking the heat, in the spotlight, with friends. Chem. Mater. 27, 1905–1916 (2015).

    Article  CAS  Google Scholar 

  240. Castellanos, S., Kapteijn, F. & Gascon, J. Photoswitchable metal organic frameworks: turn on the lights and close the windows. CrystEngComm 18, 4006–4012 (2016).

    Article  CAS  Google Scholar 

  241. Mutruc, D. et al. Modulating guest uptake in core-shell MOFs with visible light. Angew. Chem. Int. Ed. 58, 12862–12867 (2019).

    Article  CAS  Google Scholar 

  242. Liu, C. Y., Jiang, Y. Z., Zhou, C., Caro, J. & Huang, A. S. Photo-switchable smart metal organic framework membranes with tunable and enhanced molecular sieving performance. J. Mater. Chem. A 6, 24949–24955 (2018).

    Article  CAS  Google Scholar 

  243. Wang, Z. et al. Tunable molecular separation by nanoporous membranes. Nat. Commun. 7, 13872 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Williams, D. E. et al. Flipping the switch: fast photoisomerization in a confined environment. J. Am. Chem. Soc. 140, 7611–7622 (2018).

    Article  CAS  PubMed  Google Scholar 

  245. Hoffmann, H. C. et al. High-pressure in situ 129Xe NMR spectroscopy and computer simulations of breathing transitions in the metal–organic framework Ni2(2,6-ndc)2(dabco) (DUT-8(Ni)). J. Am. Chem. Soc. 133, 8681–8690 (2011).

    Article  CAS  PubMed  Google Scholar 

  246. Schaber, J. et al. In situ monitoring of unique switching transitions in the pressure amplifying flexible framework material DUT-49 by high-pressure 129Xe NMR spectroscopy. J. Phys. Chem. C 121, 5195–5200 (2017).

    Article  CAS  Google Scholar 

  247. Kolbe, F. et al. High-pressure in situ Xe-129 NMR spectroscopy: insights into switching mechanisms of flexible metal–organic frameworks isoreticular to DUT-49. Chem. Mater. 31, 6193–6201 (2019).

    Article  CAS  Google Scholar 

  248. Bertmer, M. in Annual Reports on NMR Spectroscopy Vol. 101 (ed. Rahman, A.) 1–64 (2020).

  249. Chen, W., Wu, Y. N. & Li, F. T. Hierarchical structure and molecular dynamics of metal–organic framework as characterized by solid state NMR. J. Chem. 2016, 6510253 (2016).

    Article  Google Scholar 

  250. Bernin, D. & Hedin, N. Perspectives on NMR studies of CO2 adsorption. Curr. Opin. Colloid Interface Sci. 33, 53–62 (2018).

    Article  CAS  Google Scholar 

  251. Moreau, F. et al. Tailoring porosity and rotational dynamics in a series of octacarboxylate metal–organic frameworks. Proc. Natl Acad. Sci. USA 114, 3056–3061 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Trenholme, W. J. F. et al. Selective gas uptake and rotational dynamics in a (3,24)-connected metal–organic framework material. J. Am. Chem. Soc. 143, 3348–3358 (2021).

    Article  CAS  PubMed  Google Scholar 

  253. Sin, M. et al. In situ 13C NMR spectroscopy study of CO2/CH4 mixture adsorption by metal–organic frameworks: does flexibility influence selectivity? Langmuir 35, 3162–3170 (2019).

    Article  CAS  PubMed  Google Scholar 

  254. Benson, O. et al. Amides do not always work: observation of guest binding in an amide-functionalized porous metal–organic framework. J. Am. Chem. Soc. 138, 14828–14831 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Lu, Z. et al. Modulating supramolecular binding of carbon dioxide in a redox-active porous metal–organic framework. Nat. Commun. 8, 14212 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Moreau, F. et al. Unravelling exceptional acetylene and carbon dioxide adsorption within a tetra-amide functionalized metal–organic framework. Nat. Commun. 8, 14085 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Zhou, W. & Yildirim, T. Lattice dynamics of metal-organic frameworks: neutron inelastic scattering and first-principles calculations. Phys. Rev. B 74, 18030 (2006).

    Article  Google Scholar 

  258. Zhao, P. et al. Structural dynamics of a metal-organic framework induced by CO2 migration in its non-uniform porous structure. Nat. Commun. 10, 999 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Auckett, J. E. et al. Continuous negative-to-positive tuning of thermal expansion achieved by controlled gas sorption in porous coordination frameworks. Nat. Commun. 9, 4873 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  260. Gong, X. Y. et al. Insights into the structure and dynamics of metal–organic frameworks via transmission electron microscopy. J. Am. Chem. Soc. 142, 17224–17235 (2020).

    Article  CAS  PubMed  Google Scholar 

  261. Hosono, N., Terashima, A., Kusaka, S., Matsuda, R. & Kitagawa, S. Highly responsive nature of porous coordination polymer surfaces imaged by in situ atomic force microscopy. Nat. Chem. 11, 109–116 (2019).

    Article  CAS  PubMed  Google Scholar 

  262. Parent, L. R. et al. Pore breathing of metal–organic frameworks by environmental transmission electron microscopy. J. Am. Chem. Soc. 139, 13973–13976 (2017).

    Article  CAS  PubMed  Google Scholar 

  263. Soldatov, M. A. et al. The insights from X-ray absorption spectroscopy into the local atomic structure and chemical bonding of metal–organic frameworks. Polyhedron 155, 232–253 (2018).

    Article  CAS  Google Scholar 

  264. Bordiga, S., Bonino, F., Lillerud, K. P. & Lamberti, C. X-ray absorption spectroscopies: useful tools to understand metallorganic frameworks structure and reactivity. Chem. Soc. Rev. 39, 4885–4927 (2010).

    Article  CAS  PubMed  Google Scholar 

  265. Kortright, J. B., Marti, A. M., Culp, J. T., Venna, S. & Hopkinson, D. Active response of six-coordinate Cu2+ on CO2 uptake in Cu(dpa)2SiF6-i from in situ X-ray absorption spectroscopy. J. Phys. Chem. C 121, 11519–11523 (2017).

    Article  CAS  Google Scholar 

  266. Bon, V. et al. Exceptional adsorption-induced cluster and network deformation in the flexible metal-organic framework DUT-8(Ni) observed by in situ X-ray diffraction and EXAFS. Phys. Chem. Chem. Phys. 17, 17471–17479 (2015).

    Article  CAS  PubMed  Google Scholar 

  267. Neu, J. & Schmuttenmaer, C. A. Tutorial: an introduction to terahertz time domain spectroscopy (THz-TDS). J. Appl. Phys. 124, 231101 (2018).

    Article  Google Scholar 

  268. Withayachumnankul, W. & Naftaly, M. Fundamentals of measurement in terahertz time-domain spectroscopy. J. Infrared Milli. Terahz. Waves 35, 610–637 (2014).

    Article  CAS  Google Scholar 

  269. Neu, J. et al. in 2019 44th Int. Conf. on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz) 1–2 (IEEE, 2019).

  270. Kamencek, T., Bedoya-Martinez, N. & Zojer, E. Understanding phonon properties in isoreticular metal-organic frameworks from first principles. Phys. Rev. Mater. 3, 116003 (2019).

    Article  CAS  Google Scholar 

  271. Formalik, F., Fischer, M., Rogacka, J., Firlej, L. & Kuchta, B. Effect of low frequency phonons on structural properties of ZIFs with SOD topology. Microporous Mesoporous Mater. 304, 109132 (2020).

    Article  CAS  Google Scholar 

  272. Itakura, T. et al. The role of lattice vibration in the terahertz region for proton conduction in 2D metal–organic frameworks. Chem. Sci. 11, 1538–1541 (2020).

    Article  CAS  Google Scholar 

  273. Ryder, M. R. et al. Identifying the role of terahertz vibrations in metal-organic frameworks: from gate-opening phenomenon to shear-driven structural destabilization. Phys. Rev. Lett. 113, 215502 (2014).

    Article  PubMed  Google Scholar 

  274. Hoffman, A. E. J., Wieme, J., Rogge, S. M. J., Vanduyfhuys, L. & Van Speybroeck, V. The impact of lattice vibrations on the macroscopic breathing behavior of MIL-53(Al). Z. Kristallogr. Cryst. Mater. 234, 529–545 (2019).

    Article  CAS  Google Scholar 

  275. Tan, N. Y. et al. Investigation of the terahertz vibrational modes of ZIF-8 and ZIF-90 with terahertz time-domain spectroscopy. Chem. Commun. 51, 16037–16040 (2015).

    Article  CAS  Google Scholar 

  276. Ryder, M. R., Civalleri, B., Cinque, G. & Tan, J. C. Discovering connections between terahertz vibrations and elasticity underpinning the collective dynamics of the HKUST-1 metal–organic framework. CrystEngComm 18, 4303–4312 (2016).

    Article  CAS  Google Scholar 

  277. Ryder, M. R. et al. Detecting molecular rotational dynamics complementing the low-frequency terahertz vibrations in a zirconium-based metal–organic framework. Phys. Rev. Lett. 118, 255502 (2017).

    Article  PubMed  Google Scholar 

  278. Zhang, W. et al. Probing the mechanochemistry of metal–organic frameworks with low-frequency vibrational spectroscopy. J. Phys. Chem. C 122, 27442–27450 (2018).

    Article  CAS  Google Scholar 

  279. Brammer, L. et al. Advanced characterisation techniques: multi-scale, in situ, and time-resolved: general discussion. Faraday Discuss. 225, 152–167 (2021).

    Article  CAS  PubMed  Google Scholar 

  280. Fraux, G., Chibani, S. & Coudert, F. X. Modelling of framework materials at multiple scales: current practices and open questions. Phil. Trans. R. Soc. A 377, 20180220 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. Chong, S., Lee, S., Kim, B. & Kim, J. Applications of machine learning in metal–organic frameworks. Coord. Chem. Rev. 423, 213487 (2020).

    Article  CAS  Google Scholar 

  282. Chibani, S. & Coudert, F. X. Machine learning approaches for the prediction of materials properties. APL Mater. 8, 080701 (2020).

    Article  CAS  Google Scholar 

  283. Marques, M. A. L. & Gross, E. K. U. Time-dependent density functional theory. Annu. Rev. Phys. Chem. 55, 427–455 (2004).

    Article  CAS  PubMed  Google Scholar 

  284. Khan, I. M., Alam, K. & Alam, M. J. Exploring charge transfer dynamics and photocatalytic behavior of designed donor–acceptor complex: characterization, spectrophotometric and theoretical studies (DFT/TD-DFT). J. Mol. Liq. 310, 113213 (2020).

    Article  CAS  Google Scholar 

  285. Van Speybroeck, V., Vandenhaute, S., Hoffman, A. E. J. & Rogge, S. M. J. Towards modeling spatiotemporal processes in metal–organic frameworks. Trends Chem. 3, 605–619 (2021).

    Article  Google Scholar 

  286. Kumar, N., Weckhuysen, B. M., Wain, A. J. & Pollard, A. J. Nanoscale chemical imaging using tip-enhanced Raman spectroscopy. Nat. Protoc. 14, 1169–1193 (2019).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

T.L.E. gratefully acknowledges the Royal Society for the award of a University Research Fellowship (6866) and the award of a PhD studentship to D.J.C. (RGF\EA\180183). The authors thank Cardiff University and the EPSRC for additional funding, including a PhD studentship to D.C.W.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Timothy L. Easun.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Chemistry thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cerasale, D.J., Ward, D.C. & Easun, T.L. MOFs in the time domain. Nat Rev Chem 6, 9–30 (2022). https://doi.org/10.1038/s41570-021-00336-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-021-00336-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing