Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Molecular reactions at aqueous interfaces

Abstract

This Review aims to critically analyse the emerging field of chemical reactivity at aqueous interfaces. The subject has evolved rapidly since the discovery of the so-called ‘on-water catalysis’, alluding to the dramatic acceleration of reactions at the surface of water or at its interface with hydrophobic media. We review critical experimental studies in the fields of atmospheric and synthetic organic chemistry, as well as related research exploring the origins of life, to showcase the importance of this phenomenon. The physico-chemical aspects of these processes, such as the structure, dynamics and thermodynamics of adsorption and solvation processes at aqueous interfaces, are also discussed. We also present the basic theories intended to explain interface catalysis, followed by the results of advanced ab initio molecular-dynamics simulations. Although some topics addressed here have already been the focus of previous reviews, we aim at highlighting their interconnection across diverse disciplines, providing a common perspective that would help us to identify the most fundamental issues still incompletely understood in this fast-moving field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Examples of aqueous interfaces and interfacial processes.
Fig. 2: Schematic structure of the water surface.
Fig. 3: Thermodynamics of solvation at aqueous interfaces.
Fig. 4: Solute at the air–water interface.
Fig. 5: Reactant molecular orbitals at the air–water interface.
Fig. 6: Molecular-dynamics simulations of reactions at the air–water interface.

Similar content being viewed by others

References

  1. Narayan, S. et al. “On water”: unique reactivity of organic compounds in aqueous suspension. Angew. Chem. Int. Ed. 44, 3275–3279 (2005).

    CAS  Google Scholar 

  2. Jung, Y. & Marcus, R. A. On the theory of organic catalysis “on water”. J. Am. Chem. Soc. 129, 5492–5502 (2007).

    CAS  PubMed  Google Scholar 

  3. Adamson, A. W. Physical Chemistry of Surfaces 5th edn (Wiley, 1990).

  4. Donaldson, D. J. & Vaida, V. The influence of organic films at the air–aqueous boundary on atmospheric processes. Chem. Rev. 106, 1445–1461 (2006).

    CAS  PubMed  Google Scholar 

  5. Jubb, A. M., Hua, W. & Allen, H. C. Environmental chemistry at vapor/water interfaces: insights from vibrational sum frequency generation spectroscopy. Annu. Rev. Phys. Chem. 63, 107–130 (2012).

    CAS  PubMed  Google Scholar 

  6. Gerber, R. B. et al. Computational studies of atmospherically-relevant chemical reactions in water clusters and on liquid water and ice surfaces. Acc. Chem. Res. 48, 399–406 (2015).

    CAS  PubMed  Google Scholar 

  7. Zhong, J. et al. Atmospheric spectroscopy and photochemistry at environmental water interfaces. Annu. Rev. Phys. Chem. 70, 45–69 (2019).

    CAS  PubMed  Google Scholar 

  8. Ruiz-Lopez, M. F., Martins-Costa, M. T. C., Anglada, J. M. & Francisco, J. S. A new mechanism of acid rain generation from HOSO at the air–water interface. J. Am. Chem. Soc. 141, 16564–16568 (2019).

    CAS  PubMed  Google Scholar 

  9. Benjamin, I. Chemical reactions and solvation at liquid interfaces: A microscopic perspective. Chem. Rev. 96, 1449–1475 (1996).

    CAS  PubMed  Google Scholar 

  10. Jungwirth, P. & Tobias, D. J. Specific ion effects at the air/water interface. Chem. Rev. 106, 1259–1281 (2006).

    CAS  PubMed  Google Scholar 

  11. Finlayson-Pitts, B. J. Reactions at surfaces in the atmosphere: integration of experiments and theory as necessary (but not necessarily sufficient) for predicting the physical chemistry of aerosols. Phys. Chem. Chem. Phys. 11, 7760–7779 (2009).

    CAS  PubMed  Google Scholar 

  12. Donaldson, D. J. & Valsaraj, K. T. Adsorption and reaction of trace gas-phase organic compounds on atmospheric water film surfaces: a critical review. Environ. Sci. Technol. 44, 865–873 (2010).

    CAS  PubMed  Google Scholar 

  13. Valsaraj, K. T. A review of the aqueous aerosol surface chemistry in the atmospheric context. Open J. Phys. Chem. 2, 17542 (2012).

    Google Scholar 

  14. George, C., Ammann, M., D’Anna, B., Donaldson, D. J. & Nizkorodov, S. A. Heterogeneous photochemistry in the atmosphere. Chem. Rev. 115, 4218–4258 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Herrmann, H. et al. Tropospheric aqueous-phase chemistry: kinetics, mechanisms, and its coupling to a changing gas phase. Chem. Rev. 115, 4259–4334 (2015).

    CAS  PubMed  Google Scholar 

  16. Yan, X., Bain, R. M. & Cooks, R. G. Organic reactions in microdroplets: reaction acceleration revealed by mass spectrometry. Angew. Chem. Int. Ed. 55, 12960–12972 (2016).

    CAS  Google Scholar 

  17. Butler, R. N. & Coyne, A. G. Organic synthesis reactions on-water at the organic-liquid water interface. Org. Biomol. Chem. 14, 9945–9960 (2016).

    CAS  PubMed  Google Scholar 

  18. Serrano-Luginbuhl, S., Ruiz-Mirazo, K., Ostaszewski, R., Gallou, F. & Walde, P. Soft and dispersed interface-rich aqueous systems that promote and guide chemical reactions. Nat. Rev. Chem. 2, 306–327 (2018).

    CAS  Google Scholar 

  19. Ravishankara, A. R. Heterogeneous and multiphase chemistry in the troposphere. Science 276, 1058–1065 (1997).

    CAS  Google Scholar 

  20. Knipping, E. M. et al. Experiments and simulations of ion-enhanced interfacial chemistry on aqueous NaCl aerosols. Science 288, 301–306 (2000).

    CAS  PubMed  Google Scholar 

  21. Rossignol, S. et al. Atmospheric photochemistry at a fatty acid–coated air-water interface. Science 353, 699–702 (2016).

    CAS  PubMed  Google Scholar 

  22. Banerjee, S. & Zare, R. N. Syntheses of isoquinoline and substituted quinolines in charged microdroplets. Angew. Chem. Int. Ed. 54, 14795–14799 (2015).

    CAS  Google Scholar 

  23. Bain, R. M., Sathyamoorthi, S. & Zare, R. N. “On-droplet” chemistry: the cycloaddition of diethyl azodicarboxylate and quadricyclane. Angew. Chem. Int. Ed. 56, 15083–15087 (2017).

    CAS  Google Scholar 

  24. Yan, X., Lai, Y. H. & Zare, R. N. Preparative microdroplet synthesis of carboxylic acids from aerobic oxidation of aldehydes. Chem. Sci. 9, 5207–5211 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Kuchler, A., Yoshimoto, M., Luginbuhl, S., Mavelli, F. & Walde, P. Enzymatic reactions in confined environments. Nat. Nanotechnol. 11, 409–420 (2016).

    CAS  PubMed  Google Scholar 

  26. Vaida, V. Prebiotic phosphorylation enabled by microdroplets. Proc. Natl Acad. Sci. USA 114, 12359–12361 (2017).

    CAS  PubMed  Google Scholar 

  27. Nam, I., Nam, H. G. & Zare, R. N. Abiotic synthesis of purine and pyrimidine ribonucleosides in aqueous microdroplets. Proc. Natl Acad. Sci. USA 115, 36–40 (2018).

    CAS  PubMed  Google Scholar 

  28. Rosenfeld, D., Sherwood, S., Wood, R. & Donner, L. Climate effects of aerosol-cloud interactions. Science 343, 379–380 (2014).

    CAS  PubMed  Google Scholar 

  29. Calvert, J. G. et al. Chemical mechanisms of acid generation in the troposphere. Nature 317, 27–35 (1985).

    CAS  Google Scholar 

  30. Solomon, S., Garcia, R. R., Rowland, F. S. & Wuebbles, D. J. On the depletion of Antarctic ozone. Nature 321, 755–758 (1986).

    CAS  Google Scholar 

  31. Andreae, M. O. & Crutzen, P. J. Atmospheric aerosols: Biogeochemical sources and role in atmospheric chemistry. Science 276, 1052–1058 (1997).

    CAS  Google Scholar 

  32. Ravishankara, A. R. & Longfellow, C. A. Reactions on tropospheric condensed matter. Phys. Chem. Chem. Phys. 1, 5433–5441 (1999).

    CAS  Google Scholar 

  33. Jacob, D. J. Heterogeneous chemistry and tropospheric ozone. Atmos. Environ. 34, 2131–2159 (2000).

    CAS  Google Scholar 

  34. Monod, A. & Carlier, P. Impact of clouds on the tropospheric ozone budget: direct effect of multiphase photochemistry of soluble organic compounds. Atmos. Environ. 33, 4431–4446 (1999).

    CAS  Google Scholar 

  35. Reichardt, C. Solvents and Solvent Effects in Organic Chemistry 3rd edn (Wiley, 2003).

  36. Kolb, C. E. et al. An overview of current issues in the uptake of atmospheric trace gases by aerosols and clouds. Atmos. Chem. Phys. 10, 10561–10605 (2010).

    CAS  Google Scholar 

  37. Enami, S., Hoffmann, M. R. & Colussi, A. J. Extensive H-atom abstraction from benzoate by OH-radicals at the air–water interface. Phys. Chem. Chem. Phys. 18, 31505–31512 (2016).

    CAS  PubMed  Google Scholar 

  38. Enami, S., Mishra, H., Hoffmann, M. R. & Colussi, A. J. Protonation and oligomerization of gaseous isoprene on mildly acidic surfaces: implications for atmospheric chemistry. J. Phys. Chem. A 116, 6027–6032 (2012).

    CAS  PubMed  Google Scholar 

  39. Enami, S. & Colussi, A. J. Efficient scavenging of Criegee intermediates on water by surface-active cis-pinonic acid. Phys. Chem. Chem. Phys. 19, 17044–17051 (2017).

    CAS  PubMed  Google Scholar 

  40. Enami, S. & Colussi, A. J. Reactions of Criegee intermediates with alcohols at air–aqueous interfaces. J. Phys. Chem. A 121, 5175–5182 (2017).

    CAS  PubMed  Google Scholar 

  41. Enami, S., Hoffmann, M. R. & Colussi, A. J. Criegee intermediates react with levoglucosan on water. J. Phys. Chem. Lett. 8, 3888–3894 (2017).

    CAS  PubMed  Google Scholar 

  42. Qiu, J. T., Ishizuka, S., Tonokura, K., Colussi, A. J. & Enami, S. Reactivity of monoterpene Criegee intermediates at gas–liquid interfaces. J. Phys. Chem. A 122, 7910–7917 (2018).

    CAS  PubMed  Google Scholar 

  43. Qiu, J. T., Ishizuka, S., Tonokura, K. & Enami, S. Reactions of Criegee intermediates with benzoic acid at the gas/liquid interface. J. Phys. Chem. A 122, 6303–6310 (2018).

    CAS  PubMed  Google Scholar 

  44. Qiu, J. T., Ishizuka, S., Tonokura, K. & Enami, S. Interfacial vs bulk ozonolysis of nerolidol. Environ. Sci. Technol. 53, 5750–5757 (2019).

    CAS  PubMed  Google Scholar 

  45. Qiu, J. T. et al. Effects of pH on interfacial ozonolysis of alpha-terpineol. J. Phys. Chem. A 123, 7148–7155 (2019).

    CAS  PubMed  Google Scholar 

  46. Mmereki, B. T., Donaldson, D. J., Gilman, J. B., Eliason, T. L. & Vaida, V. Kinetics and products of the reaction of gas-phase ozone with anthracene adsorbed at the air–aqueous interface. Atmos. Environ. 38, 6091–6103 (2004).

    CAS  Google Scholar 

  47. Thomas, J. L., Jimenez-Aranda, A., Finlayson-Pitts, B. J. & Dabdub, D. Gas-phase molecular halogen formation from NaCl and NaBr aerosols: When are interface reactions important? J. Phys. Chem. A 110, 1859–1867 (2006).

    CAS  PubMed  Google Scholar 

  48. Richards-Henderson, N. K. et al. Production of gas phase NO2 and halogens from the photolysis of thin water films containing nitrate, chloride and bromide ions at room temperature. Phys. Chem. Chem. Phys. 15, 17636–17646 (2013).

    CAS  PubMed  Google Scholar 

  49. Richards, N. K. et al. Nitrate ion photolysis in thin water films in the presence of bromide ions. J. Phys. Chem. A 115, 5810–5821 (2011).

    CAS  PubMed  Google Scholar 

  50. Richards-Henderson, N. K., Anderson, C., Anastasio, C. & Finlayson-Pitts, B. J. The effect of cations on NO2 production from the photolysis of aqueous thin water films of nitrate salts. Phys. Chem. Chem. Phys. 17, 32211–32218 (2015).

    CAS  PubMed  Google Scholar 

  51. Vaida, V. Perspective: water cluster mediated atmospheric chemistry. J. Chem. Phys. 135, 020901 (2011).

    PubMed  Google Scholar 

  52. Shrestha, M. et al. Let there be light: stability of palmitic acid monolayers at the air/salt water interface in the presence and absence of simulated solar light and a photosensitizer. Chem. Sci. 9, 5716–5723 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Rapf, R. J. et al. Environmental processing of lipids driven by aqueous photochemistry of α-keto acids. ACS Cent. Sci. 4, 624–630 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Reed Harris, A. E. et al. Multiphase photochemistry of pyruvic acid under atmospheric conditions. J. Phys. Chem. A 121, 3327–3339 (2017).

    CAS  PubMed  Google Scholar 

  55. Li, C. J. Organic reactions in aqueous media-with a focus on carbon-carbon bond formation. Chem. Rev. 93, 2023–2035 (1993).

    CAS  Google Scholar 

  56. Gajewski, J. J. The Claisen rearrangement. Response to solvents and substituents: the case for both hydrophobic and hydrogen bond acceleration in water and for a variable transition state. Acc. Chem. Res. 30, 219–225 (1997).

    CAS  Google Scholar 

  57. Lindström, U. M. Stereoselective organic reactions in water. Chem. Rev. 102, 2751–2772 (2002).

    PubMed  Google Scholar 

  58. Romney, D. K., Arnold, F. H., Lipshutz, B. H. & Li, C. J. Chemistry takes a bath: reactions in aqueous media. J. Org. Chem. 83, 7319–7322 (2018).

    CAS  PubMed  Google Scholar 

  59. Rideout, D. C. & Breslow, R. Hydrophobic acceleration of Diels-Alder reactions. J. Am. Chem. Soc. 102, 7816–7817 (1980).

    CAS  Google Scholar 

  60. Breslow, R. Hydrophobic effects on simple organic reactions in water. Acc. Chem. Res. 24, 159–164 (1991).

    CAS  Google Scholar 

  61. Butler, R. N., Coyne, A. G., Cunningham, W. J. & Moloney, E. M. Water and organic synthesis: a focus on the in-water and on-water border. Reversal of the in-water Breslow hydrophobic enhancement of the normal endo-effect on crossing to on-water conditions for Huisgen cycloadditions with increasingly insoluble organic liquid and solid 2π-dipolarophiles. J. Org. Chem. 78, 3276–3291 (2013).

    CAS  PubMed  Google Scholar 

  62. Augusti, R., Chen, H., Eberlin, L. S., Nefliu, M. & Cooks, R. G. Atmospheric pressure Eberlin transacetalization reactions in the heterogeneous liquid/gas phase. Int. J. Mass. Spectrom. 253, 281–287 (2006).

    CAS  Google Scholar 

  63. Girod, M., Moyano, E., Campbell, D. I. & Cooks, R. G. Accelerated bimolecular reactions in microdroplets studied by desorption electrospray ionization mass spectrometry. Chem. Sci. 2, 501–510 (2011).

    CAS  Google Scholar 

  64. Bain, R. M., Pulliam, C. J. & Cooks, R. G. Accelerated Hantzsch electrospray synthesis with temporal control of reaction intermediates. Chem. Sci. 6, 397–401 (2015).

    CAS  PubMed  Google Scholar 

  65. Bain, R. M., Ayrton, S. T. & Cooks, R. G. Fischer indole synthesis in the gas phase, the solution phase, and at the electrospray droplet interface. J. Am. Soc. Mass. Spectrom. 28, 1359–1364 (2017).

    CAS  PubMed  Google Scholar 

  66. Zhang, W. W., Yang, S. W., Lin, Q. Y., Cheng, H. Y. & Liu, J. H. Microdroplets as microreactors for fast synthesis of ketoximes and amides. J. Org. Chem. 84, 851–859 (2019).

    CAS  PubMed  Google Scholar 

  67. Sahota, N. et al. A microdroplet-accelerated Biginelli reaction: mechanisms and separation of isomers using IMS-MS. Chem. Sci. 10, 4822–4827 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Bain, R. M., Pulliam, C. J., Thery, F. & Cooks, R. G. Accelerated chemical reactions and organic synthesis in Leidenfrost droplets. Angew. Chem. Int. Ed. 55, 10478–10482 (2016).

    CAS  Google Scholar 

  69. Badu-Tawiah, A. K., Campbell, D. I. & Cooks, R. G. Reactions of microsolvated organic compounds at ambient surfaces: droplet velocity, charge state, and solvent effects. J. Am. Soc. Mass. Spectrom. 23, 1077–1084 (2012).

    CAS  PubMed  Google Scholar 

  70. Badu-Tawiah, A. K., Campbell, D. I. & Cooks, R. G. Accelerated C–N bond formation in dropcast thin films on ambient surfaces. J. Am. Soc. Mass. Spectrom. 23, 1461–1468 (2012).

    CAS  PubMed  Google Scholar 

  71. Song, H., Chen, D. L. & Ismagilov, R. F. Reactions in droplets in microfluidic channels. Angew. Chem. Int. Ed. 45, 7336–7356 (2006).

    CAS  Google Scholar 

  72. Mashaghi, S. & van Oijen, A. M. External control of reactions in microdroplets. Sci. Rep. 5, 11837 (2015).

    PubMed  PubMed Central  Google Scholar 

  73. Mellouli, S., Bousekkine, L., Theberge, A. B. & Huck, W. T. S. Investigation of “on water” conditions using a biphasic fluidic platform. Angew. Chem. Int. Ed. 51, 7981–7984 (2012).

    CAS  Google Scholar 

  74. Fallah-Araghi, A. et al. Enhanced chemical synthesis at soft interfaces: A universal reaction-adsorption mechanism in microcompartments. Phys. Rev. Lett. 112, 028301 (2014).

    PubMed  Google Scholar 

  75. Banerjee, S., Gnanamani, E., Yan, X. & Zare, R. N. Can all bulk-phase reactions be accelerated in microdroplets? Analyst 142, 1399–1402 (2017).

    CAS  PubMed  Google Scholar 

  76. Li, Y., Yan, X. & Cooks, R. G. The role of the interface in thin film and droplet accelerated reactions studied by competitive substituent effects. Angew. Chem. Int. Ed. 55, 3433–3437 (2016).

    CAS  Google Scholar 

  77. Lee, J. K., Banerjee, S., Nam, H. G. & Zare, R. N. Acceleration of reaction in charged microdroplets. Q. Rev. Biophys. 48, 437–444 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Enami, S., Sakamoto, Y. & Colussi, A. J. Fenton chemistry at aqueous interfaces. Proc. Natl Acad. Sci. USA 111, 623–628 (2014).

    CAS  PubMed  Google Scholar 

  79. Lee, J. K. et al. Spontaneous generation of hydrogen peroxide from aqueous microdroplets. Proc. Natl Acad. Sci. USA 116, 19294–19298 (2019).

    CAS  PubMed  Google Scholar 

  80. Zhu, C. Q. & Francisco, J. S. Production of hydrogen peroxide enabled by microdroplets. Proc. Natl Acad. Sci. USA 116, 19222–19224 (2019).

    CAS  PubMed  Google Scholar 

  81. Gao, D., Jin, F., Lee, J. K. & Zare, R. N. Aqueous microdroplets containing only ketones or aldehydes undergo Dakin and Baeyer–Villiger reactions. Chem. Sci. 10, 10974–10978 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Enami, S., Hoffmann, M. R. & Colussi, A. J. Acidity enhances the formation of a persistent ozonide at aqueous ascorbate/ozone gas interfaces. Proc. Natl Acad. Sci. USA 105, 7365–7369 (2008).

    CAS  PubMed  Google Scholar 

  83. Enami, S., Hoffmann, M. R. & Colussi, A. J. Ozonolysis of uric acid at the air/water interface. J. Phys. Chem. B 112, 4153–4156 (2008).

    CAS  PubMed  Google Scholar 

  84. Enami, S., Hoffmann, M. R. & Colussi, A. J. Simultaneous detection of cysteine sulfenate, sulfinate, and sulfonate during cysteine interfacial ozonolysis. J. Phys. Chem. B 113, 9356–9358 (2009).

    CAS  PubMed  Google Scholar 

  85. Liu, C. Y., Li, J., Chen, H. & Zare, R. N. Scale-up of microdroplet reactions by heated ultrasonic nebulization. Chem. Sci. 10, 9367–9373 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Gallo, A. et al. The chemical reactions in electrosprays of water do not always correspond to those at the pristine air–water interface. Chem. Sci. 10, 2566–2577 (2019).

    CAS  PubMed  Google Scholar 

  87. Jacobs, M. I., Davis, R. D., Rapf, R. J. & Wilson, K. R. Studying chemistry in micro-compartments by separating droplet generation from ionization. J. Am. Soc. Mass. Spectrom. 30, 339–343 (2019).

    CAS  PubMed  Google Scholar 

  88. Bachmann, P. A., Luisi, P. L. & Lang, J. Autocatalytic self-replicating micelles as models for prebiotic structures. Nature 357, 57–59 (1992).

    CAS  Google Scholar 

  89. Dobson, C. M., Ellison, G. B., Tuck, A. F. & Vaida, V. Atmospheric aerosols as prebiotic chemical reactors. Proc. Natl Acad. Sci. USA 97, 11864–11868 (2000).

    CAS  PubMed  Google Scholar 

  90. Tuck, A. The role of atmospheric aerosols in the origin of life. Surv. Geophys. 23, 379–409 (2002).

    Google Scholar 

  91. Donaldson, D. J., Tervahattu, H., Tuck, A. F. & Vaida, V. Organic aerosols and the origin of life: an hypothesis. Orig. Life Evol. Biosph. 34, 57–67 (2004).

    CAS  PubMed  Google Scholar 

  92. Szostak, J. W. The narrow road to the deep past: in search of the chemistry of the origin of life. Angew. Chem. Int. Ed. 56, 11037–11043 (2017).

    CAS  Google Scholar 

  93. Griffith, E. C., Shoemaker, R. K. & Vaida, V. Sunlight-initiated chemistry of aqueous pyruvic acid: building complexity in the origin of life. Orig. Life Evol. Biosph. 43, 341–352 (2013).

    PubMed  Google Scholar 

  94. Walde, P., Umakoshi, H., Stano, P. & Mavelli, F. Emergent properties arising from the assembly of amphiphiles. Artificial vesicle membranes as reaction promoters and regulators. Chem. Commun. 50, 10177–10197 (2014).

    CAS  Google Scholar 

  95. Walde, P., Goto, A., Monnard, P.-A., Wessicken, M. & Luisi, P. L. Oparin’s reactions revisited: enzymic synthesis of poly(adenylic acid) in micelles and self-reproducing vesicles. J. Am. Chem. Soc. 116, 7541–7547 (1994).

    CAS  Google Scholar 

  96. Kamat, N. P., Tobé, S., Hill, I. T. & Szostak, J. W. Electrostatic localization of RNA to protocell membranes by cationic hydrophobic peptides. Angew. Chem. Int. Ed. 54, 11735–11739 (2015).

    CAS  Google Scholar 

  97. Zepik, H., Rajamani, S., Maurel, M.-C. & Deamer, D. Oligomerization of thioglutamic acid: Encapsulated reactions and lipid catalysis. Orig. Life Evol. Biosph. 37, 495–505 (2007).

    CAS  PubMed  Google Scholar 

  98. Blocher, M., Liu, D., Walde, P. & Luisi, P. L. Liposome-assisted selective polycondensation of α-amino acids and peptides. Macromolecules 32, 7332–7334 (1999).

    CAS  Google Scholar 

  99. Murillo-Sánchez, S., Beaufils, D., González Mañas, J. M., Pascal, R. & Ruiz-Mirazo, K. Fatty acids’ double role in the prebiotic formation of a hydrophobic dipeptide. Chem. Sci. 7, 3406–3413 (2016).

    PubMed  PubMed Central  Google Scholar 

  100. Tervahattu, H., Juhanoja, J. & Kupiainen, K. Identification of an organic coating on marine aerosol particles by TOF-SIMS. J. Geophys. Res. Atmos. 107, ACH 18-1–ACH 18-7 (2002).

    Google Scholar 

  101. Tervahattu, H. et al. New evidence of an organic layer on marine aerosols. J. Geophys. Res. Atmos. 107, AAC 1-1–AAC 1-8 (2002).

    Google Scholar 

  102. Griffith, E. C. & Vaida, V. In situ observation of peptide bond formation at the water–air interface. Proc. Natl Acad. Sci. USA 109, 15697–15701 (2012).

    CAS  PubMed  Google Scholar 

  103. Lee, J. K., Samanta, D., Nam, H. G. & Zare, R. N. Micrometer-sized water droplets induce spontaneous reduction. J. Am. Chem. Soc. 141, 10585–10589 (2019).

    CAS  PubMed  Google Scholar 

  104. Nam, I., Lee, J. K., Nam, H. G. & Zare, R. N. Abiotic production of sugar phosphates and uridine ribonucleoside in aqueous microdroplets. Proc. Natl Acad. Sci. USA 114, 12396–12400 (2017).

    CAS  PubMed  Google Scholar 

  105. Bondar, A.-N. & Lemieux, M. J. Reactions at biomembrane interfaces. Chem. Rev. 119, 6162–6183 (2019).

    CAS  PubMed  Google Scholar 

  106. Breslow, R. Biomimetic chemistry and artificial enzymes: catalysis by design. Acc. Chem. Res. 28, 146–153 (1995).

    CAS  Google Scholar 

  107. Breslow, R. & Dong, S. D. Biomimetic reactions catalyzed by cyclodextrins and their derivatives. Chem. Rev. 98, 1997–2012 (1998).

    CAS  PubMed  Google Scholar 

  108. Raynal, M., Ballester, P., Vidal-Ferran, A. & van Leeuwen, P. Supramolecular catalysis. Part 2: artificial enzyme mimics. Chem. Soc. Rev. 43, 1734–1787 (2014).

    CAS  PubMed  Google Scholar 

  109. Kuah, E., Toh, S., Yee, J., Ma, Q. & Gao, Z. Q. Enzyme mimics: advances and applications. Chem. Eur. J. 22, 8404–8430 (2016).

    CAS  PubMed  Google Scholar 

  110. Bjerre, J., Rousseau, C., Marinescu, L. & Bols, M. Artificial enzymes, “Chemzymes”: current state and perspectives. Appl. Microbiol. Biotechnol. 81, 1–11 (2008).

    CAS  PubMed  Google Scholar 

  111. Motherwell, W. B., Bingham, M. J. & Six, Y. Recent progress in the design and synthesis of artificial enzymes. Tetrahedron 22, 4663–4686 (2001).

    Google Scholar 

  112. Stevenson, J. D. & Thomas, N. R. Catalytic antibodies and other biomimetic catalysts. Nat. Prod. Rep. 17, 535–577 (2000).

    CAS  PubMed  Google Scholar 

  113. Huang, Y. Y., Ren, J. S. & Qu, X. G. Nanozymes: classification, catalytic mechanisms, activity regulation, and applications. Chem. Rev. 119, 4357–4412 (2019).

    CAS  PubMed  Google Scholar 

  114. Liang, M. & Yan, X. Nanozymes: from new concepts, mechanisms, and standards to applications. Acc. Chem. Res. 52, 2190–2200 (2019).

    CAS  PubMed  Google Scholar 

  115. Frechet, J. M. J. Dendrimers and supramolecular chemistry. Proc. Natl Acad. Sci. USA 99, 4782–4787 (2002).

    CAS  PubMed  Google Scholar 

  116. Astruc, D., Boisselier, E. & Ornelas, C. Dendrimers designed for functions: from physical, photophysical, and supramolecular properties to applications in sensing, catalysis, molecular electronics, photonics, and nanomedicine. Chem. Rev. 110, 1857–1959 (2010).

    CAS  PubMed  Google Scholar 

  117. Dwars, T., Paetzold, E. & Oehme, G. Reactions in micellar systems. Angew. Chem. Int. Ed. 44, 7174–7199 (2005).

    CAS  Google Scholar 

  118. Shultz, M. J., Vu, T. H., Meyer, B. & Bisson, P. Water: A responsive small molecule. Acc. Chem. Res. 45, 15–22 (2012).

    CAS  PubMed  Google Scholar 

  119. Du, Q., Superfine, R., Freysz, E. & Shen, Y. R. Vibrational spectroscopy of water at the vapor/water interface. Phys. Rev. Lett. 70, 2313 (1993).

    CAS  PubMed  Google Scholar 

  120. Wilson, M. A., Pohorille, A. & Pratt, L. R. Molecular-dynamics of the water liquid-vapor interface. J. Phys. Chem. 91, 4873–4878 (1987).

    CAS  PubMed  Google Scholar 

  121. Townsend, R. M. & Rice, S. A. Molecular dynamics studies of the liquid–vapor interface of water. J. Chem. Phys. 94, 2207–2218 (1991).

    CAS  Google Scholar 

  122. Morita, A. & Hynes, J. T. A theoretical analysis of the sum frequency generation spectrum of the water surface. Chem. Phys. 258, 371–390 (2000).

    CAS  Google Scholar 

  123. Sulpizi, M., Salanne, M., Sprik, M. & Gaigeot, M.-P. Vibrational sum frequency generation spectroscopy of the water liquid–vapor interface from density functional theory-based molecular dynamics simulations. J. Phys. Chem. Lett. 4, 83–87 (2012).

    PubMed  Google Scholar 

  124. Kuo, I. F. W. & Mundy, C. J. An ab initio molecular dynamics study of the aqueous liquid-vapor interface. Science 303, 658–660 (2004).

    CAS  PubMed  Google Scholar 

  125. Pezzotti, S., Galimberti, D. R. & Gaigeot, M.-P. 2D H-bond network as the topmost skin to the air–water interface. J. Phys. Chem. Lett. 8, 3133–3141 (2017).

    CAS  PubMed  Google Scholar 

  126. Kuo, I. F. W. et al. Structure and dynamics of the aqueous liquid–vapor interface: a comprehensive particle-based simulation study. J. Phys. Chem. B 110, 3738–3746 (2006).

    CAS  PubMed  Google Scholar 

  127. Verde, A. V., Bolhuis, P. G. & Campen, R. K. Statics and dynamics of free and hydrogen-bonded OH groups at the air/water interface. J. Phys. Chem. B 116, 9467–9481 (2012).

    Google Scholar 

  128. Taylor, R. S., Dang, L. X. & Garrett, B. C. Molecular dynamics simulations of the liquid/vapor interface of SPC/E water. J. Phys. Chem. 100, 11720–11725 (1996).

    CAS  Google Scholar 

  129. Laage, D. & Hynes, J. T. A molecular jump mechanism of water reorientation. Science 311, 832–835 (2006).

    CAS  PubMed  Google Scholar 

  130. Hsieh, C.-S. et al. Ultrafast reorientation of dangling OH groups at the air-water interface using femtosecond vibrational spectroscopy. Phys. Rev. Lett. 107, 116102 (2011).

    PubMed  Google Scholar 

  131. Xiao, S., Figge, F., Stirnemann, G., Laage, D. & McGuire, J. A. Orientational dynamics of water at an extended hydrophobic interface. J. Am. Chem. Soc. 138, 5551–5560 (2016).

    CAS  PubMed  Google Scholar 

  132. Björneholm, O. et al. Water at interfaces. Chem. Rev. 116, 7698–7726 (2016).

    PubMed  Google Scholar 

  133. Lee, C. Y., McCammon, J. A. & Rossky, P. The structure of liquid water at an extended hydrophobic surface. J. Chem. Phys. 80, 4448–4455 (1984).

    CAS  Google Scholar 

  134. Striolo, A. From interfacial water to macroscopic observables: a review. Adsorp. Sci. Technol. 29, 211–258 (2011).

    CAS  Google Scholar 

  135. Lee, S. H. & Rossky, P. J. A comparison of the structure and dynamics of liquid water at hydrophobic and hydrophilic surfaces—a molecular dynamics simulation study. J. Chem. Phys. 100, 3334–3345 (1994).

    CAS  Google Scholar 

  136. Laage, D., Elsaesser, T. & Hynes, J. T. Water dynamics in the hydration shells of biomolecules. Chem. Rev. 117, 10694–10725 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Tang, F. J. et al. Definition of free O–H groups of water at the air–water interface. J. Chem. Theor. Comput. 14, 357–364 (2018).

    CAS  Google Scholar 

  138. Buch, V., Milet, A., Vácha, R., Jungwirth, P. & Devlin, J. P. Water surface is acidic. Proc. Natl Acad. Sci. USA 104, 7342–7347 (2007).

    CAS  PubMed  Google Scholar 

  139. Beattie, J. K., Djerdjev, A. M. & Warr, G. G. The surface of neat water is basic. Faraday Discuss. 141, 31–39 (2008).

    Google Scholar 

  140. Petersen, P. B. & Saykally, R. J. Is the liquid water surface basic or acidic? Macroscopic vs. molecular-scale investigations. Chem. Phys. Lett. 458, 255–261 (2008).

    CAS  Google Scholar 

  141. Mishra, H. et al. Brønsted basicity of the air–water interface. Proc. Natl Acad. Sci. USA 109, 18679–18683 (2012).

    CAS  PubMed  Google Scholar 

  142. Saykally, R. J. Air/water interface: two sides of the acid–base story. Nat. Chem. 5, 82–84 (2013).

    CAS  PubMed  Google Scholar 

  143. Agmon, N. et al. Protons and hydroxide ions in aqueous systems. Chem. Rev. 116, 7642–7672 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Levinger, N. E. Water in confinement. Science 298, 1722–1723 (2002).

    CAS  PubMed  Google Scholar 

  145. Crans, D. C. & Levinger, N. E. The conundrum of pH in water nanodroplets: sensing pH in reverse micelle water pools. Acc. Chem. Res. 45, 1637–1645 (2012).

    CAS  PubMed  Google Scholar 

  146. Shamay, E. S., Buch, V., Parrinello, M. & Richmond, G. L. At the water’s edge: nitric acid as a weak acid. J. Am. Chem. Soc. 129, 12910–12911 (2007).

    CAS  PubMed  Google Scholar 

  147. Wang, S. Z., Bianco, R. & Hynes, J. T. Depth-dependent dissociation of nitric acid at an aqueous surface: Car–Parrinello molecular dynamics. J. Phys. Chem. A 113, 1295–1307 (2009).

    CAS  PubMed  Google Scholar 

  148. Baer, M. D., Tobias, D. J. & Mundy, C. J. Investigation of interfacial and bulk dissociation of HBr, HCl, and HNO3 using density functional theory-based molecular dynamics simulations. J. Phys. Chem. C 118, 29412–29420 (2014).

    CAS  Google Scholar 

  149. Mishra, H. et al. Anions dramatically enhance proton transfer through aqueous interfaces. Proc. Natl Acad. Sci. USA 109, 10228–10232 (2012).

    CAS  PubMed  Google Scholar 

  150. Murdachaew, G., Nathanson, G. M., Gerber, R. B. & Halonen, L. Deprotonation of formic acid in collisions with a liquid water surface studied by molecular dynamics and metadynamics simulations. Phys. Chem. Chem. Phys. 18, 29756–29770 (2016).

    CAS  PubMed  Google Scholar 

  151. Griffith, E. C. & Vaida, V. Ionization state of l-phenylalanine at the air–water interface. J. Am. Chem. Soc. 135, 710–716 (2013).

    CAS  PubMed  Google Scholar 

  152. Petersen, M. K., Iyengar, S. S., Day, T. J. F. & Voth, G. A. The hydrated proton at the water liquid/vapor interface. J. Phys. Chem. B 108, 14804–14806 (2004).

    CAS  Google Scholar 

  153. Enami, S., Hoffmann, M. R. & Colussi, A. J. Proton availability at the air/water interface. J. Phys. Chem. Lett. 1, 1599–1604 (2010).

    CAS  Google Scholar 

  154. Tabe, Y., Kikkawa, N., Takahashi, H. & Morita, A. Surface acidity of water probed by free energy calculation for trimethylamine protonation. J. Phys. Chem. C 118, 977–988 (2013).

    Google Scholar 

  155. Tse, Y. L. S., Chen, C., Lindberg, G. E., Kumar, R. & Voth, G. A. Propensity of hydrated excess protons and hydroxide anions for the air–water interface. J. Am. Chem. Soc. 137, 12610–12616 (2015).

    CAS  PubMed  Google Scholar 

  156. Wei, H. et al. Aerosol microdroplets exhibit a stable pH gradient. Proc. Natl Acad. Sci. USA 115, 7272–7277 (2018).

    CAS  PubMed  Google Scholar 

  157. Colussi, A. J. Can the pH at the air/water interface be different from the pH of bulk water? Proc. Natl Acad. Sci. USA 115, E7887–E7887 (2018).

    CAS  PubMed  Google Scholar 

  158. Vikesland, P. J., Wei, H. R., Huang, Q. S., Guo, H. Y. & Marr, L. C. Reply to Colussi: Microdroplet interfacial pH, the ongoing discussion. Proc. Natl Acad. Sci. USA 115, E7888–E7889 (2018).

    CAS  PubMed  Google Scholar 

  159. Yamaguchi, S., Kundu, A., Sen, P. & Tahara, T. Communication: Quantitative estimate of the water surface pH using heterodyne-detected electronic sum frequency generation. J. Chem. Phys. 137, 151101 (2012).

    PubMed  Google Scholar 

  160. Hub, J. S. et al. Thermodynamics of hydronium and hydroxide surface solvation. Chem. Sci. 5, 1745–1749 (2014).

    CAS  Google Scholar 

  161. Tabe, Y., Kikkawa, N., Takahashi, H. & Morita, A. Reply to “Comment on ‘Surface acidity of water probed by free energy calculation for trimethylamine protonation’”. J. Phys. Chem. C 118, 2895 (2014).

    CAS  Google Scholar 

  162. Das, S., Bonn, M. & Backus, E. H. G. The surface activity of the hydrated proton is substantially higher than that of the hydroxide ion. Angew. Chem. Int. Ed. 58, 15636–15639 (2019).

    CAS  Google Scholar 

  163. Enami, S., Stewart, L. A., Hoffmann, M. R. & Colussi, A. J. Superacid chemistry on mildly acidic water. J. Phys. Chem. Lett. 1, 3488–3493 (2010).

    CAS  Google Scholar 

  164. Colussi, A. J. & Enami, S. Comment on “Surface acidity of water probed by free energy calculation for trimethylamine protonation”. J. Phys. Chem. C 118, 2894 (2014).

    CAS  Google Scholar 

  165. Colussi, A. J. & Enami, S. Comment on “The chemical reactions in electrosprays of water do not always correspond to those at the pristine air-water interface”. Chem. Sci. 10, 8253–8255 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Beattie, J. K. The intrinsic charge on hydrophobic microfluidic substrates. Lab Chip 6, 1409–1411 (2006).

    CAS  PubMed  Google Scholar 

  167. Kuo, J. L., Ciobanu, C. V., Ojamae, L., Shavitt, I. & Singer, S. J. Short H-bonds and spontaneous self-dissociation in (H2O)20: effects of H-bond topology. J. Chem. Phys. 118, 3583–3588 (2003).

    CAS  Google Scholar 

  168. Torrent-Sucarrat, M., Ruiz-Lopez, M. F., Martins-Costa, M., Francisco, J. S. & Anglada, J. M. Protonation of water clusters induced by hydroperoxyl radical surface adsorption. Chem. Eur. J. 17, 5076–5085 (2011).

    CAS  PubMed  Google Scholar 

  169. Gallo, A. Jr et al. Reply to the ‘Comment on “The chemical reactions in electrosprays of water do not always correspond to those at the pristine air–water interface”’. Chem. Sci. 10, 8256–8261 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Tomasi, J., Mennucci, B. & Cammi, R. Quantum mechanical continuum solvation models. Chem. Rev. 105, 2999–3093 (2005).

    CAS  Google Scholar 

  171. Mozgawa, K., Mennucci, B. & Frediani, L. Solvation at surfaces and interfaces: a quantum-mechanical/ continuum approach including nonelectrostatic contributions. J. Phys. Chem. C 118, 4715–4725 (2014).

    CAS  Google Scholar 

  172. Kelly, C. P., Cramer, C. J. & Truhlar, D. G. Predicting adsorption coefficients at air–water interfaces using universal solvation and surface area models. J. Phys. Chem. B 108, 12882–12897 (2004).

    CAS  Google Scholar 

  173. Martins-Costa, M. T. C. & Ruiz-Lopez, M. F. Solvation effects on electronic polarization and reactivity indices at the air–water interface: insights from a theoretical study of cyanophenols. Theor. Chem. Acc. 134, 17 (2015).

    Google Scholar 

  174. Wang, H. F., Borguet, E. & Eisenthal, K. B. Generalized interface polarity scale based on second harmonic spectroscopy. J. Phys. Chem. B 102, 4927–4932 (1998).

    CAS  Google Scholar 

  175. Sen, S., Yamaguchi, S. & Tahara, T. Different molecules experience different polarities at the air/water interface. Angew. Chem. Int. Ed. 48, 6439–6442 (2009).

    CAS  Google Scholar 

  176. Steel, W. H. & Walker, R. A. Solvent polarity at an aqueous/alkane interface: the effect of solute identity. J. Am. Chem. Soc. 125, 1132–1133 (2003).

    CAS  PubMed  Google Scholar 

  177. Steel, W. H. & Walker, R. A. Measuring dipolar width across liquid–liquid interfaces with ‘molecular rulers’. Nature 424, 296–299 (2003).

    CAS  PubMed  Google Scholar 

  178. Costa Cabral, B. J., Coutinho, K. & Canuto, S. A first-principles approach to the dynamics and electronic properties of p-nitroaniline in water. J. Phys. Chem. A 120, 3878–3887 (2016).

    Google Scholar 

  179. Zhu, C. Q., Kais, S., Zeng, X. C., Francisco, J. S. & Gladich, I. Interfaces select specific stereochemical conformations: the isomerization of glyoxal at the liquid water interface. J. Am. Chem. Soc. 139, 27–30 (2017).

    CAS  PubMed  Google Scholar 

  180. Zhong, J. et al. Tuning the stereoselectivity and solvation selectivity at interfacial and bulk environments by changing solvent polarity: isomerization of glyoxal in different solvent environments. J. Am. Chem. Soc. 140, 5535–5543 (2018).

    CAS  PubMed  Google Scholar 

  181. Liyana-Arachchi, T. P. et al. Molecular simulations of green leaf volatiles and atmospheric oxidants on air/water interfaces. Phys. Chem. Chem. Phys. 15, 3583–3592 (2013).

    CAS  PubMed  Google Scholar 

  182. Hub, J. S., Caleman, C. & van der Spoel, D. Organic molecules on the surface of water droplets - an energetic perspective. Phys. Chem. Chem. Phys. 14, 9537–9545 (2012).

    CAS  PubMed  Google Scholar 

  183. Vácha, R., Slavíček, P., Mucha, M., Finlayson-Pitts, B. J. & Jungwirth, P. Adsorption of atmospherically relevant gases at the air/water interface: free energy profiles of aqueous solvation of N2, O2, O3, OH, H2O, HO2, and H2O2. J. Phys. Chem. A 108, 11573–11579 (2004).

    Google Scholar 

  184. Roeselová, M., Vieceli, J., Dang, L. X., Garrett, B. C. & Tobias, D. J. Hydroxyl radical at the air–water interface. J. Am. Chem. Soc. 126, 16308–16309 (2004).

    PubMed  Google Scholar 

  185. Vieceli, J. et al. Molecular dynamics simulations of atmospheric oxidants at the air–water interface: solvation and accommodation of OH and O3. J. Phys. Chem. B 109, 15876–15892 (2005).

    CAS  PubMed  Google Scholar 

  186. Martins-Costa, M. T. C., Anglada, J. M., Francisco, J. S. & Ruiz-Lopez, M. Reactivity of atmospherically relevant small radicals at the air–water interface. Angew. Chem. Int. Ed. 51, 5413–5417 (2012).

    CAS  Google Scholar 

  187. Martins-Costa, M. T. C., Anglada, J. M., Francisco, J. S. & Ruiz-Lopez, M. F. Reactivity of volatile organic compounds at the surface of a water droplet. J. Am. Chem. Soc. 134, 11821–11827 (2012).

    CAS  PubMed  Google Scholar 

  188. Anglada, J. M., Martins-Costa, M., Ruiz-López, M. F. & Francisco, J. S. Spectroscopic signatures of ozone at the air–water interface and photochemistry implications. Proc. Natl Acad. Sci. USA 111, 11618–11623 (2014).

    CAS  PubMed  Google Scholar 

  189. Tobias, D. J., Stern, A. C., Baer, M. D., Levin, Y. & Mundy, C. J. Simulation and theory of ions at atmospherically relevant aqueous liquid-air interfaces. Annu. Rev. Phys. Chem. 64, 339–359 (2013).

    CAS  PubMed  Google Scholar 

  190. Martins-Costa, M. T. C. & Ruiz-López, M. F. in Quantum Modeling of Complex Molecular Systems (eds Rivail, J.-L., Ruiz-Lopez, M. F. & Assfeld, X.) 303–324 (Springer, 2015).

  191. Donovan, M. A. et al. Ultrafast reorientational dynamics of leucine at the air–water interface. J. Am. Chem. Soc. 138, 5226–5229 (2016).

    CAS  PubMed  Google Scholar 

  192. Levin, Y. & dos Santos, A. P. Ions at hydrophobic interfaces. J. Phys. Condens. Matt. 26, 203101 (2014).

    Google Scholar 

  193. Sun, L., Li, X., Tu, Y. Q. & Agren, H. Origin of ion selectivity at the air/water interface. Phys. Chem. Chem. Phys. 17, 4311–4318 (2015).

    CAS  PubMed  Google Scholar 

  194. Onsager, L. & Samaras, N. N. T. The surface tension of Debye-Hückel electrolytes. J. Chem. Phys. 2, 528–536 (1934).

    CAS  Google Scholar 

  195. Markin, V. S. & Volkov, A. G. Quantitative theory of surface tension and surface potential of aqueous solutions of electrolytes. J. Phys. Chem. B 106, 11810–11817 (2002).

    CAS  Google Scholar 

  196. Petersen, P. B. & Saykally, R. J. On the nature of ions at the liquid water surface. Annu. Rev. Phys. Chem. 57, 333–364 (2006).

    CAS  PubMed  Google Scholar 

  197. Netz, R. R. & Horinek, D. Progress in modeling of ion effects at the vapor/water interface. Annu. Rev. Phys. Chem. 63, 401–418 (2012).

    CAS  PubMed  Google Scholar 

  198. Wise, P. K. & Ben-Amotz, D. Interfacial adsorption of neutral and ionic solutes in a water droplet. J. Phys. Chem. B 122, 3447–3453 (2018).

    CAS  PubMed  Google Scholar 

  199. Jungwirth, P. & Winter, B. Ions at aqueous interfaces: from water surface to hydrated proteins. Annu. Rev. Phys. Chem. 59, 343–366 (2008).

    CAS  PubMed  Google Scholar 

  200. Levin, Y., dos Santos, A. P. & Diehl, A. Ions at the air-water interface: an end to a hundred-year-old mystery? Phys. Rev. Lett. 103, 257802 (2009).

    PubMed  Google Scholar 

  201. Otten, D. E., Shaffer, P. R., Geissler, P. L. & Saykally, R. J. Elucidating the mechanism of selective ion adsorption to the liquid water surface. Proc. Natl Acad. Sci. USA 109, 701–705 (2012).

    CAS  PubMed  Google Scholar 

  202. Duignan, T. T., Parsons, D. F. & Ninham, B. W. Ion interactions with the air–water interface using a continuum solvent model. J. Phys. Chem. B 118, 8700–8710 (2014).

    CAS  PubMed  Google Scholar 

  203. Wang, R. & Wang, Z. G. Continuous self-energy of ions at the dielectric interface. Phys. Rev. Lett. 112, 136101 (2014).

    PubMed  Google Scholar 

  204. Sagar, D. M., Bain, C. D. & Verlet, J. R. R. Hydrated electrons at the water/air interface. J. Am. Chem. Soc. 132, 6917–6919 (2010).

    CAS  PubMed  Google Scholar 

  205. Siefermann, K. R. et al. Binding energies, lifetimes and implications of bulk and interface solvated electrons in water. Nat. Chem. 2, 274–279 (2010).

    CAS  PubMed  Google Scholar 

  206. Gaiduk, A. P., Pham, T. A., Govoni, M., Paesani, F. & Galli, G. Electron affinity of liquid water. Nat. Commun. 9, 247 (2018).

    PubMed  PubMed Central  Google Scholar 

  207. Ben-Amotz, D. Interfacial solvation thermodynamics. J. Phys. Condens. Matt. 28, 414013 (2016).

    Google Scholar 

  208. Tong, Y., Zhang, I. Y. & Campen, R. K. Experimentally quantifying anion polarizability at the air/water interface. Nat. Commun. 9, 1313 (2018).

    PubMed  PubMed Central  Google Scholar 

  209. Cheng, J., Vecitis, C. D., Hoffmann, M. R. & Colussi, A. J. Experimental anion affinities for the air/water interface. J. Phys. Chem. B 110, 25598–25602 (2006).

    CAS  PubMed  Google Scholar 

  210. Beck, T. L. The influence of water interfacial potentials on ion hydration in bulk water and near interfaces. Chem. Phys. Lett. 561, 1–13 (2013).

    Google Scholar 

  211. Kathmann, S. M., Kuo, I. F. W. & Mundy, C. J. Electronic effects on the surface potential at the vapor–liquid interface of water. J. Am. Chem. Soc. 130, 16556–16561 (2008).

    CAS  PubMed  Google Scholar 

  212. Caleman, C., Hub, J. S., van Maaren, P. J. & van der Spoel, D. Atomistic simulation of ion solvation in water explains surface preference of halides. Proc. Natl Acad. Sci. USA 108, 6838–6842 (2011).

    CAS  Google Scholar 

  213. Henriksen, N. E. & Hansen, F. Y. Theories of Molecular Reaction Dynamics. The Microscopic Foundation of Chemical Kinetics (Oxford Univ. Press, 2008).

  214. Jung, Y. S. & Marcus, R. A. Protruding interfacial OH groups and ‘on-water’ heterogeneous catalysis. J. Phys. Condens. Matt. 22, 284117 (2010).

    Google Scholar 

  215. Beattie, J. K., McErlean, C. S. P. & Phippen, C. B. W. The mechanism of on-water catalysis. Chem. Eur. J. 16, 8972–8974 (2010).

    CAS  PubMed  Google Scholar 

  216. Meir, R., Chen, H., Lai, W. Z. & Shaik, S. Oriented electric fields accelerate Diels–Alder reactions and control the endo/exo selectivity. ChemPhysChem 11, 301–310 (2010).

    CAS  PubMed  Google Scholar 

  217. Aragones, A. C. et al. Electrostatic catalysis of a Diels–Alder reaction. Nature 531, 88–91 (2016).

    CAS  PubMed  Google Scholar 

  218. Ruiz-López, M. F., Assfeld, X., García, J. I., Mayoral, J. A. & Salvatella, L. Solvent effects on the mechanism and selectivities of asymmetric Diels-Alder reactions. J. Am. Chem. Soc. 115, 8780–8787 (1993).

    Google Scholar 

  219. Geerlings, P., De Proft, F. & Langenaeker, W. Conceptual density functional theory. Chem. Rev. 103, 1793–1874 (2003).

    CAS  PubMed  Google Scholar 

  220. MacRitchie, F. Chemistry at Interfaces (Academic, 1990).

  221. Manna, A. & Kumar, A. Why does water accelerate organic reactions under heterogeneous condition? J. Phys. Chem. A 117, 2446–2454 (2013).

    CAS  PubMed  Google Scholar 

  222. Thomas, L. L., Tirado-Rives, J. & Jorgensen, W. L. Quantum mechanical/molecular mechanical modeling finds Diels–Alder reactions are accelerated less on the surface of water than in water. J. Am. Chem. Soc. 132, 3097–3104 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  223. Karhan, K., Khaliullin, R. Z. & Kuhne, T. D. On the role of interfacial hydrogen bonds in “on-water” catalysis. J. Chem. Phys. 141, 22D528 (2014).

    PubMed  Google Scholar 

  224. Acevedo, O. & Armacost, K. Claisen rearrangements: insight into solvent effects and “on water” reactivity from QM/MM simulations. J. Am. Chem. Soc. 132, 1966–1975 (2010).

    CAS  PubMed  Google Scholar 

  225. Zheng, Y. Y. & Zhang, J. P. Catalysis in the oil droplet/water interface for aromatic Claisen rearrangement. J. Phys. Chem. A 114, 4325–4333 (2010).

    CAS  PubMed  Google Scholar 

  226. Benjamin, I. Reaction dynamics at liquid interfaces. Annu. Rev. Phys. Chem. 66, 165–188 (2015).

    CAS  PubMed  Google Scholar 

  227. Vöhringer-Martinez, E. & Toro-Labbé, A. The mean reaction force: a method to study the influence of the environment on reaction mechanisms. J. Chem. Phys. 135, 064505 (2011).

    PubMed  Google Scholar 

  228. Martins-Costa, M. T. C., Anglada, J. M., Francisco, J. S. & Ruiz-López, M. F. Impacts of cloud water droplets on the OH production rate from peroxide photolysis. Phys. Chem. Chem. Phys. 19, 31621–31627 (2017).

    CAS  PubMed  Google Scholar 

  229. Martins-Costa, M. T. C., Anglada, J. M., Francisco, J. S. & Ruiz-López, M. F. Photochemistry of SO2 at the air–water interface: a source of OH and HOSO radicals. J. Am. Chem. Soc. 140, 12341–12344 (2018).

    CAS  PubMed  Google Scholar 

  230. Martins-Costa, M. T. C., Anglada, J. M., Francisco, J. S. & Ruiz-López, M. F. Theoretical investigation of the photoexcited NO2+H2O reaction at the air–water interface and its atmospheric implications. Chem. Eur. J. 25, 13899–13904 (2019).

    CAS  PubMed  Google Scholar 

  231. Partanen, L., Murdachaew, G., Gerber, R. B. & Halonen, L. Temperature and collision energy effects on dissociation of hydrochloric acid on water surfaces. Phys. Chem. Chem. Phys. 18, 13432–13442 (2016).

    CAS  PubMed  Google Scholar 

  232. Colussi, A. J. et al. Tropospheric aerosol as a reactive intermediate. Faraday Discuss. 165, 407–420 (2013).

    CAS  PubMed  Google Scholar 

  233. Martins-Costa, M. T. C. & Ruiz-Lopez, M. F. Amino acid capture by aqueous interfaces. Implications for biological uptake. J. Phys. Chem. B 117, 12469–12474 (2013).

    CAS  PubMed  Google Scholar 

  234. Martins-Costa, M. T. C. & Ruiz-López, M. F. Highly accurate computation of free energies in complex systems through horsetail QM/MM molecular dynamics combined with free-energy perturbation theory. Theor. Chem. Acc. 136, 50 (2017).

    Google Scholar 

  235. Strnad, M. et al. Molecular dynamics simulations of elementary chemical processes in liquid water using combined density functional and molecular mechanics potentials. II. Charge separation processes. J. Chem. Phys. 106, 3643–3657 (1997).

    CAS  Google Scholar 

  236. Woodcock, H. L. III et al. Interfacing Q-Chem and CHARMM to perform QM/MM reaction path calculations. J. Comput. Chem. 28, 1485–1502 (2007).

    CAS  PubMed  Google Scholar 

  237. Mondal, S. K., Yamaguchi, S. & Tahara, T. Molecules at the air/water interface experience a more inhomogeneous solvation environment than in bulk solvents: a quantitative band shape analysis of interfacial electronic spectra obtained by HD-ESFG. J. Phys. Chem. C 115, 3083–3089 (2011).

    CAS  Google Scholar 

  238. Ohmine, I. & Saito, S. Water dynamics: fluctuation, relaxation, and chemical reactions in hydrogen bond network rearrangement. Acc. Chem. Res. 32, 741–749 (1999).

    CAS  Google Scholar 

  239. Ceriotti, M. et al. Nuclear quantum effects in water and aqueous systems: experiment, theory, and current challenges. Chem. Rev. 116, 7529–7550 (2016).

    CAS  PubMed  Google Scholar 

  240. Pereyaslavets, L. et al. On the importance of accounting for nuclear quantum effects in ab initio calibrated force fields in biological simulations. Proc. Natl Acad. Sci. USA 115, 8878–8882 (2018).

    CAS  PubMed  Google Scholar 

  241. Shrestha, B. R. et al. Nuclear quantum effects in hydrophobic nanoconfinement. J. Phys. Chem. Lett. 10, 5530–5535 (2019).

    CAS  PubMed  Google Scholar 

  242. Martins-Costa, M. T. C., Anglada, J. M. & Ruiz-López, M. F. Computational insights into the CH3Cl+OH chemical reaction dynamics at the air–water interface. ChemPhysChem 18, 2747–2755 (2017).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

M.F.R.-L. and M.T.C.M.-C. are grateful to the French CINES (project lct2550) for providing computational resources. J.M.A. thanks the Generalitat de Catalunya (grant 2017SGR348) for financial support.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to researching data for the article, discussion of content, and review and editing of the manuscript before submission. M.F.R.-L. wrote the initial version of the manuscript.

Corresponding author

Correspondence to Manuel F. Ruiz-Lopez.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Chemistry thanks H. Mishra and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruiz-Lopez, M.F., Francisco, J.S., Martins-Costa, M.T.C. et al. Molecular reactions at aqueous interfaces. Nat Rev Chem 4, 459–475 (2020). https://doi.org/10.1038/s41570-020-0203-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-020-0203-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing