Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Water at charged interfaces

Abstract

The ubiquity of aqueous solutions in contact with charged surfaces and the realization that the molecular-level details of water–surface interactions often determine interfacial functions and properties relevant in many natural processes have led to intensive research. Even so, many open questions remain regarding the molecular picture of the interfacial organization and preferential alignment of water molecules, as well as the structure of water molecules and ion distributions at different charged interfaces. While water, solutes and charge are present in each of these systems, the substrate can range from living tissues to metals. This diversity in substrates has led to different communities considering each of these types of aqueous interface. In this Review, by considering water in contact with metals, oxides and biomembranes, we show the essential similarity of these disparate systems. While in each case the classical mean-field theories can explain many macroscopic and mesoscopic observations, it soon becomes apparent that such theories fail to explain phenomena for which molecular properties are relevant, such as interfacial chemical conversion. We highlight the current knowledge and limitations in our understanding and end with a view towards future opportunities in the field.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Classical mean-field description of the electrical double layer.
Fig. 2: Timeline.
Fig. 3: Possible sources of surface charge.
Fig. 4: Water at charged biomembranes.
Fig. 5: Water at a charged electrode interface.
Fig. 6: Layering of water at biomembranes and mineral surfaces.
Fig. 7: Molecular dynamics simulations of water at charged interfaces.

References

  1. Hurd, C. L., Lenton, A., Tilbrook, B. & Boyd, P. W. Current understanding and challenges for oceans in a higher-CO2 world. Nat. Clim. Change 8, 686–694 (2018).

    CAS  Google Scholar 

  2. Putnis, A. Why mineral interfaces matter. Science 343, 1441–1442 (2014).

    PubMed  Google Scholar 

  3. Casey, W. H., Rustad, J. R. & Spiccia, L. Minerals as molecules — Use of aqueous oxide and hydroxide clusters to understand geochemical reactions. Chem. Eur. J. 15, 4496–4515 (2009).

    CAS  PubMed  Google Scholar 

  4. Villa, E. M., Ohlin, C. A. & Casey, W. H. Oxygen-isotope exchange rates for three isostructural polyoxometalate ions. J. Am. Chem. Soc. 132, 5264–5272 (2010).

    CAS  PubMed  Google Scholar 

  5. Lipfert, J., Doniach, S., Das, R. & Herschlag, D. Understanding nucleic acid–ion interactions. Annu. Rev. Biochem. 83, 813–841 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Laage, D., Elsaesser, T. & Hynes, J. T. Water dynamics in the hydration shells of biomolecules. Chem. Rev. 117, 10694–10725 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhou, H.-X. & Pang, X. Electrostatic interactions in protein structure, folding, binding, and condensation. Chem. Rev. 118, 1691–1741 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Agmon, N. et al. Protons and hydroxide ions in aqueous systems. Chem. Rev. 116, 7642–7672 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Teissie, J., Prats, M., Soucaille, P. & Tocanne, J. F. Evidence for conduction of protons along the interface between water and a polar lipid monolayer. Proc. Natl Acad. Sci. USA 82, 3217–3221 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Williams, R. J. P. Proton circuits in biological energy interconversions. Annu. Rev. Biophys. Biophys. Chem. 17, 71–97 (1988).

    CAS  PubMed  Google Scholar 

  11. Heberle, J., Riesle, J., Thiedemann, G., Oesterhelt, D. & Dencher, N. A. Proton migration along the membrane surface and retarded surface to bulk transfer. Nature 370, 379–382 (1994).

    CAS  PubMed  Google Scholar 

  12. Sandén, T., Salomonsson, L., Brzezinski, P. & Widengren, J. Surface-coupled proton exchange of a membrane-bound proton acceptor. Proc. Natl Acad. Sci. USA 107, 4129–4134 (2010).

    PubMed  PubMed Central  Google Scholar 

  13. Zhang, C. et al. Water at hydrophobic interfaces delays proton surface-to-bulk transfer and provides a pathway for lateral proton diffusion. Proc. Natl Acad. Sci. USA 109, 9744–9749 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Amdursky, N., Lin, Y., Aho, N. & Groenhof, G. Exploring fast proton transfer events associated with lateral proton diffusion on the surface of membranes. Proc. Natl Acad. Sci. USA 116, 2443–2451 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Kundu, A. et al. Hydrated excess protons in acetonitrile/water mixtures: solvation species and ultrafast proton motions. J. Phys. Chem. Lett. 10, 2287–2294 (2019).

    CAS  PubMed  Google Scholar 

  16. Fujishima, A. & Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972).

    CAS  Google Scholar 

  17. Walter, M. G. et al. Solar water splitting cells. Chem. Rev. 110, 6446–6473 (2010).

    CAS  PubMed  Google Scholar 

  18. Maeda, K. Photocatalytic water splitting using semiconductor particles: history and recent developments. J. Photochem. Photobiol. C Photochem. Rev. 12, 237–268 (2011).

    CAS  Google Scholar 

  19. Osterloh, F. E. Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. Chem. Soc. Rev. 42, 2294–2320 (2013).

    CAS  PubMed  Google Scholar 

  20. Ran, J., Zhang, J., Yu, J., Jaroniec, M. & Qiao, S. Z. Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting. Chem. Soc. Rev. 43, 7787–7812 (2014).

    CAS  PubMed  Google Scholar 

  21. Ormerod, R. M. Solid oxide fuel cells. Chem. Soc. Rev. 32, 17–28 (2003).

    CAS  PubMed  Google Scholar 

  22. Wachsman, E. D. & Lee, K. T. Lowering the temperature of solid oxide fuel cells. Science 334, 935–939 (2011).

    CAS  PubMed  Google Scholar 

  23. Debe, M. K. Electrocatalyst approaches and challenges for automotive fuel cells. Nature 486, 43–51 (2012).

    CAS  PubMed  Google Scholar 

  24. Park, S., Shao, Y., Liu, J. & Wang, Y. Oxygen electrocatalysts for water electrolyzers and reversible fuel cells: status and perspective. Energy Environ. Sci. 5, 9331–9344 (2012).

    CAS  Google Scholar 

  25. Trasatti, S. Surface science and electrochemistry: concepts and problems. Surf. Sci. 335, 1–9 (1995).

    CAS  Google Scholar 

  26. Guo, Y.-G., Hu, J.-S. & Wan, L.-J. Nanostructured materials for electrochemical energy conversion and storage devices. Adv. Mater. 20, 2878–2887 (2008).

    CAS  Google Scholar 

  27. Hou, J., Shao, Y., Ellis, M. W., Moore, R. B. & Yi, B. Graphene-based electrochemical energy conversion and storage: fuel cells, supercapacitors and lithium ion batteries. Phys. Chem. Chem. Phys. 13, 15384–15402 (2011).

    CAS  PubMed  Google Scholar 

  28. Zhang, X., Cheng, X. & Zhang, Q. Nanostructured energy materials for electrochemical energy conversion and storage: a review. J. Energy Chem. 25, 967–984 (2016).

    Google Scholar 

  29. Bonn, M., Nagata, Y. & Backus, E. H. G. Molecular structure and dynamics of water at the water–air interface studied with surface-specific vibrational spectroscopy. Angew. Chem. Int. Ed. 54, 5560–5576 (2015).

    CAS  Google Scholar 

  30. Maier, S. & Salmeron, M. How does water wet a surface? Acc. Chem. Res. 48, 2783–2790 (2015).

    CAS  PubMed  Google Scholar 

  31. Pekker, M. & Shnelder, M. N. Interaction between electrolyte ions and the surface of a cell lipid membrane. J. Phys. Chem. Biophys. 5, 177 (2015).

    Google Scholar 

  32. Björneholm, O. et al. Water at interfaces. Chem. Rev. 116, 7698–7726 (2016).

    PubMed  Google Scholar 

  33. Groß, A. in Surface and Interface Science: Interfacial Electrochemistry 1st edn (ed. Wandelt, K.) 471–515 (Wiley, 2020).

  34. Zhang, C., Sayer, T., Hutter, J. & Sprik, M. Modelling electrochemical systems with finite field molecular dynamics. J. Phys. Energy 2, 032005 (2020).

    CAS  Google Scholar 

  35. Backus, E. H. G., Schaefer, J. & Bonn, M. Probing the mineral–water interface with nonlinear optical spectroscopy. Angew. Chem. Int. Ed. 60, 10482–10501 (2021).

    CAS  Google Scholar 

  36. Kučerka, N., Gallová, J. & Uhríková, D. The membrane structure and function affected by water. Chem. Phys. Lipids 221, 140–144 (2019).

    PubMed  Google Scholar 

  37. Okur, H. I., Tarun, O. B. & Roke, S. Chemistry of lipid membranes from models to living systems: a perspective of hydration, surface potential, curvature, confinement and heterogeneity. J. Am. Chem. Soc. 141, 12168–12181 (2019).

    CAS  PubMed  Google Scholar 

  38. Garrett, B. C. et al. Role of water in electron-initiated processes and radical chemistry: issues and scientific advances. Chem. Rev. 105, 355–389 (2005).

    CAS  PubMed  Google Scholar 

  39. Nagata, Y., Ohto, T., Backus, E. H. G. & Bonn, M. Molecular modeling of water interfaces: from molecular spectroscopy to thermodynamics. J. Phys. Chem. B 120, 3785–3796 (2016).

    CAS  PubMed  Google Scholar 

  40. Striolo, A. Interfacial water studies and their relevance for the energy sector. Mol. Phys. 114, 2615–2626 (2016).

    CAS  Google Scholar 

  41. Pasenkiewicz-Gierula, M., Baczynski, K., Markiewicz, M. & Murzyn, K. Computer modelling studies of the bilayer/water interface. Biochim. Biophys. Acta Biomembr. 1858, 2305–2321 (2016).

    CAS  Google Scholar 

  42. Helmholtz, H. Ueber einige Gesetze der Vertheilung elektrischer Ströme in körperlichen Leitern mit Anwendung auf die thierisch-elektrischen Versuche. Ann. Phys. Chem. 89, 211–233 (1853).

    Google Scholar 

  43. Helmholtz, H. Studien über electrische Grenzschichten. Ann. Phys. Chem. 243, 337–382 (1879).

    Google Scholar 

  44. Gouy, M. Sur la constitution de la charge électrique à la surface d’un électrolyte. J. Phys. Theor. Appl. 9, 457–468 (1910).

    CAS  Google Scholar 

  45. Chapman, D. L. A contribution to the theory of electrocapillarity. London Edinburgh Dublin Philos. Mag. J. Sci. 25, 475–481 (1913).

    Google Scholar 

  46. Debye, P. & Hückel, E. Zur Theorie der Elektrolyte. I. Gefrierpunktserniedrigung und verwandte Erscheinungen. Phys. Z. 24, 185–206 (1923).

    CAS  Google Scholar 

  47. Stern, O. Zur theorie der elektrolytischen doppelschicht. Z. Elektrochem. Angew. Phys. Chem. 30, 508–516 (1924).

    CAS  Google Scholar 

  48. Grahame, D. C. The electrical double layer and the theory of electrocapillarity. Chem. Rev. 41, 441–501 (1947).

    CAS  PubMed  Google Scholar 

  49. Conway, B. E., Bockris, J. O. M. & Ammar, I. A. The dielectric constant of the solution in the diffuse and Helmholtz double layers at a charged interface in aqueous solution. Trans. Faraday Soc. 47, 756–766 (1951).

    CAS  Google Scholar 

  50. Bockris, J. O., Devanathan, M. A. V. & Müller, K. On the structure of charged interfaces. Proc. R. Soc. Lond. A Math. Phys. Sci. 274, 55–79 (1963).

    CAS  Google Scholar 

  51. Verwey, E. J. W. & Overbeek, J. T. G. Theory of the Stability of Lyophobic Colloids (Elsevier, 1948).

  52. Uematsu, Y., Netz, R. R. & Bonthuis, D. J. Analytical interfacial layer model for the capacitance and electrokinetics of charged aqueous interfaces. Langmuir 34, 9097–9113 (2018).

    CAS  PubMed  Google Scholar 

  53. Bard, A. J. & Faulkner, L. R. Electrochemical Methods: Fundamentals and Applications 2nd edn (Wiley, 2000).

  54. Bockris, J. O. & Reddy, A. K. N. The electrified interface. in Modern Electrochemistry: An Introduction to an Interdisciplinary Area Vol. 2 623–843 (Springer, 1970).

  55. Fumagalli, L. et al. Anomalously low dielectric constant of confined water. Science 360, 1339–1342 (2018).

    CAS  PubMed  Google Scholar 

  56. Winiski, A. P., McLaughlin, A. C., McDaniel, R. V., Eisenberg, M. & McLaughlin, S. An experimental test of the discreteness-of-charge effect in positive and negative lipid bilayers. Biochemistry 25, 8206–8214 (1986).

    CAS  PubMed  Google Scholar 

  57. Israelachvili, J. N. & Adams, G. E. Measurement of forces between two mica surfaces in aqueous electrolyte solutions in the range 0–100 nm. J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases 74, 975–1001 (1978).

    CAS  Google Scholar 

  58. Langner, M., Cafiso, D., Marcelja, S. & McLaughlin, S. Electrostatics of phosphoinositide bilayer membranes. Theoretical and experimental results. Biophys. J. 57, 335–349 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Hosseinpour, S. et al. Chemisorbed and physisorbed water at the TiO2/water interface. J. Phys. Chem. Lett. 8, 2195–2199 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Ali, H., Seidel, R., Bergmann, A. & Winter, B. Electronic structure of aqueous-phase anatase titanium dioxide nanoparticles probed by liquid jet photoelectron spectroscopy. J. Mater. Chem. A 7, 6665–6675 (2019).

    CAS  Google Scholar 

  61. Gallagher, F. A. et al. Magnetic resonance imaging of pH in vivo using hyperpolarized 13C-labelled bicarbonate. Nature 453, 940–943 (2008).

    CAS  PubMed  Google Scholar 

  62. Zhang, X., Lin, Y. & Gillies, R. J. Tumor pH and its measurement. J. Nucl. Med. 51, 1167–1170 (2010).

    CAS  PubMed  Google Scholar 

  63. Casey, J. R., Grinstein, S. & Orlowski, J. Sensors and regulators of intracellular pH. Nat. Rev. Mol. Cell Biol. 11, 50–61 (2009).

    PubMed  Google Scholar 

  64. Cevc, G. Phospholipids Handbook (CRC Press, 2018).

  65. Alberts, B. et al. Molecular Biology of the Cell (Garland Science, 2013).

  66. Petrache, H. I., Zemb, T., Belloni, L. & Parsegian, V. A. Salt screening and specific ion adsorption determine neutral-lipid membrane interactions. Proc. Natl Acad. Sci. USA 103, 7982–7987 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Dreier, L. B. et al. Unraveling the origin of the apparent charge of zwitterionic lipid layers. J. Phys. Chem. Lett. 10, 6355–6359 (2019).

    CAS  PubMed  Google Scholar 

  68. Yamaguchi, S., Bhattacharyya, K. & Tahara, T. Acid–base equilibrium at an aqueous interface: pH spectrometry by heterodyne-detected electronic sum frequency generation. J. Phys. Chem. C 115, 4168–4173 (2011).

    CAS  Google Scholar 

  69. Kundu, A., Yamaguchi, S. & Tahara, T. Evaluation of pH at charged lipid/water interfaces by heterodyne-detected electronic sum frequency generation. J. Phys. Chem. Lett. 5, 762–766 (2014).

    CAS  PubMed  Google Scholar 

  70. Zhang, T., Cathcart, M. G., Vidalis, A. S. & Allen, H. C. Cation effects on phosphatidic acid monolayers at various pH conditions. Chem. Phys. Lipids 200, 24–31 (2016).

    CAS  PubMed  Google Scholar 

  71. Zhang, T. et al. Effect of pH and salt on surface pKa of phosphatidic acid monolayers. Langmuir 34, 530–539 (2018).

    CAS  PubMed  Google Scholar 

  72. Tsui, F. C., Ojcius, D. M. & Hubbell, W. L. The intrinsic pKa values for phosphatidylserine and phosphatidylethanolamine in phosphatidylcholine host bilayers. Biophys. J. 49, 459–468 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Melcrová, A., Pokorna, S., Pullanchery, S. & Kohagen, M. The complex nature of calcium cation interactions with phospholipid bilayers. Sci. Rep. 6, 38035 (2016).

    PubMed  PubMed Central  Google Scholar 

  74. Lis, D., Backus, E. H. G., Hunger, J., Parekh, S. H. & Bonn, M. Liquid flow along a solid surface reversibly alters interfacial chemistry. Science 344, 1138–1142 (2014).

    CAS  PubMed  Google Scholar 

  75. Khatib, R. et al. Water orientation and hydrogen-bond structure at the fluorite/water interface. Sci. Rep. 6, 24287 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Sulpizi, M., Gaigeot, M. P. & Sprik, M. The silica–water interface: how the silanols determine the surface acidity and modulate the water properties. J. Chem. Theory Comput. 8, 1037–1047 (2012).

    CAS  PubMed  Google Scholar 

  77. Iler, R. K. The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties and Biochemistry of Silica (Wiley, 1979).

  78. Leung, K., Nielsen, I. M. B. & Criscenti, L. J. Elucidating the bimodal acid–base behavior of the water–silica interface from first principles. J. Am. Chem. Soc. 131, 18358–18365 (2009).

    CAS  PubMed  Google Scholar 

  79. Lee, S. S., Fenter, P., Nagy, K. L. & Sturchio, N. C. Real-time observation of cation exchange kinetics and dynamics at the muscovite-water interface. Nat. Commun. 8, 15826 (2017).

    PubMed  PubMed Central  Google Scholar 

  80. Ong, S., Zhao, X. & Eisenthal, K. B. Polarization of water molecules at a charged interface: second harmonic studies of the silica/water interface. Chem. Phys. Lett. 191, 327–335 (1992).

    CAS  Google Scholar 

  81. Evans, D. F. & Wennerström, H. The Colloidal Domain: Where Physics, Chemistry, Biology, and Technology Meet. Advances in Interfacial Engineering (Wiley, 1999).

  82. Wen, Y.-C. et al. Unveiling microscopic structures of charged water interfaces by surface-specific vibrational spectroscopy. Phys. Rev. Lett. 116, 16101 (2016).

    Google Scholar 

  83. Schaefer, J., Gonella, G., Bonn, M. & Backus, E. H. G. Surface-specific vibrational spectroscopy of the water/silica interface: screening and interference. Phys. Chem. Chem. Phys. 19, 16875–16880 (2017).

    CAS  PubMed  Google Scholar 

  84. Hore, D. K. & Tyrode, E. Probing charged aqueous interfaces near critical angles: effect of varying coherence length. J. Phys. Chem. C 123, 16911–16920 (2019).

    CAS  Google Scholar 

  85. Zhang, Y. & Cremer, P. S. Chemistry of Hofmeister anions and osmolytes. Annu. Rev. Phys. Chem. 61, 63–83 (2010).

    CAS  PubMed  Google Scholar 

  86. Govrin, R., Schlesinger, I., Tcherner, S. & Sivan, U. Regulation of surface charge by biological osmolytes. J. Am. Chem. Soc. 139, 15013–15021 (2017).

    CAS  PubMed  Google Scholar 

  87. Jan Akhunzada, M. et al. Interplay between lipid lateral diffusion, dye concentration and membrane permeability unveiled by a combined spectroscopic and computational study of a model lipid bilayer. Sci. Rep. 9, 1508 (2019).

    Google Scholar 

  88. Tarun, O. B., Hannesschläger, C., Pohl, P. & Roke, S. Label-free and charge-sensitive dynamic imaging of lipid membrane hydration on millisecond time scales. Proc. Natl Acad. Sci. USA 115, 4081–4086 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Cyran, J. D. et al. Molecular hydrophobicity at a macroscopically hydrophilic surface. Proc. Natl Acad. Sci. USA 116, 1520–1525 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Macias-romero, C., Nahalka, I., Okur, H. I. & Roke, S. Optical imaging of surface chemistry and dynamics in confinement. Science 357, 784–788 (2017).

    CAS  PubMed  Google Scholar 

  91. Favaro, M. et al. Unravelling the electrochemical double layer by direct probing of the solid/liquid interface. Nat. Commun. 7, 12695 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Smith, A. M., Lee, A. A. & Perkin, S. The electrostatic screening length in concentrated electrolytes increases with concentration. J. Phys. Chem. Lett. 7, 2157–2163 (2016).

    CAS  PubMed  Google Scholar 

  93. Ojha, K., Arulmozhi, N., Aranzales, D. & Koper, M. T. M. Double layer at the Pt(111)–aqueous electrolyte interface: potential of zero charge and anomalous Gouy–Chapman screening. Angew. Chem. Int. Ed. 59, 711–715 (2020).

    CAS  Google Scholar 

  94. Hofmeister, F. Zur Lehre von der Wirkung der Salze. Arch. Exp. Pathol. Pharmacol. 24, 247–260 (1888).

    Google Scholar 

  95. Collins, K. D. Ions from the Hofmeister series and osmolytes: effects on proteins in solution and in the crystallization process. Methods 34, 300–311 (2004).

    CAS  PubMed  Google Scholar 

  96. Schwierz, N., Horinek, D. & Netz, R. R. Anionic and cationic Hofmeister effects on hydrophobic and hydrophilic surfaces. Langmuir 29, 2602–2614 (2013).

    CAS  PubMed  Google Scholar 

  97. Morag, J., Dishon, M. & Sivan, U. The governing role of surface hydration in ion specific adsorption to silica: an AFM-based account of the Hofmeister universality and its reversal. Langmuir 29, 6317–6322 (2013).

    CAS  PubMed  Google Scholar 

  98. Kunz, W., Lo Nostro, P. & Ninham, B. W. The present state of affairs with Hofmeister effects. Curr. Opin. Colloid Interface Sci. 9, 1–18 (2004).

    CAS  Google Scholar 

  99. Gopalakrishnan, S., Liu, D., Allen, H. C., Kuo, M. & Shultz, M. J. Vibrational spectroscopic studies of aqueous interfaces:  salts, acids, bases, and nanodrops. Chem. Rev. 106, 1155–1175 (2006).

    CAS  PubMed  Google Scholar 

  100. Pegram, L. M. & Record, M. T. Thermodynamic origin of Hofmeister ion effects. J. Phys. Chem. B 112, 9428–9436 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Lyklema, J. Quest for ion–ion correlations in electric double layers and overcharging phenomena. Adv. Colloid Interface Sci. 147–148, 205–213 (2009).

    PubMed  Google Scholar 

  102. Allen, H. C., Casillas-Ituarte, N. N., Sierra-Hernández, M. R., Chen, X. & Tang, C. Y. Shedding light on water structure at air–aqueous interfaces: ions, lipids, and hydration. Phys. Chem. Chem. Phys. 11, 5538–5549 (2009).

    CAS  PubMed  Google Scholar 

  103. Tang, C. Y. & Allen, H. C. Ionic binding of Na+ versus K+ to the carboxylic acid headgroup of palmitic acid monolayers studied by vibrational sum frequency generation spectroscopy. J. Phys. Chem. A 113, 7383–7393 (2009).

    CAS  PubMed  Google Scholar 

  104. Casillas-Ituarte, N. N., Chen, X., Castada, H. & Allen, H. C. Na+ and Ca2+ effect on the hydration and orientation of the phosphate group of DPPC at air–water and air–hydrated silica interfaces. J. Phys. Chem. B 114, 9485–9495 (2010).

    CAS  PubMed  Google Scholar 

  105. Schwierz, N., Horinek, D. & Netz, R. R. Reversed anionic Hofmeister series: the interplay of surface charge and surface polarity. Langmuir 26, 7370–7379 (2010).

    CAS  PubMed  Google Scholar 

  106. Jungwirth, P. Spiers Memorial Lecture: Ions at aqueous interfaces. Faraday Discuss. 141, 9–30 (2008).

    Google Scholar 

  107. Macdonald, P. M. & Seelig, J. Anion binding to neutral and positively charged lipid membranes. Biochemistry 27, 6769–6775 (1988).

    CAS  PubMed  Google Scholar 

  108. Gurtovenko, A. A., Miettinen, M., Karttunen, M. & Vattulainen, I. Effect of monovalent salt on cationic lipid membranes as revealed by molecular dynamics simulations. J. Phys. Chem. B 109, 21126–21134 (2005).

    CAS  PubMed  Google Scholar 

  109. Garcia-Celma, J. J., Hatahet, L., Kunz, W. & Fendler, K. Specific anion and cation binding to lipid membranes investigated on a solid supported membrane. Langmuir 23, 10074–10080 (2007).

    CAS  PubMed  Google Scholar 

  110. Vácha, R. et al. Effects of alkali cations and halide anions on the DOPC lipid membrane. J. Phys. Chem. A 113, 7235–7243 (2009).

    PubMed  Google Scholar 

  111. Jurkiewicz, P., Cwiklik, L., Vojtíšková, A., Jungwirth, P. & Hof, M. Structure, dynamics, and hydration of POPC/POPS bilayers suspended in NaCl, KCl, and CsCl solutions. Biochim. Biophys. Acta Biomembr. 1818, 609–616 (2012).

    CAS  Google Scholar 

  112. Pokorna, S. et al. Does fluoride disrupt hydrogen bond network in cationic lipid bilayer? Time-dependent fluorescence shift of Laurdan and molecular dynamics simulations. J. Chem. Phys. 141, 22D516 (2014).

    PubMed  Google Scholar 

  113. Melcr, J. et al. Accurate binding of sodium and calcium to a POPC bilayer by effective inclusion of electronic polarization. J. Phys. Chem. B 122, 4546–4557 (2018).

    CAS  PubMed  Google Scholar 

  114. Yang, Z., Li, Q. & Chou, K. C. Structures of water molecules at the interfaces of aqueous salt solutions and silica: cation effects. J. Phys. Chem. C 113, 8201–8205 (2009).

    CAS  Google Scholar 

  115. Flores, S. C., Kherb, J., Konelick, N., Chen, X. & Cremer, P. S. The effects of Hofmeister cations at negatively charged hydrophilic surfaces. J. Phys. Chem. C 116, 5730–5734 (2012).

    CAS  Google Scholar 

  116. Azam, M. S., Weeraman, C. N. & Gibbs-Davis, J. M. Specific cation effects on the bimodal acid-base behavior of the silica/water interface. J. Phys. Chem. Lett. 3, 1269–1274 (2012).

    CAS  PubMed  Google Scholar 

  117. Azam, M. S., Weeraman, C. N. & Gibbs-Davis, J. M. Halide-induced cooperative acid–base behavior at a negatively charged interface. J. Phys. Chem. C 117, 8840–8850 (2013).

    CAS  Google Scholar 

  118. Dewan, S. et al. Structure of water at charged interfaces: a molecular dynamics study. Langmuir 30, 8056–8065 (2014).

    CAS  PubMed  Google Scholar 

  119. Lovering, K. A., Bertram, A. K. & Chou, K. C. New information on the ion-identity-dependent structure of Stern layer revealed by sum frequency generation vibrational spectroscopy. J. Phys. Chem. C 120, 18099–18104 (2016).

    CAS  Google Scholar 

  120. DeWalt-Kerian, E. L. et al. pH-Dependent inversion of Hofmeister trends in the water structure of the electrical double layer. J. Phys. Chem. Lett. 8, 2855–2861 (2017).

    CAS  PubMed  Google Scholar 

  121. Valette, G. Double layer on silver single-crystal electrodes in contact with electrolytes having anions which present a slight specific adsorption. Part I. The (110) face. J. Electroanal. Chem. 122, 285–297 (1981).

    CAS  Google Scholar 

  122. Thorson, M. R., Siil, K. I. & Kenis, P. J. A. Effect of cations on the electrochemical conversion of CO2 to CO. J. Electrochem. Soc. 160, F69–F74 (2013).

    CAS  Google Scholar 

  123. Ledezma-Yanez, I. et al. Interfacial water reorganization as a pH-dependent descriptor of the hydrogen evolution rate on platinum electrodes. Nat. Energy 2, 17031 (2017).

    CAS  Google Scholar 

  124. Resasco, J. et al. Promoter effects of alkali metal cations on the electrochemical reduction of carbon dioxide. J. Am. Chem. Soc. 139, 11277–11287 (2017).

    CAS  PubMed  Google Scholar 

  125. Liu, X. et al. pH effects on the electrochemical reduction of CO(2) towards C2 products on stepped copper. Nat. Commun. 10, 32 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Ringe, S. et al. Understanding cation effects in electrochemical CO2 reduction. Energy Environ. Sci. 12, 3001–3014 (2019).

    CAS  Google Scholar 

  127. Collins, K. D., Neilson, G. W. & Enderby, J. E. Ions in water: characterizing the forces that control chemical processes and biological structure. Biophys. Chem. 128, 95–104 (2007).

    CAS  PubMed  Google Scholar 

  128. Vlachy, N. et al. Hofmeister series and specific interactions of charged headgroups with aqueous ions. Adv. Colloid Interface Sci. 146, 42–47 (2009).

    CAS  PubMed  Google Scholar 

  129. James, R. O. & Healy, T. W. Adsorption of hydrolyzable metal ions at the oxide–water interface. II. Charge reversal of SiO2 and TiO2 colloids by adsorbed Co(II), La(III), and Th(IV) as model systems. J. Colloid Interface Sci. 40, 53–64 (1972).

    CAS  Google Scholar 

  130. Levin, Y. Electrostatic correlations: from plasma to biology. Rep. Prog. Phys. 65, 1577–1632 (2002).

    CAS  Google Scholar 

  131. Linse, P. Mean force between like-charged macroions at high electrostatic coupling. J. Phys. Condens. Matter 14, 13449–13467 (2002).

    CAS  Google Scholar 

  132. Jönsson, B. & Wennerström, H. Ion–ion correlations in liquid dispersions. J. Adhes. 80, 339–364 (2004).

    Google Scholar 

  133. Boroudjerdi, H. et al. Statics and dynamics of strongly charged soft matter. Phys. Rep. 416, 129–199 (2005).

    CAS  Google Scholar 

  134. Pegado, L., Jönsson, B. & Wennerström, H. Attractive ion–ion correlation forces and the dielectric approximation. Adv. Colloid Interface Sci. 232, 1–8 (2016).

    CAS  PubMed  Google Scholar 

  135. de Vos, W. M. & Lindhoud, S. Overcharging and charge inversion: finding the correct explanation(s). Adv. Colloid Interface Sci. 274, 102040 (2019).

    PubMed  Google Scholar 

  136. Guldbrand, L., Jönsson, B., Wennerström, H. & Linse, P. Electrical double layer forces. A Monte Carlo study. J. Chem. Phys. 80, 2221–2228 (1984).

    CAS  Google Scholar 

  137. Khan, A., Joensson, B. & Wennerstroem, H. Phase equilibria in the mixed sodium and calcium di-2-ethylhexylsulfosuccinate aqueous system. An illustration of repulsive and attractive double-layer forces. J. Phys. Chem. 89, 5180–5184 (1985).

    CAS  Google Scholar 

  138. Bratko, D., Jönsson, B. & Wennerström, H. Electrical double layer interactions with image charges. Chem. Phys. Lett. 128, 449–454 (1986).

    CAS  Google Scholar 

  139. Rouzina, I. & Bloomfield, V. A. Macroion attraction due to electrostatic correlation between screening counterions. 1. Mobile surface-adsorbed ions and diffuse ion cloud. J. Phys. Chem. 100, 9977–9989 (1996).

    CAS  Google Scholar 

  140. Netz, R. R. & Joanny, J.-F. Adsorption of semiflexible polyelectrolytes on charged planar surfaces:  charge compensation, charge reversal, and multilayer formation. Macromolecules 32, 9013–9025 (1999).

    CAS  Google Scholar 

  141. Shklovskii, B. I. Screening of a macroion by multivalent ions: correlation-induced inversion of charge. Phys. Rev. E 60, 5802–5811 (1999).

    CAS  Google Scholar 

  142. Moreira, A. G. & Netz, R. R. Binding of similarly charged plates with counterions only. Phys. Rev. Lett. 87, 078301 (2001).

    CAS  PubMed  Google Scholar 

  143. Grosberg, A. Y., Nguyen, T. T. & Shklovskii, B. I. Colloquium: the physics of charge inversion in chemical and biological systems. Rev. Mod. Phys. 74, 329–345 (2002).

    CAS  Google Scholar 

  144. Dreier, L. B. et al. Saturation of charge-induced water alignment at model membrane surfaces. Sci. Adv. 4, eaap7415 (2018).

    PubMed  PubMed Central  Google Scholar 

  145. Brown, M. A. et al. Determination of surface potential and electrical double-layer structure at the aqueous electrolyte-nanoparticle interface. Phys. Rev. X 6, 11007 (2016).

    Google Scholar 

  146. Lütgebaucks, C., Macias-Romero, C. & Roke, S. Characterization of the interface of binary mixed DOPC:DOPS liposomes in water: the impact of charge condensation. J. Chem. Phys. 146, 044701 (2017).

    PubMed  Google Scholar 

  147. Pullanchery, S., Yang, T. & Cremer, P. S. Introduction of positive charges into zwitterionic phospholipid monolayers disrupts water structure whereas negative charges enhances it. J. Phys. Chem. B 122, 12260–12270 (2018).

    CAS  PubMed  Google Scholar 

  148. Manning, G. S. Limiting laws and counterion condensation in polyelectrolyte solutions I. Colligative properties. J. Chem. Phys. 51, 924–933 (1969).

    CAS  Google Scholar 

  149. Manning, G. S. The interaction between a charged wall and its counterions: a condensation theory. J. Phys. Chem. B 114, 5435–5440 (2010).

    CAS  PubMed  Google Scholar 

  150. Gragson, D. E., McCarty, B. M. & Richmond, G. L. Ordering of interfacial water molecules at the charged air/water interface observed by vibrational sum frequency generation. J. Am. Chem. Soc. 119, 6144–6152 (1997).

    CAS  Google Scholar 

  151. Nilsson, A. & Pettersson, L. G. M. The structural origin of anomalous properties of liquid water. Nat. Commun. 6, 8998 (2015).

    CAS  PubMed  Google Scholar 

  152. Brini, E. et al. How water’s properties are encoded in its molecular structure and energies. Chem. Rev. 117, 12385–12414 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Salmeron, M. et al. Water growth on metals and oxides: binding, dissociation and role of hydroxyl groups. Faraday Discuss. 141, 221–229 (2008).

    Google Scholar 

  154. Nihonyanagi, S., Yamaguchi, S. & Tahara, T. Direct evidence for orientational flip-flop of water molecules at charged interfaces: a heterodyne-detected vibrational sum frequency generation study. J. Chem. Phys. 130, 204704 (2009).

    PubMed  Google Scholar 

  155. Mondal, J. A., Nihonyanagi, S., Yamaguchi, S. & Tahara, T. Structure and orientation of water at charged lipid monolayer/water interfaces probed by heterodyne-detected vibrational sum frequency generation spectroscopy. J. Am. Chem. Soc. 132, 10656–10657 (2010).

    CAS  PubMed  Google Scholar 

  156. Chen, X., Hua, W., Huang, Z. & Allen, H. C. Interfacial water structure associated with phospholipid membranes studied by phase-sensitive vibrational sum frequency generation spectroscopy. J. Am. Chem. Soc. 132, 11336–11342 (2010).

    CAS  PubMed  Google Scholar 

  157. Darlington, A. M. et al. Separating the pH-dependent behavior of water in the Stern and diffuse layers with varying salt concentration. J. Phys. Chem. C 121, 20229–20241 (2017).

    CAS  Google Scholar 

  158. Dutta, C., Mammetkuliyev, M. & Benderskii, A. V. Re-orientation of water molecules in response to surface charge at surfactant interfaces. J. Chem. Phys. 151, 034703 (2019).

    PubMed  Google Scholar 

  159. Rehl, B. et al. New Insights into χ(3) measurements: comparing nonresonant second harmonic generation and resonant sum frequency generation at the silica/aqueous electrolyte interface. J. Phys. Chem. C 123, 10991–11000 (2019).

    CAS  Google Scholar 

  160. Ostroverkhov, V., Waychunas, G. A. & Shen, Y. R. Vibrational spectra of water at water/α-quartz (0 0 0 1) interface. Chem. Phys. Lett. 386, 144–148 (2004).

    CAS  Google Scholar 

  161. Darlington, A. M. & Gibbs-Davis, J. M. Bimodal or trimodal? The influence of starting ph on site identity and distribution at the low salt aqueous/silica interface. J. Phys. Chem. C 119, 16560–16567 (2015).

    CAS  Google Scholar 

  162. Tielrooij, K. J., Van Der Post, S. T., Hunger, J., Bonn, M. & Bakker, H. J. Anisotropic water reorientation around ions. J. Phys. Chem. B 115, 12638–12647 (2011).

    CAS  PubMed  Google Scholar 

  163. Urashima, S. H., Myalitsin, A., Nihonyanagi, S. & Tahara, T. The topmost water structure at a charged silica/aqueous interface revealed by heterodyne-detected vibrational sum frequency generation spectroscopy. J. Phys. Chem. Lett. 9, 4109–4114 (2018).

    CAS  PubMed  Google Scholar 

  164. Ahmed, M., Inoue, K., Nihonyanagi, S. & Tahara, T. Hidden isolated OH at the charged hydrophobic interface revealed by two-dimensional heterodyne-detected VSFG spectroscopy. Angew. Chem. Int. Ed. 59, 9498–9505 (2020).

    CAS  Google Scholar 

  165. Ohto, T. et al. Lipid carbonyl groups terminate the hydrogen bond network of membrane-bound water. J. Phys. Chem. Lett. 6, 4499–4503 (2015).

    CAS  PubMed  Google Scholar 

  166. Ishiyama, T., Terada, D. & Morita, A. Hydrogen-bonding structure at zwitterionic lipid/water interface. J. Phys. Chem. Lett. 7, 216–220 (2016).

    CAS  PubMed  Google Scholar 

  167. Dreier, L. B., Bonn, M. & Backus, E. H. G. Hydration and orientation of carbonyl groups in oppositely charged lipid monolayers on water. J. Phys. Chem. B 123, 1085–1089 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Marrink, S. J., Berkowitz, M. & Berendsen, H. J. C. Molecular dynamics simulation of a membrane/water interface: the ordering of water and its relation to the hydration force. Langmuir 9, 3122–3131 (1993).

    CAS  Google Scholar 

  169. Mondal, J. A., Nihonyanagi, S., Yamaguchi, S. & Tahara, T. Three distinct water structures at a zwitterionic lipid/water interface revealed by heterodyne-detected vibrational sum frequency generation. J. Am. Chem. Soc. 134, 7842–7850 (2012).

    CAS  PubMed  Google Scholar 

  170. Lütgebaucks, C., Gonella, G. & Roke, S. Optical label-free and model-free probe of the surface potential of nanoscale and microscopic objects in aqueous solution. Phys. Rev. B 94, 195410 (2016).

    Google Scholar 

  171. Magarkar, A., Róg, T. & Bunker, A. Molecular dynamics simulation of inverse-phosphocholine lipids. J. Phys. Chem. C 118, 19444–19449 (2014).

    CAS  Google Scholar 

  172. Toney, M. F. et al. Voltage-dependent ordering of water molecules at an electrode–electrolyte interface. Nature 368, 444–446 (1994).

    CAS  Google Scholar 

  173. García-Aráez, N., Climent, V. & Feliu, J. M. Evidence of water reorientation on model electrocatalytic surfaces from nanosecond-laser-pulsed experiments. J. Am. Chem. Soc. 130, 3824–3833 (2008).

    PubMed  Google Scholar 

  174. Velasco-Velez, J. J. et al. The structure of interfacial water on gold electrodes studied by x-ray absorption spectroscopy. Science 346, 831–834 (2014).

    CAS  PubMed  Google Scholar 

  175. Tong, Y., Lapointe, F., Thämer, M., Wolf, M. & Campen, R. K. Hydrophobic water probed experimentally at the gold electrode/aqueous interface. Angew. Chem. Int. Ed. 56, 4211–4214 (2017).

    CAS  Google Scholar 

  176. Michaelides, A. Density functional theory simulations of water–metal interfaces: waltzing waters, a novel 2D ice phase, and more. Appl. Phys. A Mater. Sci. Process. 85, 415–425 (2006).

    CAS  Google Scholar 

  177. Roudgar, A. & Groß, A. Water bilayer on the Pd/Au(1 1 1) overlayer system: coadsorption and electric field effects. Chem. Phys. Lett. 409, 157–162 (2005).

    CAS  Google Scholar 

  178. Schlaich, A., Dos Santos, A. P. & Netz, R. R. Simulations of nanoseparated charged surfaces reveal charge-induced water reorientation and nonadditivity of hydration and mean-field electrostatic repulsion. Langmuir 35, 551–560 (2019).

    CAS  PubMed  Google Scholar 

  179. Willard, A. P., Reed, S. K., Madden, P. A. & Chandler, D. Water at an electrochemical interface — a simulation study. Faraday Discuss. 141, 423–441 (2008).

    Google Scholar 

  180. Fayer, M. D. Dynamics of water interacting with interfaces, molecules, and ions. Acc. Chem. Res. 45, 3–14 (2012).

    CAS  PubMed  Google Scholar 

  181. Costard, R., Greve, C., Heisler, I. A. & Elsaesser, T. Ultrafast energy redistribution in local hydration shells of phospholipids: a two-dimensional infrared study. J. Phys. Chem. Lett. 3, 3646–3651 (2012).

    CAS  PubMed  Google Scholar 

  182. Nihonyanagi, S., Yamaguchi, S. & Tahara, T. Ultrafast dynamics at water interfaces studied by vibrational sum frequency generation spectroscopy. Chem. Rev. 117, 10665–10693 (2017).

    CAS  PubMed  Google Scholar 

  183. Cyran, J. D., Backus, E. H. G., Nagata, Y. & Bonn, M. Structure from dynamics: vibrational dynamics of interfacial water as a probe of aqueous heterogeneity. J. Phys. Chem. B 122, 3667–3679 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Deiseroth, M., Bonn, M. & Backus, E. H. G. Orientation independent vibrational dynamics of lipid-bound interfacial water. Phys. Chem. Chem. Phys. 22, 10142–10148 (2020).

    CAS  PubMed  Google Scholar 

  185. Eftekhari-Bafrooei, A. & Borguet, E. Effect of surface charge on the vibrational dynamics of interfacial water. J. Am. Chem. Soc. 131, 12034–12035 (2009).

    CAS  PubMed  Google Scholar 

  186. Hsieh, C. S. et al. Ultrafast reorientation of dangling OH groups at the air-water interface using femtosecond vibrational spectroscopy. Phys. Rev. Lett. 107, 116102 (2011).

    PubMed  Google Scholar 

  187. Xiao, S., Figge, F., Stirnemann, G., Laage, D. & McGuire, J. A. Orientational dynamics of water at an extended hydrophobic interface. J. Am. Chem. Soc. 138, 5551–5560 (2016).

    CAS  PubMed  Google Scholar 

  188. Cheng, L., Fenter, P., Nagy, K. L., Schlegel, M. L. & Sturchio, N. C. Molecular-scale density oscillations in water adjacent to a mica surface. Phys. Rev. Lett. 87, 156103 (2001).

    CAS  PubMed  Google Scholar 

  189. Higgins, M. J. et al. Structured water layers adjacent to biological membranes. Biophys. J. 91, 2532–2542 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Fukuma, T. & Garcia, R. Atomic- and molecular-resolution mapping of solid–liquid interfaces by 3D atomic force microscopy. ACS Nano 12, 11785–11797 (2018).

    CAS  PubMed  Google Scholar 

  191. Imada, H., Kimura, K. & Onishi, H. Water and 2-propanol structured on calcite (104) probed by frequency-modulation atomic force microscopy. Langmuir 29, 10744–10751 (2013).

    CAS  PubMed  Google Scholar 

  192. Lardge, J. S., Duffy, D. M. & Gillan, M. J. Investigation of the interaction of water with the calcite (10.4) surface using ab initio simulation. J. Phys. Chem. C 113, 7207–7212 (2009).

    CAS  Google Scholar 

  193. Zachariah, Z., Espinosa-Marzal, R. M., Spencer, N. D. & Heuberger, M. P. Stepwise collapse of highly overlapping electrical double layers. Phys. Chem. Chem. Phys. 18, 24417–24427 (2016).

    CAS  PubMed  Google Scholar 

  194. Israelachvili, J. N. & Pashley, R. M. Molecular layering of water at surfaces and origin of repulsive hydration forces. Nature 306, 249–250 (1983).

    CAS  Google Scholar 

  195. Fukuma, T., Ueda, Y., Yoshioka, S. & Asakawa, H. Atomic-scale distribution of water molecules at the mica-water interface visualized by three-dimensional scanning force microscopy. Phys. Rev. Lett. 104, 016101 (2010).

    PubMed  Google Scholar 

  196. Bonthuis, D. J., Gekle, S. & Netz, R. R. Dielectric profile of interfacial water and its effect on double-layer capacitance. Phys. Rev. Lett. 107, 166102 (2011).

    PubMed  Google Scholar 

  197. Loche, P., Wolde-Kidan, A., Schlaich, A., Bonthuis, D. J. & Netz, R. R. Comment on “Hydrophobic surface enhances electrostatic interaction in water”. Phys. Rev. Lett. 123, 49601 (2019).

    CAS  Google Scholar 

  198. Loche, P., Ayaz, C., Wolde-kidan, A., Schlaich, A. & Netz, R. R. Universal and nonuniversal aspects of electrostatics in aqueous nanoconfinement. J. Phys. Chem. B 124, 4365–4371 (2020).

    CAS  PubMed  Google Scholar 

  199. Siepmann, J. I. & Sprik, M. Influence of surface topology and electrostatic potential on water/electrode systems. J. Chem. Phys. 102, 511–524 (1995).

    CAS  Google Scholar 

  200. Zhang, C. & Sprik, M. Computing the dielectric constant of liquid water at constant dielectric displacement. Phys. Rev. B 93, 144201 (2016).

    Google Scholar 

  201. Zhang, C. & Sprik, M. Finite field methods for the supercell modeling of charged insulator/electrolyte interfaces. Phys. Rev. B 94, 245309 (2016).

    Google Scholar 

  202. Otani, M. et al. Electrode dynamics from first principles. J. Phys. Soc. Jpn. 77, 024802 (2008).

    Google Scholar 

  203. Bouzid, A. & Pasquarello, A. Atomic-scale simulation of electrochemical processes at electrode/water interfaces under referenced bias potential. J. Phys. Chem. Lett. 9, 1880–1884 (2018).

    CAS  PubMed  Google Scholar 

  204. Huang, D. M., Cottin-Bizonne, C., Ybert, C. & Bocquet, L. Ion-specific anomalous electrokinetic effects in hydrophobic nanochannels. Phys. Rev. Lett. 98, 177801 (2007).

    PubMed  Google Scholar 

  205. Jardat, M., Dufrêche, J. F., Marry, V., Rotenberg, B. & Turq, P. Salt exclusion in charged porous media: a coarse-graining strategy in the case of montmorillonite clays. Phys. Chem. Chem. Phys. 11, 2023–2033 (2009).

    CAS  PubMed  Google Scholar 

  206. Paillusson, F. & Blossey, R. Slits, plates, and Poisson-Boltzmann theory in a local formulation of nonlocal electrostatics. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 82, 052501 (2010).

    PubMed  Google Scholar 

  207. Ben-Yaakov, D., Andelman, D., Podgornik, R. & Harries, D. Ion-specific hydration effects: extending the Poisson-Boltzmann theory. Curr. Opin. Colloid Interface Sci. 16, 542–550 (2011).

    CAS  Google Scholar 

  208. Hartkamp, R., Siboulet, B., Dufrêche, J. F. & Coasne, B. Ion-specific adsorption and electroosmosis in charged amorphous porous silica. Phys. Chem. Chem. Phys. 17, 24683–24695 (2015).

    CAS  PubMed  Google Scholar 

  209. Nørskov, J. K. et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886–17892 (2004).

    Google Scholar 

  210. Karlberg, G. S. Adsorption trends for water, hydroxyl, oxygen, and hydrogen on transition-metal and platinum-skin surfaces. Phys. Rev. B Condens. Matter Mater. Phys. 74, 153414 (2006).

    Google Scholar 

  211. Abild-Pedersen, F. et al. Scaling properties of adsorption energies for hydrogen-containing molecules on transition-metal surfaces. Phys. Rev. Lett. 99, 016105 (2007).

    CAS  PubMed  Google Scholar 

  212. Ferrin, P., Kandoi, S., Nilekar, A. U. & Mavrikakis, M. Hydrogen adsorption, absorption and diffusion on and in transition metal surfaces: a DFT study. Surf. Sci. 606, 679–689 (2012).

    CAS  Google Scholar 

  213. Serrano, G. et al. Molecular ordering at the interface between liquid water and rutile TiO2(110). Adv. Mater. Interfaces 2, 1500246 (2015).

    Google Scholar 

  214. Diebold, U. The surface science of titanium dioxide. Surf. Sci. Rep. 48, 53–229 (2002).

    Google Scholar 

  215. Ketteler, G. et al. The nature of water nucleation sites on TiO2(110) surfaces revealed by ambient pressure X-ray photoelectron spectroscopy. J. Phys. Chem. C 111, 8278–8282 (2007).

    CAS  Google Scholar 

  216. Zhang, Z. et al. Ion adsorption at the rutile–water interface: linking molecular and macroscopic properties. Langmuir 20, 4954–4969 (2004).

    CAS  PubMed  Google Scholar 

  217. Benkoula, S. et al. Water adsorption on TiO2 surfaces probed by soft X-ray spectroscopies: bulk materials vs. isolated nanoparticles. Sci. Rep. 5, 15088 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  218. Chen, J., Li, Y. F., Sit, P. & Selloni, A. Chemical dynamics of the first proton-coupled electron transfer of water oxidation on TiO2 anatase. J. Am. Chem. Soc. 135, 18774–18777 (2013).

    CAS  PubMed  Google Scholar 

  219. Wang, Z. T. et al. Probing equilibrium of molecular and deprotonated water on TiO2(110). Proc. Natl Acad. Sci. USA 114, 1801–1805 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  220. Diebold, U. Perspective: A controversial benchmark system for water-oxide interfaces: H2O/TiO2(110). J. Chem. Phys. 147, 040901 (2017).

    PubMed  Google Scholar 

  221. Cheng, J. & Sprik, M. Acidity of the aqueous rutile TiO2(110) surface from density functional theory based molecular dynamics. J. Chem. Theory Comput. 6, 880–889 (2010).

    CAS  PubMed  Google Scholar 

  222. Cheng, J. & Sprik, M. The electric double layer at a rutile TiO2 water interface modelled using density functional theory based molecular dynamics simulation. J. Phys. Condens. Matter 26, 244108 (2014).

    CAS  PubMed  Google Scholar 

  223. Stamenkovic, V. R. et al. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 315, 493–497 (2007).

    CAS  PubMed  Google Scholar 

  224. Calle-Vallejo, F., Loffreda, D., Koper, M. T. M. & Sautet, P. Introducing structural sensitivity into adsorption-energy scaling relations by means of coordination numbers. Nat. Chem. 7, 403–410 (2015).

    CAS  PubMed  Google Scholar 

  225. Calle-Vallejo, F. et al. Finding optimal surface sites on heterogeneous catalysts by counting nearest neighbors. Science 350, 185–189 (2015).

    CAS  PubMed  Google Scholar 

  226. Kolb, M. J., Calle-Vallejo, F., Juurlink, L. B. F. & Koper, M. T. M. Density functional theory study of adsorption of H2O, H, O, and OH on stepped platinum surfaces. J. Chem. Phys. 140, 134708 (2014).

    PubMed  Google Scholar 

  227. McCrum, I. T. & Janik, M. J. First principles simulations of cyclic voltammograms on stepped Pt(553) and Pt(533) electrode surfaces. ChemElectroChem 3, 1609–1617 (2016).

    CAS  Google Scholar 

  228. Chen, X., McCrum, I. T., Schwarz, K. A., Janik, M. J. & Koper, M. T. M. Co-adsorption of cations as the cause of the apparent pH dependence of hydrogen adsorption on a stepped platinum single-crystal electrode. Angew. Chem. Int. Ed. 56, 15025–15029 (2017).

    CAS  Google Scholar 

  229. Schiros, T. et al. Structure and bonding of the water–hydroxyl mixed phase on Pt(111). J. Phys. Chem. C 111, 15003–15012 (2007).

    CAS  Google Scholar 

  230. Lew, W., Crowe, M. C., Campbell, C. T., Carrasco, J. & Michaelides, A. The energy of hydroxyl coadsorbed with water on Pt(111). J. Phys. Chem. C 115, 23008–23012 (2011).

    CAS  Google Scholar 

  231. McCrum, I. T. & Janik, M. J. pH and alkali cation effects on the Pt cyclic voltammogram explained using density functional theory. J. Phys. Chem. C 120, 457–471 (2016).

    CAS  Google Scholar 

  232. McCrum, I. T., Chen, X., Schwarz, K. A., Janik, M. J. & Koper, M. T. M. Effect of step density and orientation on the apparent pH dependence of hydrogen and hydroxide adsorption on stepped platinum surfaces. J. Phys. Chem. C 122, 16756–16764 (2018).

    CAS  Google Scholar 

  233. Sheng, W., Gasteiger, H. A. & Shao-Horn, Y. Hydrogen oxidation and evolution reaction kinetics on platinum: acid vs alkaline electrolytes. J. Electrochem. Soc. 157, 1529–1536 (2010).

    Google Scholar 

  234. Durst, J. et al. New insights into the electrochemical hydrogen oxidation and evolution reaction mechanism. Energy Environ. Sci. 7, 2255–2260 (2014).

    CAS  Google Scholar 

  235. Zheng, J., Sheng, W., Zhuang, Z., Xu, B. & Yan, Y. Universal dependence of hydrogen oxidation and evolution reaction activity of platinum-group metals on pH and hydrogen binding energy. Sci. Adv. 2, e1501602 (2016).

    PubMed  PubMed Central  Google Scholar 

  236. Subbaraman, R. et al. Trends in activity for the water electrolyser reactions on 3d M(Ni,Co,Fe,Mn) hydr(oxy)oxide catalysts. Nat. Mater. 11, 550–557 (2012).

    CAS  PubMed  Google Scholar 

  237. Schouten, K. J. P., Van Der Niet, M. J. T. C. & Koper, M. T. M. Impedance spectroscopy of H and OH adsorption on stepped single-crystal platinum electrodes in alkaline and acidic media. Phys. Chem. Chem. Phys. 12, 15217–15224 (2010).

    CAS  PubMed  Google Scholar 

  238. Mamatkulov, S. I., Rinne, K. F., Buchner, R., Netz, R. R. & Bonthuis, D. J. Water-separated ion pairs cause the slow dielectric mode of magnesium sulfate solutions. J. Chem. Phys. 148, 222812 (2018).

    PubMed  Google Scholar 

  239. Garg, M. & Kern, K. Attosecond coherent manipulation of electrons in tunneling microscopy. Science 367, 411–415 (2020).

    CAS  PubMed  Google Scholar 

  240. Tong, Y., Lapointe, F., Wolf, M. & Kramer Campen, M. Probing the birth and ultrafast dynamics of hydrated electrons at the gold/liquid water interface via an optoelectronic approach. J. Am. Chem. Soc. 142, 18619–18627 (2020).

    PubMed  PubMed Central  Google Scholar 

  241. Söngen, H. et al. The weight function for charges — A rigorous theoretical concept for Kelvin probe force microscopy. J. Appl. Phys. 119, 025304 (2016).

    Google Scholar 

  242. Watkins, M. & Reischl, B. A simple approximation for forces exerted on an AFM tip in liquid. J. Chem. Phys. 138, 154703 (2013).

    PubMed  Google Scholar 

  243. Amano, K. I., Suzuki, K., Fukuma, T., Takahashi, O. & Onishi, H. The relationship between local liquid density and force applied on a tip of atomic force microscope: a theoretical analysis for simple liquids. J. Chem. Phys. 139, 224710 (2013).

    PubMed  Google Scholar 

  244. Söngen, H. et al. Chemical identification at the solid–liquid interface. Langmuir 33, 125–129 (2017).

    PubMed  Google Scholar 

  245. Söngen, H., Nalbach, M., Adam, H. & Kühnle, A. Three-dimensional atomic force microscopy mapping at the solid-liquid interface with fast and flexible data acquisition. Rev. Sci. Instrum. 87, 063704 (2016).

    PubMed  Google Scholar 

  246. Lyklema, J. Interfacial potentials: measuring the immeasurable? Substantia 1, 75–93 (2017).

    Google Scholar 

  247. Lyklema, J. Fundamentals of Interface and Colloid Science: Solid-Liquid Interfaces (Elsevier, 1995).

  248. Taylor, D. M., De Oliveira, O. N. & Morgan, H. Models for interpreting surface potential measurements and their application to phospholipid monolayers. J. Colloid Interface Sci. 139, 508–518 (1990).

    CAS  Google Scholar 

  249. Brockman, H. Dipole potential of lipid membranes. Chem. Phys. Lipids 73, 57–79 (1994).

    CAS  PubMed  Google Scholar 

  250. Moncelli, M. R., Becucci, L., Buoninsegni, F. T. & Guidelli, R. Surface dipole potential at the interface between water and self-assembled monolayers of phosphatidylserine and phosphatidic acid. Biophys. J. 74, 2388–2397 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  251. Wang, L. Measurements and implications of the membrane dipole potential. Annu. Rev. Biochem. 81, 615–635 (2012).

    CAS  PubMed  Google Scholar 

  252. Casper, C. B., Verreault, D., Adams, E. M., Hua, W. & Allen, H. C. Surface potential of DPPC monolayers on concentrated aqueous salt solutions. J. Phys. Chem. B 120, 2043–2052 (2016).

    CAS  PubMed  Google Scholar 

  253. Paltauf, F., Hauser, H. & Phillips, M. C. Monolayer characteristics of some 1,2-diacyl, 1-alkyl-2-acyl and 1,2-dialkyl phospholipids at the air-water interface. Biochim. Biophys. Acta Biomembr. 249, 539–547 (1971).

    CAS  Google Scholar 

  254. Dreier, L. B., Bernhard, C., Gonella, G., Backus, E. H. G. & Bonn, M. Surface potential of a planar charged lipid-water interface. What do vibrating plate methods, second harmonic and sum frequency measure? J. Phys. Chem. Lett. 9, 5685–5691 (2018).

    CAS  PubMed  Google Scholar 

  255. Nonnenmacher, M., O’Boyle, M. P. & Wickramasinghe, H. K. Kelvin probe force microscopy. Appl. Phys. Lett. 58, 2921–2923 (1991).

    Google Scholar 

  256. Melitz, W., Shen, J., Kummel, A. C. & Lee, S. Kelvin probe force microscopy and its application. Surf. Sci. Rep. 66, 1–27 (2011).

    CAS  Google Scholar 

  257. Neff, G. A., Helfrich, M. R., Clifton, M. C. & Page, C. J. Layer-by-layer growth of acentric multilayers of Zr and azobenzene bis(phosphonate): structure, composition, and second-order nonlinear optical properties. Chem. Mater. 12, 2363–2371 (2000).

    CAS  Google Scholar 

  258. Rahe, P. & Söngen, H. in Kelvin Probe Force Microscopy: From Single Charge Detection to Device Characterization (eds Sadewasser, S. & Glatzel, T.) 147–170 (Springer, 2018).

  259. Kobayashi, N., Asakawa, H. & Fukuma, T. Nanoscale potential measurements in liquid by frequency modulation atomic force microscopy. Rev. Sci. Instrum. 81, 123705 (2010).

    PubMed  Google Scholar 

  260. Hüfner, S. Photoelectron Spectroscopy: Principles and Applications (Springer, 1996).

  261. Seidel, R., Thürmer, S. & Winter, B. Photoelectron spectroscopy meets aqueous solution: studies from a vacuum liquid microjet. J. Phys. Chem. Lett. 2, 633–641 (2011).

    CAS  Google Scholar 

  262. Winter, B. Liquid microjet for photoelectron spectroscopy. Nucl. Instrum. Methods Phys. Res. A Accel. Spectrom. Detect. Assoc. Equip. 601, 139–150 (2009).

    CAS  Google Scholar 

  263. Kolmakov, A. et al. Graphene oxide windows for in situ environmental cell photoelectron spectroscopy. Nat. Nanotechnol. 6, 651–657 (2011).

    CAS  PubMed  Google Scholar 

  264. Kraus, J. et al. Photoelectron spectroscopy of wet and gaseous samples through graphene membranes. Nanoscale 6, 14394–14403 (2014).

    CAS  PubMed  Google Scholar 

  265. Petit, T. et al. X-ray absorption spectroscopy of TiO2 nanoparticles in water using a holey membrane-based flow cell. Adv. Mater. Interfaces 4, 1700755 (2017).

    Google Scholar 

  266. de Beer, A. G. F., Campen, R. K. & Roke, S. Separating surface structure and surface charge with second-harmonic and sum-frequency scattering. Phys. Rev. B 82, 235431 (2010).

    Google Scholar 

  267. Gonella, G., Luetgebaucks, C., de Beer, A. G. F. & Roke, S. Second harmonic and sum-frequency generation from aqueous interfaces is modulated by interference. J. Phys. Chem. C 120, 9165–9173 (2016).

    CAS  Google Scholar 

  268. Ohno, P. E., Saslow, S. A., Wang, H., Geiger, F. M. & Eisenthal, K. B. Phase-referenced nonlinear spectroscopy of the α-quartz/water interface. Nat. Commun. 7, 13587 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  269. Lee, C. H., Chang, R. K. & Bloembergen, N. Nonlinear electroreflectance in silicon and silver. Phys. Rev. Lett. 18, 167–170 (1967).

    CAS  Google Scholar 

  270. Geiger, F. M. Second harmonic generation, sum frequency generation, and χ(3): dissecting environmental interfaces with a nonlinear optical Swiss Army knife. Annu. Rev. Phys. Chem. 60, 61–83 (2009).

    CAS  PubMed  Google Scholar 

  271. Achtyl, J. L. et al. Free energy relationships in the electrical double layer over single-layer graphene. J. Am. Chem. Soc. 135, 979–981 (2013).

    CAS  PubMed  Google Scholar 

  272. Troiano, J. M. et al. Quantifying the electrostatics of polycation–lipid bilayer interactions. J. Am. Chem. Soc. 139, 5808–5816 (2017).

    CAS  PubMed  Google Scholar 

  273. Mcgeachy, A. C. et al. Counting charges on membrane-bound peptides. Chem. Sci. 9, 4285–4298 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  274. Yan, E. C. Y., Liu, Y. & Eisenthal, K. B. New method for determination of surface potential of microscopic particles by second harmonic generation. J. Phys. Chem. B 102, 6331–6336 (1998).

    CAS  Google Scholar 

  275. Marchioro, A. et al. Surface characterization of colloidal silica nanoparticles by second harmonic scattering: quantifying the surface potential and interfacial water order. J. Phys. Chem. C 123, 20393–20404 (2019).

    CAS  Google Scholar 

  276. Didier, M. E. P., Tarun, O. B., Jourdain, P., Magistretti, P. & Roke, S. Membrane water for probing neuronal membrane potentials and ionic fluxes at the single cell level. Nat. Commun. 9, 5287 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  277. Israelachvili, J. et al. Recent advances in the surface forces apparatus (SFA) technique. Rep. Prog. Phys. 73, 036601 (2010).

    Google Scholar 

  278. Magnussen, O. M. Atomic-scale insights into electrode surface dynamics by high-speed scanning probe microscopy. Chem. Eur. J. 25, 12865–12883 (2019).

    CAS  PubMed  Google Scholar 

  279. Fukuma, T., Onishi, K., Kobayashi, N., Matsuki, A. & Asakawa, H. Atomic-resolution imaging in liquid by frequency modulation atomic force microscopy using small cantilevers with megahertz-order resonance frequencies. Nanotechnology 23, 135706 (2012).

    CAS  PubMed  Google Scholar 

  280. Signorell, R. Electron scattering in liquid water and amorphous ice: a striking resemblance. Phys. Rev. Lett. 124, 205501 (2020).

    CAS  PubMed  Google Scholar 

  281. Jahnke, T. et al. Interatomic and intermolecular coulombic decay. Chem. Rev. 120, 11295–11369 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  282. Seidel, R., Winter, B. & Bradforth, S. E. Valence electronic structure of aqueous solutions: insights from photoelectron spectroscopy. Annu. Rev. Phys. Chem. 67, 283–305 (2016).

    CAS  PubMed  Google Scholar 

  283. Golnak, R. et al. Joint analysis of radiative and non-radiative electronic relaxation upon X-ray irradiation of transition metal aqueous solutions. Sci. Rep. 6, 24659 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  284. Winter, B. Interfaces: scientists strike wet gold. Nat. Chem. 7, 192–194 (2015).

    CAS  PubMed  Google Scholar 

  285. Shen, Y. R. The Principles of Nonlinear Optics (Wiley, 1984).

  286. Boyd, R. W. Nonlinear Optics (Academic Press/Elsevier, 2008).

  287. Morita, A. Theory of Sum Frequency Generation Spectroscopy (Springer, 2018).

  288. Jena, K. C., Covert, P. A. & Hore, D. K. The effect of salt on the water structure at a charged solid surface: differentiating second- and third-order nonlinear contributions. J. Phys. Chem. Lett. 2, 1056–1061 (2011).

    CAS  Google Scholar 

  289. Liljeblad, J. F. D., Bulone, V., Rutland, M. W. & Johnson, C. M. Supported phospholipid monolayers. The molecular structure investigated by vibrational sum frequency spectroscopy. J. Phys. Chem. C 115, 10617–10629 (2011).

    CAS  Google Scholar 

  290. De Beer, A. G. F., Campen, R. K. & Roke, S. Separating surface structure and surface charge with second-harmonic and sum-frequency scattering. Phys. Rev. B Condens. Matter Mater. Phys 82, 235431 (2010).

    Google Scholar 

  291. Campen, R. K., Pymer, A. K., Nihonyanagi, S. & Borguet, E. Linking surface potential and deprotonation in nanoporous silica: second harmonic generation and acid/base titration. J. Phys. Chem. C 114, 18465–18473 (2010).

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Katrin F. Domke, Daria Maltseva, Takakatsu Seki and Chun-Chieh Yu for their careful reading and Hagen Sögen for providing Fig. 6d,e. R.R.N. acknowledges support from the Deutsche Forschungsgemeinschaft (DFG) via grant SFB 1078. They are grateful to the MaxWater initiative of the Max Planck Society for support.

Author information

Authors and Affiliations

Authors

Contributions

M.B., G.G., Y.N., R.K.C., E.H.G.B. and R.R.N. conceived the manuscript. M.B. and G.G. wrote it together with Y.N., R.K.C., E.H.G.B., R.R.N., A.K., I.T.M., M.T.M.K. and B.W. All authors contributed to the discussions, revisions and editing of the article.

Corresponding author

Correspondence to Mischa Bonn.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Chemistry thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gonella, G., Backus, E.H.G., Nagata, Y. et al. Water at charged interfaces. Nat Rev Chem 5, 466–485 (2021). https://doi.org/10.1038/s41570-021-00293-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-021-00293-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing