Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The application of modern reactions in large-scale synthesis

Abstract

In the past decade, the field of organic synthesis has witnessed tremendous advancements in the areas of photoredox catalysis, electrochemistry, C–H activation, reductive coupling and flow chemistry. While these methods and technologies offer many strategic advantages in streamlining syntheses, their application on the process scale is complicated by several factors. In this Review, we discuss the challenges that arise when these reaction classes and/or flow chemistry technology are taken from a research laboratory operating at the milligram scale to a reactor capable of producing kilograms of product. We discuss how these challenges have been overcome through chemical and engineering solutions. Specifically, this Review will highlight key examples that have led to the production of multi-hundred-gram to kilogram quantities of active pharmaceutical ingredients or their intermediates and will provide insight on the scaling-up process to those developing new technologies and reactions.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Photoredox catalysis for late-stage functionalization of complex molecules.
Fig. 2: Application of electrochemical synthesis in large-scale transformations.
Fig. 3: C–H activation has emerged as a state-of-the-art method for the synthesis of complex molecules.
Fig. 4: Process-scale applications of C–H activation protocols towards complex active pharmaceutical ingredients.
Fig. 5: Reductive cross-electrophile coupling for the synthesis of complex active pharmaceutical ingredients.
Fig. 6: Continuous flow manufacturing of pharmaceuticals.
Fig. 7: Process-scale flow chemistry in the pharmaceutical industry.

References

  1. 1.

    Campos, K. R. et al. The importance of synthetic chemistry in the pharmaceutical industry. Science 363, eaat0805 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  2. 2.

    International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH). Quality guidelines. ICH https://www.ich.org/page/quality-guidelines

  3. 3.

    Akita M. et al. Photocatalysis in Organic Synthesis (Georg Thieme Verlag, 2019).

  4. 4.

    Prier, C. K., Rankic, D. A. & MacMillan, D. W. C. Visible light photoredox catalysis with transition metal complexes: Applications in organic synthesis. Chem. Rev. 113, 5322–5363 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  5. 5.

    Romero, N. A. & Nicewicz, D. A. Organic photoredox catalysis. Chem. Rev. 116, 10075–10166 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  6. 6.

    Shaw, M. H., Twilton, J. & MacMillan, D. W. C. Photoredox catalysis in organic chemistry. J. Org. Chem. 81, 6898–6926 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  7. 7.

    Beatty, J. W., Douglas, J. J., Cole, K. P. & Stephenson, C. R. J. A scalable and operationally simple radical trifluoromethylation. Nat. Commun. 6, 7919 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  8. 8.

    Chu, L. L., Lipshultz, J. M. & MacMillan, D. W. C. Merging photoredox and nickel catalysis: The direct synthesis of ketones by the decarboxylative arylation of α-oxo acids. Angew. Chem. Int. Ed. 54, 7929–7933 (2015).

    CAS  Article  Google Scholar 

  9. 9.

    Cambié, D., Bottecchia, C., Straathof, N. J. W., Hessel, V. & Noël, T. Applications of continuous-flow photochemistry in organic synthesis, material science, and water treatment. Chem. Rev. 116, 10276–10341 (2016).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  10. 10.

    Douglas, J. J., Sevrin, M. J., Cole, K. P. & Stephenson, C. R. J. Preparative scale demonstration and mechanistic investigation of a visible light-mediated radical Smiles rearrangement. Org. Process. Res. Dev. 20, 1148–1155 (2016).

    CAS  Article  Google Scholar 

  11. 11.

    Douglas, J. J., Albright, H., Sevrin, M. J., Cole, K. P. & Stephenson, C. R. J. A visible-light-mediated radical Smiles rearrangement and its application to the synthesis of a difluoro-substituted spirocyclic ORL-1 antagonist. Angew. Chem. Int. Ed. 54, 14898–14902 (2015).

    CAS  Article  Google Scholar 

  12. 12.

    Yayla, H. G. et al. Discovery and mechanistic study of a photocatalytic indoline dehydrogenation for the synthesis of elbasvir. Chem. Sci. 7, 2066–2073 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  13. 13.

    Hook, B. D. A. et al. A practical flow reactor for continuous organic photochemistry. J. Org. Chem. 70, 7558–7564 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  14. 14.

    Harper, K. C., Moschetta, E. G., Bordawekar, S. V. & Wittenberger, S. J. A laser driven flow chemistry platform for scaling photochemical reactions with visible light. ACS Cent. Sci. 5, 109–115 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. 15.

    Corcoran, E. B. et al. Aryl amination using ligand-free Ni(II) salts and photoredox catalysis. Science 353, 279–283 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. 16.

    Corcoran, E. B., McMullen, J. P., Levesque, F., Wismer, M. K. & Naber, J. R. Photon equivalents as a parameter for scaling photoredox reactions in flow: Translation of photocatalytic C–N cross-coupling from lab scale to multikilogram scale. Angew. Chem. Int. Ed. 59, 11964–11968 (2020).

    CAS  Article  Google Scholar 

  17. 17.

    Lévesque, F., Di Maso, M. J., Narsimhan, K., Wismer, M. K. & Naber, J. R. Design of a kilogram scale, plug flow photoreactor enabled by high power LEDs. Org. Process. Res. Dev. 24, 2935–2940 (2020).

    Article  CAS  Google Scholar 

  18. 18.

    Politano, F. & Oksdath-Mansilla, G. Light on the horizon: Current research and future perspectives in flow photochemistry. Org. Process. Res. Dev. 22, 1045–1062 (2018).

    CAS  Article  Google Scholar 

  19. 19.

    Grimm, I. et al. Upscaling photoredox cross-coupling reactions in batch using immersion-well reactors. Org. Process. Res. Dev. 24, 1185–1193 (2020).

    CAS  Article  Google Scholar 

  20. 20.

    Ravetz, B. D. et al. Development of a platform for near-infrared photoredox catalysis. ACS Cent. Sci. 6, 2053–2059 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. 21.

    Beatty, J. W. et al. Photochemical perfluoroalkylation with pyridine N-oxides: Mechanistic insights and performance on a kilogram scale. Chem 1, 456–472 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  22. 22.

    Sezen-Edmonds, M. et al. Predicting performance of photochemical transformations for scaling up in different platforms by combining high-throughput experimentation with computational modeling. Org. Process. Res. Dev. 24, 2128–2138 (2020).

    CAS  Article  Google Scholar 

  23. 23.

    Yan, M., Kawamata, Y. & Baran, P. S. Synthetic organic electrochemical methods since 2000: On the verge of a renaissance. Chem. Rev. 117, 13230–13319 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. 24.

    Baizer, M. M. Electrolytic reductive coupling. J. Electrochem. Soc. 111, 215 (1964).

    CAS  Article  Google Scholar 

  25. 25.

    Leech, M. C., Garcia, A. D., Petti, A., Dobbs, A. P. & Lam, K. Organic electrosynthesis: From academia to industry. React. Chem. Eng. 5, 977–990 (2020).

    CAS  Article  Google Scholar 

  26. 26.

    Horn, E. J. et al. Scalable and sustainable electrochemical allylic C–H oxidation. Nature 533, 77–81 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. 27.

    Anastas P. T., Warner J. C. Green Chemistry: Theory and Practice (Oxford Univ. Press, 1998).

  28. 28.

    Gonella J., [(2-Oxo-3-tetrahydrothienylcarbamoyl)-alkylthio] acetic acids, their salts and esters, a process for preparation thereof and the pharmaceutical compositions containing same. US Patent US4411909A (1983).

  29. 29.

    Hu K., Hu L. The synthetic method of homocysteinic acid thiolactone hydrochloride. China Patent CN109943860A (2019).

  30. 30.

    Tereshchenko, O. D. et al. Electrochemical scaled-up synthesis of cyclic enecarbamates as starting materials for medicinal chemistry relevant building bocks. Adv. Synth. Catal. 362, 3229–3242 (2020).

    CAS  Article  Google Scholar 

  31. 31.

    Shono, T., Matsumura, Y. & Tsubata, K. Anodic oxidation of N-carbomethoxypyrrolidine: 2-methoxy-N-carbomethoxypyrrolidine. Org. Synth. 63, 206 (1985).

    CAS  Article  Google Scholar 

  32. 32.

    Bärfacker, L. et al. Discovery of BAY 94-8862: A nonsteroidal antagonist of the mineralocorticoid receptor for the treatment of cardiorenal diseases. ChemMedChem 7, 1385–1403 (2012).

    PubMed  Article  CAS  Google Scholar 

  33. 33.

    Gütz, C., Stenglein, A. & Waldvogel, S. R. Highly modular flow cell for electroorganic synthesis. Org. Process. Res. Dev. 21, 771–778 (2017).

    Article  CAS  Google Scholar 

  34. 34.

    Li, H. et al. Ni-catalyzed electrochemical decarboxylative C–C couplings in batch and continuous flow. Org. Lett. 20, 1338–1341 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. 35.

    Wilberforce, T. & Olabi, A. G. Design of experiment (DOE) analysis of 5-cell stack fuel cell using three bipolar plate geometry designs. Sustainability. 12, 4488 (2020).

    CAS  Article  Google Scholar 

  36. 36.

    Egbert, J. D. et al. Development and scale-up of continuous electrocatalytic hydrogenation of functionalized nitro arenes, nitriles, and unsaturated aldehydes. Org. Process. Res. Dev. 23, 1803–1812 (2019).

    CAS  Article  Google Scholar 

  37. 37.

    Peters, B. K. et al. Scalable and safe synthetic organic electroreduction inspired by Li-ion battery chemistry. Science 363, 838–845 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. 38.

    Joshi, D. K., Sutton, J. W., Carver, S. & Blanchard, J. P. Experiences with commercial production scale operation of dissolving metal reduction using lithium metal and liquid ammonia. Org. Process. Res. Dev. 9, 997–1002 (2005).

    CAS  Article  Google Scholar 

  39. 39.

    Ishifune, M. et al. Electroreduction of aromatics using magnesium electrodes in aprotic solvents containing alcoholic proton donors. Electrochim. Acta 48, 2405–2409 (2003).

    CAS  Article  Google Scholar 

  40. 40.

    Huang, J. K. et al. A highly efficient palladium/copper cocatalytic system for direct arylation of heteroarenes: An unexpected effect of Cu(Xantphos)I. J. Am. Chem. Soc. 132, 3674–3675 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  41. 41.

    Caille, S. et al. Molecular complexity as a driver for chemical process innovation in the pharmaceutical industry. J. Org. Chem. 84, 4583–4603 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  42. 42.

    Ouellet, S. G. et al. Preparative scale synthesis of the biaryl core of anacetrapib via a ruthenium-catalyzed direct arylation reaction: Unexpected effect of solvent impurity on the arylation reaction. J. Org. Chem. 76, 1436–1439 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  43. 43.

    Ackermann, L. & Mulzer, M. Dehydrative direct arylations of arenes with phenols via ruthenium-catalyzed C–H and C–OH bond functionalizations. Org. Lett. 10, 5043–5045 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  44. 44.

    Arockiam, P., Poirier, V., Fischmeister, C., Bruneau, C. & Dixneuf, P. H. Diethyl carbonate as a solvent for ruthenium catalyzed C–H bond functionalization. Green Chem. 11, 1871–1875 (2009).

    CAS  Article  Google Scholar 

  45. 45.

    Pozgan, F. & Dixneuf, P. H. Ruthenium(II) acetate catalyst for direct functionalisation of sp2-C–H bonds with aryl chlorides and access to tris-heterocyclic molecules. Adv. Synth. Catal. 351, 1737–1743 (2009).

    CAS  Article  Google Scholar 

  46. 46.

    Bien, J. et al. The first kilogram synthesis of beclabuvir, an HCV NS5B polymerase inhibitor. Org. Process. Res. Dev. 22, 1393–1408 (2018).

    CAS  Article  Google Scholar 

  47. 47.

    Fox, R. J. et al. C–H arylation in the formation of a complex pyrrolopyridine, the commercial synthesis of the potent JAK2 inhibitor, BMS-911543. J. Org. Chem. 84, 4661–4669 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  48. 48.

    Wisniewski, S. R. et al. Utilizing native directing groups: Synthesis of a selective IKur inhibitor, BMS-919373, via a regioselective C–H arylation. J. Org. Chem. 84, 4704–4714 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  49. 49.

    Wisniewski, S. R. et al. Using native directing groups: Mechanistic understanding of a direct arylation leads to formation of tetracyclic heterocycles via tandem intermolecular, intramolecular C–H activation. J. Org. Chem. 84, 7961–7970 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  50. 50.

    Zhang, H. M. et al. Convergent synthesis of PI3K inhibitor GDC-0908 featuring palladium-catalyzed direct C–H arylation toward dihydrobenzothienooxepines. J. Org. Chem. 84, 4796–4802 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  51. 51.

    Arrington, K. et al. Convergent synthesis of the NS5B inhibitor GSK8175 enabled by transition metal catalysis. J. Org. Chem. 84, 4680–4694 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  52. 52.

    Campeau, L.-C. et al. A robust kilo-scale synthesis of doravirine. Org. Process. Res. Dev. 20, 1476–1481 (2016).

    CAS  Article  Google Scholar 

  53. 53.

    Knappke, C. E. I. et al. Reductive cross-coupling reactions between two electrophiles. Chem. Eur. J. 20, 6828–6842 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  54. 54.

    Everson, D. A. & Weix, D. J. Cross-electrophile coupling: Principles of reactivity and selectivity. J. Org. Chem. 79, 4793–4798 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  55. 55.

    Gu, J., Wang, X., Xue, W. C. & Gong, H. G. Nickel-catalyzed reductive coupling of alkyl halides with other electrophiles: Concept and mechanistic considerations. Org. Chem. Front. 2, 1411–1421 (2015).

    CAS  Article  Google Scholar 

  56. 56.

    Moragas, T., Correa, A. & Martin, R. Metal-catalyzed reductive coupling reactions of organic halides with carbonyl-type compounds. Chem. Eur. J. 20, 8242–8258 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  57. 57.

    Richmond, E. & Moran, J. Recent advances in nickel catalysis enabled by stoichiometric metallic reducing agents. Synthesis. 50, 499–513 (2018).

    CAS  Article  Google Scholar 

  58. 58.

    Weix, D. J. Methods and mechanisms for cross-electrophile coupling of Csp2 halides with alkyl electrophiles. Acc. Chem. Res. 48, 1767–1775 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  59. 59.

    Goldfogel M. J., Huang, L., Weix, D. J. in Nickel Catalysis in Organic Synthesis (ed. Ogoshi, S.) 183-222 (Wiley-VCH, 2020).

  60. 60.

    Biswas, S. et al. Nickel-catalyzed cross-electrophile reductive couplings of neopentyl bromides with aryl bromides. J. Org. Chem. 85, 8214–8220 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  61. 61.

    Hughes, J. M. E. & Fier, P. S. Desulfonylative arylation of redox-active alkyl sulfones with aryl bromides. Org. Lett. 21, 5650–5654 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  62. 62.

    Mennie, K. M., Vara, B. A. & Levi, S. M. Reductive sp3–sp2 coupling reactions enable late-stage modification of pharmaceuticals. Org. Lett. 22, 556–559 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  63. 63.

    Kim, S., Goldfogel, M. J., Gilbert, M. M. & Weix, D. J. Nickel-catalyzed cross-electrophile coupling of aryl chlorides with primary alkyl chlorides. J. Am. Chem. Soc. 142, 9902–9907 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  64. 64.

    Hansen, E. C. et al. New ligands for nickel catalysis from diverse pharmaceutical heterocycle libraries. Nat. Chem. 8, 1126–1130 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  65. 65.

    Liao, J. et al. Deaminative reductive cross-electrophile couplings of alkylpyridinium salts and aryl bromides. Org. Lett. 21, 2941–2946 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  66. 66.

    Nimmagadda, K. et al. Development and execution of an Ni(II)-catalyzed reductive cross-coupling of substituted 2-chloropyridine and ethyl 3-chloropropanoate. Org. Process. Res. Dev. 24, 1141–1148 (2020).

    CAS  Article  Google Scholar 

  67. 67.

    Grenville, R. K., Mak, A. T. C. & Brown, D. A. R. Suspension of solid particles in vessels agitated by axial flow impellers. Chem. Eng. Res. Des. 100, 282–291 (2015).

    CAS  Article  Google Scholar 

  68. 68.

    Zwietering, T. N. Suspending of solid particles in liquid by agitators. Chem. Eng. Sci. 8, 244–253 (1958).

    CAS  Article  Google Scholar 

  69. 69.

    Watanabe, E., Chen, Y. D., May, O. & Ley, S. V. A practical method for continuous production of sp3-rich compounds from (hetero)aryl halides and redox-active esters. Chem. Eur. J. 26, 186–191 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  70. 70.

    Perkins, R. J., Hughes, A. J., Weix, D. J. & Hansen, E. C. Metal-reductant-free electrochemical nickel-catalyzed couplings of aryl and alkyl bromides in acetonitrile. Org. Process. Res. Dev. 23, 1746–1751 (2019).

    CAS  Article  Google Scholar 

  71. 71.

    Kumar, G. S. et al. Nickel-catalyzed chain-walking cross-electrophile coupling of alkyl and aryl halides and olefin hydroarylation enabled by electrochemical reduction. Angew. Chem. Int. Ed. 59, 6513–6519 (2020).

    CAS  Article  Google Scholar 

  72. 72.

    Broggi, J., Terme, T. & Vanelle, P. Organic electron donors as powerful single-electron reducing agents in organic synthesis. Angew. Chem. Int. Ed. 53, 384–413 (2014).

    CAS  Article  Google Scholar 

  73. 73.

    Suzuki, N., Hofstra, J. L., Poremba, K. E. & Reisman, S. E. Nickel-catalyzed enantioselective cross-coupling of N-hydroxyphthalimide esters with vinyl bromides. Org. Lett. 19, 2150–2153 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  74. 74.

    David, C., Emily, L. B., Nilay, H., Mycah, R. U. & Susan, L. Z. A widely applicable dual-catalytic system for cross-electrophile coupling. ACS Catal. 10, 12642–12656 (2020).

    Article  CAS  Google Scholar 

  75. 75.

    Baumann, M., Moody, T. S., Smyth, M. & Wharry, S. A perspective on continuous flow chemistry in the pharmaceutical industry. Org. Process. Res. Dev. 24, 1802–1813 (2020).

    CAS  Article  Google Scholar 

  76. 76.

    Teoh, S. K., Rathi, C. & Sharratt, P. Practical assessment methodology for converting fine chemicals processes from batch to continuous. Org. Process. Res. Dev. 20, 414–431 (2016).

    CAS  Article  Google Scholar 

  77. 77.

    Cole, K. P. et al. Kilogram-scale prexasertib monolactate monohydrate synthesis under continuous-flow CGMP conditions. Science 356, 1144–1150 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  78. 78.

    Brewer, A. C. et al. Development and scale-up of a continuous aerobic oxidative Chan–Lam coupling. Org. Process. Res. Dev. 23, 1484–1498 (2019).

    Article  CAS  Google Scholar 

  79. 79.

    Broom, T. et al. The synthesis of bromomethyltrifluoroborates through continuous flow chemistry. Org. Process. Res. Dev. 18, 1354–1359 (2014).

    CAS  Article  Google Scholar 

  80. 80.

    Laue, S., Haverkamp, V. & Mleczko, L. Experience with scale-up of low-temperature organometallic reactions in continuous flow. Org. Process. Res. Dev. 20, 480–486 (2016).

    CAS  Article  Google Scholar 

  81. 81.

    Wong, S. W. et al. Operation strategy development for Grignard reaction in a continuous stirred tank reactor. Org. Process. Res. Dev. 20, 540–550 (2016).

    CAS  Article  Google Scholar 

  82. 82.

    Thaisrivongs, D. A., Naber, J. R. & McMullen, J. P. Using flow to outpace fast proton transfer in an organometallic reaction for the manufacture of verubecestat (MK-8931). Org. Process. Res. Dev. 20, 1997–2004 (2016).

    CAS  Article  Google Scholar 

  83. 83.

    Thaisrivongs, D. A., Naber, J. R., Rogus, N. J. & Spencer, G. Development of an organometallic flow chemistry reaction at pilot-plant scale for the manufacture of verubecestat. Org. Process. Res. Dev. 22, 403–408 (2018).

    CAS  Article  Google Scholar 

  84. 84.

    Susanne, F. et al. Match-making reactors to chemistry: A continuous manufacturing enabled sequence to a key benzoxazole pharmaceutical intermediate. Org. Process. Res. Dev. 21, 1779–1793 (2017).

    CAS  Article  Google Scholar 

  85. 85.

    Stueckler, C. et al. Development of a continuous flow process for a Matteson reaction: From lab scale to full-scale production of a pharmaceutical intermediate. Org. Process. Res. Dev. 23, 1069–1077 (2019).

    CAS  Article  Google Scholar 

  86. 86.

    Li, P. et al. Continuous flow conditions for high temperature formation of a benzodioxan pharmaceutical intermediate: rapid scaleup for early phase material delivery. Org. Process. Res. Dev. 24, 1938–1947 (2020).

    CAS  Article  Google Scholar 

  87. 87.

    Levterov, V. V. et al. Photochemical in-flow synthesis of 2,4-methanopyrrolidines: Pyrrolidine analogues with improved water solubility and reduced lipophilicity. J. Org. Chem. 83, 14350–14361 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  88. 88.

    Williams, J. D. et al. Finding the perfect match: A combined computational and experimental study toward efficient and scalable photosensitized [2 + 2] cycloadditions in flow. Org. Process. Res. Dev. 23, 78–87 (2019).

    CAS  Article  Google Scholar 

  89. 89.

    Beaver, M. G. et al. Development and execution of a production-scale continuous [2 + 2] photocycloaddition. Org. Process. Res. Dev. 24, 2139–2146 (2020).

    CAS  Article  Google Scholar 

  90. 90.

    McMullen, J. P. et al. Development and scale-up of a continuous reaction for production of an active pharmaceutical ingredient intermediate. Org. Process. Res. Dev. 22, 1208–1213 (2018).

    CAS  Article  Google Scholar 

  91. 91.

    Noël T., Su Y., Hessel V. in Organometallic Flow Chemistry (ed. Noël T.) 1-41 (Springer, 2016).

  92. 92.

    Di Maso, M. J. et al. Development of a green and sustainable manufacturing process for gefapixant citrate (MK-7264). Part 5: completion of the API free base via a direct chlorosulfonylation process. Org. Process. Res. Dev. 24, 2491–2497 (2020).

    Article  CAS  Google Scholar 

  93. 93.

    Devine, P. N. et al. Extending the application of biocatalysis to meet the challenges of drug development. Nat. Rev. Chem. 2, 409–421 (2018).

    Article  Google Scholar 

  94. 94.

    Huffman, M. A. et al. Design of an in vitro biocatalytic cascade for the manufacture of islatravir. Science 366, 1255–1259 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank F. Levesque, K. Xiao, J. Hughes, D. Schultz and D. Lehnherr for their help in reviewing this manuscript.

Author information

Affiliations

Authors

Contributions

K.L., P.S.F. and K.M.M. contributed to the literature search for the article. K.L. contributed to the writing of the article and the preparation of figures. P.S.F. and K.M.M. contributed to the editing of the manuscript, coordinated the project and supervised the writing.

Corresponding authors

Correspondence to Patrick S. Fier or Kevin M. Maloney.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Chemistry thanks A. Peneau and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Process mass intensity

(PMI). The ratio between the mass of raw material input and the mass of desired output.

Continuous stirred-tank reactor

(CSTR). A reactor run at steady state with a continuous flow of reactants and products. With continuous stirring, reaction conditions do not change over time.

Plug flow reactors

(PFRs). Tubular reactors run with a constant flow of reactants and products, without stirring and with materials travelling linearly as a plug of fluid.

Immersion well

(IW). A fixed-volume batch reactor with an inner jacketed well to house a light source. The reaction mixture is irradiated from within the reactor set-up.

Undivided cell

An electrochemical cell where the anode and the cathode are housed in the same chamber.

Process greenness score

(PGS). A calculation used by industrial companies to evaluate the potential environmental impact of chemical manufacturing processes. A higher score indicates a greener reaction.

Redox flow batteries

Electrochemical cells that generate chemical energy by pumping separated anolyte and catholyte solutions across an ion-selective membrane placed in between two electrodes.

Turbulent flow

A type of fluid flow characterized by chaotic changes in the direction and magnitude of flow as a result of changes in pressure and flow velocity.

Divided cells

Electrochemical cells where the anode and the cathode are housed in different chambers, separated by an ion-permeable membrane or salt bridge.

Overcharge protectant

A redox shuttle reagent that consumes excess current generated by the system.

Just suspended speed

The impeller speed where no solids remain stationary for more than 2 s. A value used in process scale-up to predict the ideal agitation rate.

Assay yield

(AY). The ratio of reaction selectivity towards the desired product (%) to conversion of the starting material (%).

Scaled up

In flow chemistry, increasing the size of a flow reactor while maintaining the same reactor design.

Scaled out

In flow chemistry, increasing the reaction time of a flow process while maintaining the same reactor size and design.

Numbered up

In flow chemistry, increasing the number of flow reactors of the same size and design to create a system of parallel reactors.

Good manufacturing practices

Regulations implemented by the US Food and Drug Administration that require manufacturers to ensure their products are safe, pure and effective.

Reynolds number

The ratio of density, flow speed and the characteristic length of the system to the dynamic viscosity of the fluid. Used to predict flow patterns.

Transitional flow

A mixture of turbulent flow towards the centre of the pipe and laminar flow, where fluid particles follow smooth paths in layers, on the edges.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lovato, K., Fier, P.S. & Maloney, K.M. The application of modern reactions in large-scale synthesis. Nat Rev Chem (2021). https://doi.org/10.1038/s41570-021-00288-z

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing