Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

POLYCYCLIC AROMATICS

Rearrangements come to Scholl

Recent findings on the skeletal rearrangement of polycyclic aromatics under oxidative and acidic conditions are envisioned to help development of these Scholl reactions into a more useful and versatile method for synthesizing polycyclic aromatics on the basis of rational design rather than luck.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Scholl reactions with and without rearrangement.

References

  1. Scholl, R., Seer, C. & Weitzenböck, R. Perylen, ein hoch kondensierter aromatischer Kohlenwasserstoff C20H12. Ber. Dtsch. Chem. Ges. 43, 2202–2209 (1910).

    Article  CAS  Google Scholar 

  2. Narita, A. et al. Synthesis of structurally well-defined and liquid-phase-processable graphene nanoribbons. Nat. Chem. 6, 126–132 (2014).

    Article  CAS  Google Scholar 

  3. Zhai, L., Shukla, R. & Rathore, R. Oxidative C−C bond formation (Scholl reaction) with DDQ as an efficient and easily recyclable oxidant. Org. Lett. 11, 3474–3477 (2009).

    Article  CAS  Google Scholar 

  4. Xia, Z., Pun, S. H., Chen, H. & Miao, Q. Synthesis of zigzag carbon nanobelts through Scholl reactions. Angew. Chem. Int. Ed. 60, 10311–10318 (2021).

    Article  CAS  Google Scholar 

  5. Grzybowski, M., Sadowski, B., Butenschön, H. & Gryko, D. T. Synthetic applications of oxidative aromatic coupling — from biphenols to nanographenes. Angew. Chem. Int. Ed. 59, 2998–3027 (2020).

    Article  CAS  Google Scholar 

  6. Zhai, L., Shukla, R., Wadumethrige, S. H. & Rathore, R. Probing the arenium-ion (protontransfer) versus the cation-radical (electron transfer) mechanism of Scholl reaction using DDQ as oxidant. J. Org. Chem. 75, 4748–4760 (2010).

    Article  CAS  Google Scholar 

  7. Rempala, P., Kroulík, J. & King, B. T. Investigation of the mechanism of the intramolecular Scholl reaction of contiguous phenylbenzenes. J. Org. Chem. 71, 5067–5081 (2006).

    Article  CAS  Google Scholar 

  8. Shen, C. et al. Oxidative cyclo-rearrangement of helicenes into chiral nanographenes. Nat. Commun. 12, 2786 (2021).

    Article  CAS  Google Scholar 

  9. Qiu, Z. et al. Amplification of dissymmetry factors in π‑extended [7]- and [9]helicenes. J. Am. Chem. Soc. 143, 4661–4667 (2021).

    Article  CAS  Google Scholar 

  10. Zhang, X. et al. Synthesis of extended polycyclic aromatic hydrocarbons by oxidative tandem spirocyclization and 1,2-aryl migration. Nat. Commun. 8, 15073 (2017).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qian Miao.

Ethics declarations

Competing interests

The author declares no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miao, Q. Rearrangements come to Scholl. Nat Rev Chem 5, 602–603 (2021). https://doi.org/10.1038/s41570-021-00308-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-021-00308-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing