Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Exploiting chemistry and molecular systems for quantum information science

Abstract

The power of chemistry to prepare new molecules and materials has driven the quest for new approaches to solve problems having global societal impact, such as in renewable energy, healthcare and information science. In the latter case, the intrinsic quantum nature of the electronic, nuclear and spin degrees of freedom in molecules offers intriguing new possibilities to advance the emerging field of quantum information science. In this Perspective, which resulted from discussions by the co-authors at a US Department of Energy workshop held in November 2018, we discuss how chemical systems and reactions can impact quantum computing, communication and sensing. Hierarchical molecular design and synthesis, from small molecules to supramolecular assemblies, combined with new spectroscopic probes of quantum coherence and theoretical modelling of complex systems, offer a broad range of possibilities to realize practical quantum information science applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Molecular qubit candidates.
Fig. 2: Remote control of chemical properties using optical microcavities.
Fig. 3: Assembly of molecules to meta-structures for applications in quantum information science.
Fig. 4: Ultrafast spectroscopy using sequences of ultrashort pulses prepares coherent superpositions of electronic and vibrational states.

Similar content being viewed by others

References

  1. Divincenzo, D. P. The physical implementation of quantum computation. Fortschr. Phys. 48, 771–783 (2000).

    Google Scholar 

  2. Nielsen, M. A., Chuang, I. L. Quantum Computation and Quantum Information (Cambridge Univ. Press, 2000).

  3. Devoret, M. H. & Schoelkopf, R. J. Superconducting circuits for quantum information: an outlook. Science 339, 1169–1174 (2013).

    CAS  PubMed  Google Scholar 

  4. Koch, J. et al. Charge-insensitive qubit design derived from the Cooper pair box. Phys. Rev. A 76, 042319 (2007).

    Google Scholar 

  5. Ospelkaus, C. et al. Microwave quantum logic gates for trapped ions. Nature 476, 181–184 (2011).

    CAS  PubMed  Google Scholar 

  6. Monroe, C. & Kim, J. Scaling the ion trap quantum processor. Science 339, 1164–1169 (2013).

    CAS  PubMed  Google Scholar 

  7. Cesa, A. & Martin, J. Two-qubit entangling gates between distant atomic qubits in a lattice. Phys. Rev. A 95, 052330 (2017).

    Google Scholar 

  8. Eriksson, M. A., Coppersmith, S. N. & Lagally, M. G. Semiconductor quantum dot qubits. MRS Bull. 38, 794–801 (2013).

    CAS  Google Scholar 

  9. Wang, K., Li, H.-O., Xiao, M., Cao, G. & Guo, G.-P. Spin manipulation in semiconductor quantum dots qubit. Chin. Phys. B 27, 090308 (2018).

    Google Scholar 

  10. Awschalom, D. D., Hanson, R., Wrachtrup, J. & Zhou, B. B. Quantum technologies with optically interfaced solid-state spins. Nat. Photonics 12, 516–527 (2018).

    CAS  Google Scholar 

  11. Goovaerts, E. Optically detected magnetic resonance (ODMR). eMagRes 6, 343–358 (2017).

    CAS  Google Scholar 

  12. Atzori, M. & Sessoli, R. The second quantum revolution: role and challenges of molecular chemistry. J. Am. Chem. Soc. 141, 11339–11352 (2019).

    CAS  PubMed  Google Scholar 

  13. Coronado, E. Molecular magnetism: from chemical design to spin control in molecules, materials and devices. Nat. Rev. Mater. 5, 87–104 (2020).

    Google Scholar 

  14. Aromí, G., Aguila, D., Gamez, P., Luis, F. & Roubeau, O. Design of magnetic coordination complexes for quantum computing. Chem. Soc. Rev. 41, 537–546 (2012).

    PubMed  Google Scholar 

  15. Clemente-Juan, J. M., Coronado, E. & Gaita-Ariño, A. Magnetic polyoxometalates: from molecular magnetism to molecular spintronics and quantum computing. Chem. Soc. Rev. 41, 7464–7478 (2012).

    CAS  PubMed  Google Scholar 

  16. Graham, M. J., Zadrozny, J. M., Fataftah, M. S. & Freedman, D. E. Forging solid-state qubit design principles in a molecular furnace. Chem. Mater. 29, 1885–1897 (2017).

    CAS  Google Scholar 

  17. McAdams, S. G., Ariciu, A.-M., Kostopoulos, A. K., Walsh, J. P. & Tuna, F. Molecular single-ion magnets based on lanthanides and actinides: design considerations and new advances in the context of quantum technologies. Coord. Chem. Rev. 346, 216–239 (2017).

    CAS  Google Scholar 

  18. Moreno-Pineda, E., Godfrin, C., Balestro, F., Wernsdorfer, W. & Ruben, M. Molecular spin qudits for quantum algorithms. Chem. Soc. Rev. 47, 501–513 (2018).

    CAS  PubMed  Google Scholar 

  19. Kassal, I., Whitfield, J. D., Perdomo-Ortiz, A., Yung, M. H. & Aspuru-Guzik, A. Simulating chemistry using quantum computers. Annu. Rev. Phys. Chem. 62, 185–207 (2011).

    CAS  PubMed  Google Scholar 

  20. Degen, C. L., Reinhard, F. & Cappellaro, P. Quantum sensing. Rev. Mod. Phys. 89, 035002 (2017).

    Google Scholar 

  21. Ermakova, A. et al. Detection of a few metallo-protein molecules using color centers in nanodiamonds. Nano Lett. 13, 3305–3309 (2013).

    CAS  PubMed  Google Scholar 

  22. Le Sage, D. et al. Optical magnetic imaging of living cells. Nature 496, 486–489 (2013).

    PubMed  PubMed Central  Google Scholar 

  23. Shi, F. et al. Single-protein spin resonance spectroscopy under ambient conditions. Science 347, 1135–1138 (2015).

    CAS  PubMed  Google Scholar 

  24. Lovchinsky, I. et al. Nuclear magnetic resonance detection and spectroscopy of single proteins using quantum logic. Science 351, 836–841 (2016).

    CAS  PubMed  Google Scholar 

  25. Barry, J. F. et al. Optical magnetic detection of single-neuron action potentials using quantum defects in diamond. Proc. Natl Acad. Sci. USA 113, 14133–14138 (2016).

    CAS  PubMed  Google Scholar 

  26. Simpson, D. A. et al. Non-neurotoxic nanodiamond probes for intraneuronal temperature mapping. ACS Nano 11, 12077–12086 (2017).

    CAS  Google Scholar 

  27. Wang, P. et al. Nanoscale magnetic imaging of ferritins in a single cell. Sci. Adv. 5, eaau8038 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Perunicic, V. S., Hall, L. T., Simpson, D. A., Hill, C. D. & Hollenberg, L. C. L. Towards single-molecule NMR detection and spectroscopy using single spins in diamond. Phys. Rev. B 89, 054432 (2014).

    Google Scholar 

  29. Pelliccione, M. et al. Scanned probe imaging of nanoscale magnetism at cryogenic temperatures with a single-spin quantum sensor. Nat. Nanotechnol. 11, 700–705 (2016).

    CAS  PubMed  Google Scholar 

  30. Casola, F., van der Sar, T. & Yacoby, A. Probing condensed matter physics with magnetometry based on nitrogen-vacancy centres in diamond. Nat. Rev. Mater. 3, 17088 (2018).

    CAS  Google Scholar 

  31. Doherty, M. W. et al. The nitrogen-vacancy colour centre in diamond. Phys. Rep. 528, 1–45 (2013).

    CAS  Google Scholar 

  32. Bayliss, S. L. et al. Optically addressable molecular spins for quantum information processing. Preprint at arXiv https://arxiv.org/abs/2004.07998 (2020).

  33. Ng, J. D. et al. Single-molecule investigation of initiation dynamics of an organometallic catalyst. J. Am. Chem. Soc. 138, 3876–3883 (2016).

    CAS  PubMed  Google Scholar 

  34. Awschalom, D. D., Bassett, L. C., Dzurak, A. S., Hu, E. L. & Petta, J. R. Quantum spintronics: Engineering and manipulating atom-like spins in semiconductors. Science 339, 1174–1179 (2013).

    CAS  PubMed  Google Scholar 

  35. Congreve, D. N. et al. External quantum efficiency above 100% in a singlet-exciton-fission-based organic photovoltaic cell. Science 340, 334–337 (2013).

    CAS  PubMed  Google Scholar 

  36. Ribeiro, R. F., Martinez-Martinez, L. A., Du, M., Campos-Gonzalez-Angulo, J. & Yuen-Zhou, J. Polariton chemistry: Controlling molecular dynamics with optical cavities. Chem. Sci. 9, 6325–6339 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Maser, A., Gmeiner, B., Utikal, T., Götzinger, S. & Sandoghdar, V. Few-photon coherent nonlinear optics with a single molecule. Nat. Photon. 10, 450–454 (2016).

    CAS  Google Scholar 

  38. Wang, D. et al. Turning a molecule into a coherent two-level quantum system. Nat. Phys. 15, 483–489 (2019).

    CAS  Google Scholar 

  39. Eisaman, M. D., Fan, J., Migdall, A. & Polyakov, S. V. Invited review article: Single-photon sources and detectors. Rev. Sci. Instrum. 82, 071101 (2011).

    CAS  PubMed  Google Scholar 

  40. Aspuru-Guzik, A. & Walther, P. Photonic quantum simulators. Nat. Phys. 8, 285–291 (2012).

    CAS  Google Scholar 

  41. Barzanjeh, S. et al. Microwave quantum illumination. Phys. Rev. Lett. 114, 080503 (2015).

    PubMed  Google Scholar 

  42. Kalb, N. et al. Entanglement distillation between solid-state quantum network nodes. Science 356, 928–932 (2017).

    CAS  PubMed  Google Scholar 

  43. Wernsdorfer, W. & Ruben, M. Synthetic Hilbert space engineering of molecular qudits: Isotopologue chemistry. Adv. Mater. 31, 1806687 (2019).

    Google Scholar 

  44. Teki, Y., Miyamoto, S., Iimura, K., Nakatsuji, M. & Miura, Y. Intramolecular spin alignment utilizing the excited molecular field between the triplet (S = 1) excited state and the dangling stable radicals (S = 1/2) as studied by time-resolved electron spin resonance: Observation of the excited quartet (S = 3/2) and quintet (S = 2) states on the purely organic π-conjugated spin systems. J. Am. Chem. Soc. 122, 984–985 (2000).

    CAS  Google Scholar 

  45. Giacobbe, E. M. et al. Ultrafast intersystem crossing and spin dynamics of photoexcited perylene-3,4:9,10-bis(dicarboximide) covalently linked to a nitroxide radical at fixed distances. J. Am. Chem. Soc. 131, 3700–3712 (2009).

    CAS  PubMed  Google Scholar 

  46. Weiss, L. R. et al. Strongly exchange-coupled triplet pairs in an organic semiconductor. Nat. Phys. 13, 176–181 (2017).

    CAS  Google Scholar 

  47. Nelson, J. N. et al. Zero quantum coherence in a series of covalent spin-correlated radical pairs. J. Phys. Chem. A 121, 2241–2252 (2017).

    CAS  PubMed  Google Scholar 

  48. Wu, Y. et al. Covalent radical pairs as spin qubits: Influence of rapid electron motion between two equivalent sites on spin coherence. J. Am. Chem. Soc. 140, 13011–13021 (2018).

    CAS  PubMed  Google Scholar 

  49. Olshansky, J. H., Krzyaniak, M. D., Young, R. M. & Wasielewski, M. R. Photogenerated spin-entangled qubit (radical) pairs in DNA hairpins: observation of spin delocalization and coherence. J. Am. Chem. Soc. 141, 2152–2160 (2019).

    CAS  PubMed  Google Scholar 

  50. Rugg, B. K. et al. Spin-selective photoreduction of a stable radical within a covalent donor–acceptor–radical triad. J. Am. Chem. Soc. 139, 15660–15663 (2017).

    CAS  PubMed  Google Scholar 

  51. Polizzi, N. F., Jiang, T., Beratan, D. N. & Therien, M. J. Engineering opposite electronic polarization of singlet and triplet states increases the yield of high-energy photoproducts. Proc. Natl Acad. Sci. USA 116, 14465–14470 (2019).

    CAS  PubMed  Google Scholar 

  52. Kirk, M. L. et al. Ferromagnetic nanoscale electron correlation promoted by organic spin-dependent delocalization. J. Am. Chem. Soc. 131, 18304–18313 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Tichnell, C. R., Shultz, D. A., Popescu, C. V., Sokirniy, I. & Boyle, P. D. Synthesis, characterization, and photophysical studies of an iron(III) catecholate–nitronylnitroxide spin-crossover complex. Inorg. Chem. 54, 4466–4474 (2015).

    CAS  PubMed  Google Scholar 

  54. Stein, B. W., Tichnell, C. R., Chen, J., Shultz, D. A. & Kirk, M. L. Excited state magnetic exchange interactions enable large spin polarization effects. J. Am. Chem. Soc. 140, 2221–2228 (2018).

    CAS  PubMed  Google Scholar 

  55. Nguyen, T. N. et al. Covalently linked dimer of Mn3 single-molecule magnets and retention of its structure and quantum properties in solution. J. Am. Chem. Soc. 137, 7160–7168 (2015).

    CAS  PubMed  Google Scholar 

  56. Zadrozny, J. M., Niklas, J., Poluektov, O. G. & Freedman, D. E. Millisecond coherence time in a tunable molecular electronic spin qubit. ACS Cent. Sci. 1, 488–492 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Fataftah, M. S. & Freedman, D. E. Progress towards creating optically addressable molecular qubits. Chem. Commun. 54, 13773–13781 (2018).

    CAS  Google Scholar 

  58. Paquette, M. M., Plaul, D., Kurimoto, A., Patrick, B. O. & Frank, N. L. Opto-spintronics: Photoisomerization-induced spin state switching at 300 K in photochrome cobalt–dioxolene thin films. J. Am. Chem. Soc. 140, 14990–15000 (2018).

    CAS  PubMed  Google Scholar 

  59. Krzyaniak, M. D. et al. Fast photo-driven electron spin coherence transfer: The effect of electron-nuclear hyperfine coupling on coherence dephasing. J. Mater. Chem. C 3, 7962–7967 (2015).

    CAS  Google Scholar 

  60. Yu, C.-J. et al. Long coherence times in nuclear spin-free vanadyl qubits. J. Am. Chem. Soc. 138, 14678–14685 (2016).

    CAS  PubMed  Google Scholar 

  61. Pirandola, S., Eisert, J., Weedbrook, C., Furusawa, A. & Braunstein, S. L. Advances in quantum teleportation. Nat. Photon. 9, 641–652 (2015).

    CAS  Google Scholar 

  62. Rugg, B. K. et al. Photodriven quantum teleportation of an electron spin state in a covalent donor–acceptor–radical system. Nat. Chem. 11, 981–986 (2019).

    CAS  PubMed  Google Scholar 

  63. Schweiger, A., Jeschke, G. Principles of Pulse Electron Paramagnetic Resonance 1st edn (Oxford Univ. Press, 2001).

  64. Troiani, F., Bellini, V., Candini, A., Lorusso, G. & Affronte, M. Spin entanglement in supramolecular structures. Nanotechnology 21, 274009 (2010).

    CAS  PubMed  Google Scholar 

  65. Ouyang, M. & Awschalom, D. D. Coherent spin transfer between molecularly bridged quantum dots. Science 301, 1074–1078 (2003).

    CAS  PubMed  Google Scholar 

  66. Lehmann, J., Gaita-Arin−o, A., Coronado, E. & Loss, D. Spin qubits with electrically gated polyoxometalate molecules. Nat. Nanotechnol. 2, 312–317 (2007).

    CAS  PubMed  Google Scholar 

  67. Ciccullo, F. et al. Interfacing a potential purely organic molecular quantum bit with a real-life surface. ACS Appl. Mater. Interfaces 11, 1571–1578 (2019).

    CAS  PubMed  Google Scholar 

  68. Xiao, M., Martin, I., Yablonovitch, E. & Jiang, H. W. Electrical detection of the spin resonance of a single electron in a silicon field-effect transistor. Nature 430, 435–439 (2004).

    CAS  PubMed  Google Scholar 

  69. Naaman, R. & Waldeck, D. H. Spintronics and chirality: spin selectivity in electron transport through chiral molecules. Annu. Rev. Phys. Chem. 66, 263–281 (2015).

    CAS  PubMed  Google Scholar 

  70. Müllegger, S. et al. Radio frequency scanning tunneling spectroscopy for single-molecule spin resonance. Phys. Rev. Lett. 113, 133001 (2014).

    PubMed  Google Scholar 

  71. Baumann, S. et al. Electron paramagnetic resonance of individual atoms on a surface. Science 350, 417–420 (2015).

    CAS  PubMed  Google Scholar 

  72. Chikkaraddy, R. et al. Single-molecule strong coupling at room temperature in plasmonic nanocavities. Nature 535, 127–130 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Morton, J. J. L. et al. Solid-state quantum memory using the 31P nuclear spin. Nature 455, 1085–1088 (2008).

    CAS  Google Scholar 

  74. Dutt, M. V. G. et al. Quantum register based on individual electronic and nuclear spin qubits in diamond. Science 316, 1312–1316 (2007).

    PubMed  Google Scholar 

  75. Boehme, C. & McCamey, D. R. Nuclear-spin quantum memory poised to take the lead. Science 336, 1239–1240 (2012).

    CAS  PubMed  Google Scholar 

  76. Hussain, R. et al. Coherent manipulation of a molecular Ln-based nuclear qudit coupled to an electron qubit. J. Am. Chem. Soc. 140, 9814–9818 (2018).

    CAS  PubMed  Google Scholar 

  77. Godfrin, C. et al. Operating quantum states in single magnetic molecules: Implementation of Grover’s quantum algorithm. Phys. Rev. Lett. 119, 187702 (2017).

    CAS  PubMed  Google Scholar 

  78. Morton, J. J. L. & Bertet, P. Storing quantum information in spins and high-sensitivity ESR. J. Magn. Reson. 287, 128–139 (2018).

    CAS  PubMed  Google Scholar 

  79. Skourtis, S. S., Beratan, D. N. & Waldeck, D. H. Coherence in electron transfer pathways. Procedia Chem. 3, 99–104 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Lin, J., Balamurugan, D., Zhang, P., Skourtis, S. S. & Beratan, D. N. Two-electron transfer pathways. J. Phys. Chem. B 119, 7589–7597 (2015).

    CAS  PubMed  Google Scholar 

  81. Ariciu, A.-M. et al. Engineering electronic structure to prolong relaxation times in molecular qubits by minimising orbital angular momentum. Nat. Commun. 10, 3330 (2019).

    PubMed  PubMed Central  Google Scholar 

  82. Hiraoka, R. et al. Single-molecule quantum dot as a Kondo simulator. Nat. Commun. 8, 16012 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Ferrando-Soria, J. et al. A modular design of molecular qubits to implement universal quantum gates. Nat. Commun. 7, 11377 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Shiddiq, M. et al. Enhancing coherence in molecular spin qubits via atomic clock transitions. Nature 531, 348–351 (2016).

    CAS  PubMed  Google Scholar 

  85. Atzori, M. et al. Room-temperature quantum coherence and Rabi oscillations in vanadyl phthalocyanine: Toward multifunctional molecular spin qubits. J. Am. Chem. Soc. 138, 2154–2157 (2016).

    CAS  PubMed  Google Scholar 

  86. Yamamoto, S. et al. Adiabatic quantum computing with spin qubits hosted by molecules. Phys. Chem. Chem. Phys. 17, 2742–2749 (2015).

    CAS  PubMed  Google Scholar 

  87. Bader, K. et al. Room temperature quantum coherence in a potential molecular qubit. Nat. Commun. 5, 5304 (2014).

    CAS  PubMed  Google Scholar 

  88. Timco, G. A. et al. Engineering the coupling between molecular spin qubits by coordination chemistry. Nat. Nanotechnol. 4, 173–178 (2009).

    CAS  PubMed  Google Scholar 

  89. Trif, M., Troiani, F., Stepanenko, D. & Loss, D. Spin-electric coupling in molecular magnets. Phys. Rev. Lett. 101, 217201 (2008).

    PubMed  Google Scholar 

  90. Bertaina, S. et al. Quantum oscillations in a molecular magnet. Nature 453, 203–206 (2008).

    CAS  PubMed  Google Scholar 

  91. Wernsdorfer, W., Aliaga-Alcalde, N., Hendrickson, D. N. & Christou, G. Exchange-biased quantum tunnelling in a supramolecular dimer of single-molecule magnets. Nature 416, 406–409 (2002).

    PubMed  Google Scholar 

  92. Harneit, W. Fullerene-based electron-spin quantum computer. Phys. Rev. A 65, 032322 (2002).

    Google Scholar 

  93. Cina, J. A. & Harris, R. A. Superpositions of handed wave functions. Science 267, 832–833 (1995).

    CAS  PubMed  Google Scholar 

  94. Maierle, C. S., Lidar, D. A. & Harris, R. A. How to teleport superpositions of chiral amplitudes. Phys. Rev. Lett. 81, 5928–5931 (1998).

    CAS  Google Scholar 

  95. Ullah, A. et al. In silico molecular engineering of dysprosocenium-based complexes to decouple spin energy levels from molecular vibrations. J. Phys. Chem. Lett. 10, 7678–7683 (2019).

    CAS  PubMed  Google Scholar 

  96. Schrauben, J. N., Dillman, K. L., Beck, W. F. & McCusker, J. K. Vibrational coherence in the excited state dynamics of Cr(acac)3: probing the reaction coordinate for ultrafast intersystem crossing. Chem. Sci. 1, 405–410 (2010).

    CAS  Google Scholar 

  97. Delor, M. et al. Directing path of light-induced electron transfer at molecular fork using vibrational excitation. Nat. Chem. 9, 1099–1104 (2017).

    CAS  PubMed  Google Scholar 

  98. Ebbesen, T. W. Hybrid light–matter states in a molecular and material science perspective. Acc. Chem. Res. 49, 2403–2412 (2016).

    CAS  PubMed  Google Scholar 

  99. Daskalakis, K. S., Maier, S. A., Murray, R. & Kéna-Cohen, S. Nonlinear interactions in an organic polariton condensate. Nat. Mater. 13, 271–278 (2014).

    CAS  PubMed  Google Scholar 

  100. Shapiro, M., Brumer, P. Quantum Control of Molecular Processes (Wiley, 2012).

  101. Hartmann, M. J., Brandao, F. & Plenio, M. B. Strongly interacting polaritons in coupled arrays of cavities. Nat. Phys. 2, 849–855 (2006).

    CAS  Google Scholar 

  102. Gu, B. & Franco, I. Optical absorption properties of laser-driven matter. Phys. Rev. A 98, 063412 (2018).

    CAS  Google Scholar 

  103. Du, M., Ribeiro, R. F. & Yuen-Zhou, J. Remote control of chemistry in optical cavities. Chem 5, 1167–1181 (2019).

    CAS  Google Scholar 

  104. Stasiw, D. E. et al. Determining the conformational landscape of σ and π coupling using para-phenylene and “Aviram–Ratner” bridges. J. Am. Chem. Soc. 137, 9222–9225 (2015).

    CAS  PubMed  Google Scholar 

  105. Bencini, A., Gatteschi, D. Electron Paramagnetic Resonance of Exchange Coupled Systems (Springer, 1990).

  106. Buchner, M., Höfler, K., Henne, B., Ney, V. & Ney, A. Tutorial: basic principles, limits of detection, and pitfalls of highly sensitive squid magnetometry for nanomagnetism and spintronics. J. Appl. Phys. 124, 161101 (2018).

    Google Scholar 

  107. Liu, X. & Hersam, M. C. 2D materials for quantum information science. Nat. Rev. Mater. 4, 669–684 (2019).

    Google Scholar 

  108. Yamabayashi, T. et al. Scaling up electronic spin qubits into a three-dimensional metal–organic framework. J. Am. Chem. Soc. 140, 12090–12101 (2018).

    CAS  PubMed  Google Scholar 

  109. Hasan, M. Z. & Kane, C. L. Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

    CAS  Google Scholar 

  110. Su, W. P., Schrieffer, J. R. & Heeger, A. J. Solitons in polyacetylene. Phys. Rev. Lett. 42, 1698–1701 (1979).

    CAS  Google Scholar 

  111. Kaushik, S., Kharzeev, D. E. & Philip, E. J. Chiral magnetic photocurrent in Dirac and Weyl materials. Phys. Rev. B 99, 075150 (2019).

    CAS  Google Scholar 

  112. Kulkarni, C. et al. Highly efficient and tunable filtering of electrons’ spin by supramolecular chirality of nanofiber-based materials. Adv. Mater. 32, 1904965 (2020).

    CAS  Google Scholar 

  113. Halperin, B. I. Quantized Hall conductance, current-carrying edge states, and the existence of extended states in a two-dimensional disordered potential. Phys. Rev. B 25, 2185–2190 (1982).

    Google Scholar 

  114. Chisnell, R. et al. Topological magnon bands in a Kagome lattice ferromagnet. Phys. Rev. Lett. 115, 147201 (2015).

    CAS  PubMed  Google Scholar 

  115. Wang, Z. F., Su, N. & Liu, F. Prediction of a two-dimensional organic topological insulator. Nano Lett. 13, 2842–2845 (2013).

    CAS  PubMed  Google Scholar 

  116. Yuen-Zhou, J., Saikin, S. K., Yao, N. Y. & Aspuru-Guzik, A. Topologically protected excitons in porphyrin thin films. Nat. Mater. 13, 1026 (2014).

    CAS  PubMed  Google Scholar 

  117. Yuen-Zhou, J. et al. Plexciton Dirac points and topological modes. Nat. Commun. 7, 11783 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Le Roux, F., Taylor, R. A. & Bradley, D. D. C. Enhanced and polarization dependent coupling for photoaligned liquid crystalline conjugated polymer microcavities. ACS Photonics 7, 746–758 (2020).

    Google Scholar 

  119. Gao, W., Li, X., Bamba, M. & Kono, J. Continuous transition between weak and ultrastrong coupling through exceptional points in carbon nanotube microcavity exciton–polaritons. Nat. Photon. 12, 362–367 (2018).

    CAS  Google Scholar 

  120. Beenakker, C. W. J. Search for Majorana fermions in superconductors. Annu. Rev. Condens. Matter Phys. 4, 113–136 (2013).

    CAS  Google Scholar 

  121. Arovas, D. P., Schrieffer, R., Wilczek, F. & Zee, A. Statistical mechanics of anyons. Nucl. Phys. B 251, 117–126 (1985).

    Google Scholar 

  122. Balents, L. Spin liquids in frustrated magnets. Nature 464, 199–208 (2010).

    CAS  PubMed  Google Scholar 

  123. Han, T.-H. et al. Fractionalized excitations in the spin-liquid state of a Kagome-lattice antiferromagnet. Nature 492, 406–410 (2012).

    CAS  PubMed  Google Scholar 

  124. Vedral, V. Quantum entanglement. Nat. Phys. 10, 256–258 (2014).

    CAS  Google Scholar 

  125. Ollivier, H. & Zurek, W. H. Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001).

    PubMed  Google Scholar 

  126. Scholes, G. D. et al. Using coherence to enhance function in chemical and biophysical systems. Nature 543, 647–656 (2017).

    CAS  PubMed  Google Scholar 

  127. Lvovsky, A. I. & Raymer, M. G. Continuous-variable optical quantum-state tomography. Rev. Mod. Phys. 81, 299–332 (2009).

    Google Scholar 

  128. Esposito, M. et al. Photon number statistics uncover the fluctuations in non-equilibrium lattice dynamics. Nat. Commun. 6, 10249 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Dorfman, K. E., Schlawin, F. & Mukamel, S. Nonlinear optical signals and spectroscopy with quantum light. Rev. Mod. Phys. 88, 045008 (2016).

    Google Scholar 

  130. Yuen-Zhou, J., Krich, J. J., Mohseni, M. & Aspuru-Guzik, A. Quantum state and process tomography of energy transfer systems via ultrafast spectroscopy. Proc. Natl Acad. Sci. USA 108, 17615–17620 (2011).

    CAS  PubMed  Google Scholar 

  131. Lewis, K. L. M. & Ogilvie, J. P. Probing photosynthetic energy and charge transfer with two-dimensional electronic spectroscopy. J. Phys. Chem. Lett. 3, 503–510 (2012).

    CAS  PubMed  Google Scholar 

  132. Tiwari, V., Peters, W. K. & Jonas, D. M. Electronic resonance with anticorrelated pigment vibrations drives photosynthetic energy transfer outside the adiabatic framework. Proc. Natl Acad. Sci. USA 110, 1203–1208 (2013).

    CAS  PubMed  Google Scholar 

  133. Jumper, C. C., Rafiq, S., Wang, S. & Scholes, G. D. From coherent to vibronic light harvesting in photosynthesis. Curr. Opin. Chem. Biol. 47, 39–46 (2018).

    CAS  PubMed  Google Scholar 

  134. Chin, A. W. et al. The role of non-equilibrium vibrational structures in electronic coherence and recoherence in pigment–protein complexes. Nat. Phys. 9, 113–118 (2013).

    CAS  Google Scholar 

  135. Cassette, E., Pensack, R. D., Mahler, B. & Scholes, G. D. Room-temperature exciton coherence and dephasing in two-dimensional nanostructures. Nat. Commun. 6, 6086 (2015).

    CAS  PubMed  Google Scholar 

  136. Tekavec, P. F., Lott, G. A. & Marcus, A. H. Fluorescence-detected two-dimensional electronic coherence spectroscopy by acousto-optic phase modulation. J. Chem. Phys. 127, 214307 (2007).

    PubMed  Google Scholar 

  137. Tiwari, V. et al. Spatially-resolved fluorescence-detected two-dimensional electronic spectroscopy probes varying excitonic structure in photosynthetic bacteria. Nat. Commun. 9, 4219 (2018).

    PubMed  PubMed Central  Google Scholar 

  138. Liebel, M., Toninelli, C. & van Hulst, N. F. Room-temperature ultrafast nonlinear spectroscopy of a single molecule. Nat. Photon. 12, 45–49 (2018).

    CAS  Google Scholar 

  139. Wiseman, H. M., Milburn, G. J. Quantum Measurement and Control (Cambridge Univ. Press, 2009).

  140. Giovannetti, V., Lloyd, S. & Maccone, L. Advances in quantum metrology. Nat. Photon. 5, 222–229 (2011).

    CAS  Google Scholar 

  141. Wolfowicz, G. & Morton, J. J. L. Pulse techniques for quantum information processing. eMagRes 5, 1515–1528 (2016).

    CAS  Google Scholar 

  142. Spindler, P. E., Schöps, P., Bowen, A. M., Endeward, B. & Prisner, T. F. Shaped pulses in EPR. Emagres 5, 1477–1492 (2007).

    Google Scholar 

  143. Khaneja, N., Reiss, T., Kehlet, C., Schulte-Herbrüggen, T. & Glaser, S. J. Optimal control of coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms. J. Magn. Reson. 172, 296–305 (2005).

    CAS  PubMed  Google Scholar 

  144. Miura, T. & Wasielewski, M. R. Manipulating photogenerated radical ion pair lifetimes in wirelike molecules using microwave pulses: Molecular spintronic gates. J. Am. Chem. Soc. 133, 2844–2847 (2011).

    CAS  PubMed  Google Scholar 

  145. Villabona-Monsalve, J. P., Varnavski, O., Palfey, B. A. & Goodson, T. Two-photon excitation of flavins and flavoproteins with classical and quantum light. J. Am. Chem. Soc. 140, 14562–14566 (2018).

    CAS  PubMed  Google Scholar 

  146. Harpham, M. R., Süzer, Ö., Ma, C.-Q., Bäuerle, P. & Goodson, T. Thiophene dendrimers as entangled photon sensor materials. J. Am. Chem. Soc. 131, 973–979 (2009).

    CAS  PubMed  Google Scholar 

  147. Pittman, T. B., Shih, Y. H., Strekalov, D. V. & Sergienko, A. V. Optical imaging by means of two-photon quantum entanglement. Phys. Rev. A 52, R3429–R3432 (1995).

    CAS  PubMed  Google Scholar 

  148. Ono, T., Okamoto, R. & Takeuchi, S. An entanglement-enhanced microscope. Nat. Commun. 4, 2426 (2013).

    PubMed  Google Scholar 

  149. D’Angelo, M., Chekhova, M. V. & Shih, Y. Two-photon diffraction and quantum lithography. Phys. Rev. Lett. 87, 013602 (2001).

    PubMed  Google Scholar 

  150. Nasr, M. B., Saleh, B. E. A., Sergienko, A. V. & Teich, M. C. Demonstration of dispersion-canceled quantum-optical coherence tomography. Phys. Rev. Lett. 91, 083601 (2003).

    PubMed  Google Scholar 

  151. Schlawin, F., Dorfman, K. E. & Mukamel, S. Entangled two-photon absorption spectroscopy. Acc. Chem. Res. 51, 2207–2214 (2018).

    CAS  PubMed  Google Scholar 

  152. Georgiades, N. P., Polzik, E. S., Edamatsu, K., Kimble, H. J. & Parkins, A. S. Nonclassical excitation for atoms in a squeezed vacuum. Phys. Rev. Lett. 75, 3426–3429 (1995).

    CAS  PubMed  Google Scholar 

  153. Lee, D.-I. & Goodson, T. Entangled photon absorption in an organic porphyrin dendrimer. J. Phys. Chem. B 110, 25582–25585 (2006).

    CAS  PubMed  Google Scholar 

  154. Guzman, A. R., Harpham, M. R., Süzer, Ö., Haley, M. M. & Goodson, T. G. Spatial control of entangled two-photon absorption with organic chromophores. J. Am. Chem. Soc. 132, 7840–7841 (2010).

    CAS  PubMed  Google Scholar 

  155. Fei, H.-B., Jost, B. M., Popescu, S., Saleh, B. E. A. & Teich, M. C. Entanglement-induced two-photon transparency. Phys. Rev. Lett. 78, 1679–1682 (1997).

    CAS  Google Scholar 

  156. Burdick, R. K. et al. Predicting and controlling entangled two-photon absorption in diatomic molecules. J. Phys. Chem. A 122, 8198–8212 (2018).

    CAS  PubMed  Google Scholar 

  157. Richter, M. & Mukamel, S. Ultrafast double-quantum-coherence spectroscopy of excitons with entangled photons. Phys. Rev. A 82, 013820 (2010).

    Google Scholar 

  158. Raymer, M. G., Marcus, A. H., Widom, J. R. & Vitullo, D. L. P. Entangled photon-pair two-dimensional fluorescence spectroscopy (EPP-2DFS). J. Phys. Chem. B 117, 15559–15575 (2013).

    CAS  PubMed  Google Scholar 

  159. Jones, R. O. Density functional theory: its origins, rise to prominence, and future. Rev. Mod. Phys. 87, 897–923 (2015).

    Google Scholar 

  160. Szalay, P. G., Müller, T., Gidofalvi, G., Lischka, H. & Shepard, R. Multiconfiguration self-consistent field and multireference configuration interaction methods and applications. Chem. Rev. 112, 108–181 (2012).

    CAS  PubMed  Google Scholar 

  161. Chan, G. K.-L. & Sharma, S. The density matrix renormalization group in quantum chemistry. Annu. Rev. Phys. Chem. 62, 465–481 (2011).

    CAS  PubMed  Google Scholar 

  162. Bartlett, R. J. & Musiał, M. Coupled-cluster theory in quantum chemistry. Rev. Mod. Phys. 79, 291 (2007).

    CAS  Google Scholar 

  163. Stanton, J. F. & Bartlett, R. J. The equation of motion coupled-cluster method. A systematic biorthogonal approach to molecular excitation energies, transition probabilities, and excited state properties. J. Chem. Phys. 98, 7029–7039 (1993).

    CAS  Google Scholar 

  164. Nooijen, M. & Snijders, J. G. Coupled cluster approach to the single-particle Green’s function. Int. J. Quantum Chem. 44, 55–83 (1992).

    Google Scholar 

  165. Peng, B. & Kowalski, K. Green’s function coupled-cluster approach: Simulating photoelectron spectra for realistic molecular systems. J. Chem. Theory Comput. 14, 4335–4352 (2018).

    CAS  PubMed  Google Scholar 

  166. Lange, M. F. & Berkelbach, T. C. On the relation between equation-of-motion coupled-cluster theory and the GW approximation. J. Chem. Theory Comput. 14, 4224–4236 (2018).

    CAS  PubMed  Google Scholar 

  167. Andersson, K., Malmqvist, P. A., Roos, B. O., Sadlej, A. J. & Wolinski, K. Second-order perturbation theory with a CASSCF reference function. J. Phys. Chem. 94, 5483–5488 (1990).

    CAS  Google Scholar 

  168. Angeli, C., Cimiraglia, R. & Malrieu, J.-P. N-electron valence state perturbation theory: a fast implementation of the strongly contracted variant. Chem. Phys. Lett. 350, 297–305 (2001).

    CAS  Google Scholar 

  169. Zhu, T., Jiménez-Hoyos, C. A., McClain, J., Berkelbach, T. C. & Chan, G. K.-C. Coupled-cluster impurity solvers for dynamical mean-field theory. Phys. Rev. B 100, 115154 (2019).

    CAS  Google Scholar 

  170. Zgid, D. & Gull, E. Finite temperature quantum embedding theories for correlated systems. New J. Phys. 19, 023047 (2017).

    Google Scholar 

  171. White, A. F. & Chan, G. K.-C. A time-dependent formulation of coupled-cluster theory for many-fermion systems at finite temperature. J. Chem. Theory Comput. 14, 5690–5700 (2018).

    CAS  PubMed  Google Scholar 

  172. Hirata, S. & Jha, P. K. Converging finite-temperature many-body perturbation theory in the grand canonical ensemble that conserves the average number of electrons. Annu. Rep. Comput. Chem. 15, 17–37 (2019).

    Google Scholar 

  173. Peng, B., Kowalski, K., Panyala, A. & Krishnamoorthy, S. Green’s function coupled cluster simulation of the near-valence ionizations of DNA-fragments. J. Chem. Phys. 152, 011101 (2020).

    CAS  PubMed  Google Scholar 

  174. Nagy, P. R. & Kállay, M. Approaching the basis set limit of CCSD(T) energies for large molecules with local natural orbital coupled-cluster methods. J. Chem. Theory Comput. 15, 5275–5298 (2019).

    CAS  PubMed  Google Scholar 

  175. Mester, D., Nagy, P. R. & Kállay, M. Reduced-scaling correlation methods for the excited states of large molecules: Implementation and benchmarks for the second-order algebraic-diagrammatic construction approach. J. Chem. Theory Comput. 15, 6111–6126 (2019).

    CAS  PubMed  Google Scholar 

  176. Peng, C., Clement, M. C. & Valeev, E. F. State-averaged pair natural orbitals for excited states: A route toward efficient equation of motion coupled-cluster. J. Chem. Theory Comput. 14, 5597–5607 (2018).

    CAS  PubMed  Google Scholar 

  177. Pavošević, F., Peng, C., Ortiz, J. V. & Valeev, E. F. Explicitly correlated formalism for second-order single-particle Green’s function. J. Chem. Phys. 147, 121101 (2017).

    PubMed  Google Scholar 

  178. Mukamel, S., Healion, D., Zhang, Y. & Biggs, J. D. Multidimensional attosecond resonant X-ray spectroscopy of molecules: Lessons from the optical regime. Annu. Rev. Phys. Chem. 64, 101–127 (2013).

    CAS  PubMed  Google Scholar 

  179. Kowalewski, M., Bennett, K., Dorfman, K. E. & Mukamel, S. Catching conical intersections in the act: Monitoring transient electronic coherences by attosecond stimulated X-ray Raman signals. Phys. Rev. Lett. 115, 193003 (2015).

    PubMed  Google Scholar 

  180. Healion, D., Zhang, Y., Biggs, J. D., Govind, N. & Mukamel, S. Entangled valence electron–hole dynamics revealed by stimulated attosecond x-ray Raman scattering. J. Phys. Chem. Lett. 3, 2326–2331 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Hornberger, K. in Entanglement and Decoherence: Foundations and Modern Trends (eds Buchleitner, A., Viviescas, C. & Tiersch, M.) 221–276 (Springer, 2009).

  182. Schwartz, B. J., Bittner, E. R., Prezhdo, O. V. & Rossky, P. J. Quantum decoherence and the isotope effect in condensed phase nonadiabatic molecular dynamics simulations. J. Chem. Phys. 104, 5942–5955 (1996).

    CAS  Google Scholar 

  183. Granucci, G., Persico, M. & Zoccante, A. Including quantum decoherence in surface hopping. J. Chem. Phys. 133, 134111 (2010).

    PubMed  Google Scholar 

  184. Akimov, A. V., Long, R. & Prezhdo, O. V. Coherence penalty functional: a simple method for adding decoherence in Ehrenfest dynamics. J. Chem. Phys. 140, 194107 (2014).

    PubMed  Google Scholar 

  185. Qi, J., Govind, N. & Anantram, M. P. The role of cytosine methylation on charge transport through a DNA strand. J. Chem. Phys. 143, 094306 (2015).

    PubMed  Google Scholar 

  186. Karplus, M., Levitt, M. & Warshel, A. Nobel prizes 2013. Angew. Chem. Int. Ed. 52, 11972 (2013).

    Google Scholar 

  187. Goodpaster, J. D., Barnes, T. A., Manby, F. R. & Miller, T. F. Density functional theory embedding for correlated wavefunctions: improved methods for open-shell systems and transition metal complexes. J. Chem. Phys. 137, 224113 (2012).

    PubMed  Google Scholar 

  188. Libisch, F., Huang, C. & Carter, E. A. Embedded correlated wavefunction schemes: Theory and applications. Acc. Chem. Res. 47, 2768–2775 (2014).

    CAS  PubMed  Google Scholar 

  189. Fedorov, D. G. & Kitaura, K. Coupled-cluster theory based upon the fragment molecular-orbital method. J. Chem. Phys. 123, 134103 (2005).

    PubMed  Google Scholar 

  190. Hirata, S. et al. Fast electron correlation methods for molecular clusters in the ground and excited states. Mol. Phys. 103, 2255–2265 (2005).

    CAS  Google Scholar 

  191. Georges, A., Kotliar, G., Krauth, W. & Rozenberg, M. J. Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions. Rev. Mod. Phys. 68, 13–125 (1996).

    CAS  Google Scholar 

  192. Lan, T. N., Kananenka, A. A. & Zgid, D. Communication: towards ab initio self-energy embedding theory in quantum chemistry. J. Chem. Phys. 143, 241102 (2015).

    PubMed  Google Scholar 

  193. Riplinger, C. & Neese, F. An efficient and near linear scaling pair natural orbital based local coupled cluster method. J. Chem. Phys. 138, 034106 (2013).

    PubMed  Google Scholar 

  194. Zurek, W. H. Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 75, 715–775 (2003).

    Google Scholar 

  195. Lidar, D. A., Chuang, I. L. & Whaley, K. B. Decoherence-free subspaces for quantum computation. Phys. Rev. Lett. 81, 2594–2597 (1998).

    CAS  Google Scholar 

  196. Lindblad, G. On the existence of quantum subdynamics. J. Phys. A 29, 4197–4207 (1996).

    CAS  Google Scholar 

  197. Koch, C. P. Controlling open quantum systems: tools, achievements, and limitations. J. Phys. Condens. Matter 28, 213001 (2016).

    PubMed  Google Scholar 

  198. Noh, G. & Bathe, K.-J. An explicit time integration scheme for the analysis of wave propagations. Comput. Struct. 129, 178–193 (2013).

    Google Scholar 

  199. Pareschi, L. & Russo, G. Implicit-explicit Runge-Kutta schemes for stiff systems of differential equations. Recent Trends Numer. Anal. 3, 269–289 (2000).

    Google Scholar 

  200. Bylaska, E. J., Weare, J. Q. & Weare, J. H. Extending molecular simulation time scales: Parallel in time integrations for high-level quantum chemistry and complex force representations. J. Chem. Phys. 139, 074114 (2013).

    PubMed  Google Scholar 

  201. Maragliano, L. & Vanden-Eijnden, E. Single-sweep methods for free energy calculations. J. Chem. Phys. 128, 184110 (2008).

    PubMed  Google Scholar 

  202. Leimkuhler, B., Matthews, C. & Weare, J. Ensemble preconditioning for Markov chain Monte Carlo simulation. Stat. Comput. 28, 277–290 (2018).

    Google Scholar 

  203. Schneider, E., Dai, L., Topper, R. Q., Drechsel-Grau, C. & Tuckerman, M. E. Stochastic neural network approach for learning high-dimensional free energy surfaces. Phys. Rev. Lett. 119, 150601 (2017).

    PubMed  Google Scholar 

  204. Sultan, M. M. & Pande, V. S. Automated design of collective variables using supervised machine learning. J. Chem. Phys. 149, 094106 (2018).

    PubMed  Google Scholar 

  205. Li, Z., Kermode, J. R. & De Vita, A. Molecular dynamics with on-the-fly machine learning of quantum-mechanical forces. Phys. Rev. Lett. 114, 096405 (2015).

    PubMed  Google Scholar 

  206. Einstein, A., Podolsky, B. & Rosen, N. Can quantum mechanical description of physical reality be considered complete? Phys. Rev. 47, 777–780 (1935).

    CAS  Google Scholar 

  207. Bell, J. S. On the Einstein-Podolsky-Rosen paradox. Physics 1, 195–200 (1964).

    Google Scholar 

  208. Bennett, C. H. et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993).

    CAS  PubMed  Google Scholar 

  209. Aslam, N. et al. Single spin optically detected magnetic resonance with 60–90 GHz (E-band) microwave resonators. Rev. Sci. Instrum. 86, 064704 (2015).

    PubMed  Google Scholar 

  210. Valiev, M. & Kowalski, K. Hybrid coupled cluster and molecular dynamics approach: Application to the excitation spectrum of cytosine in the native DNA environment. J. Chem. Phys. 125, 211101 (2006).

    PubMed  Google Scholar 

  211. Peng, B. & Kowalski, K. Highly efficient and scalable compound decomposition of two-electron integral tensor and its application in coupled cluster calculations. J. Chem. Theory Comput. 13, 4179–4192 (2017).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This article evolved from presentations and discussions at the workshop ‘Exploiting Chemistry and Chemical Systems for Quantum Information Science’ held in November 2018 in Gaithersburg, Maryland, USA. The workshop was sponsored by the Council on Chemical Sciences, Geosciences, and Biosciences of the US Department of Energy, Office of Science, Office of Basic Energy Sciences. The authors thank the members of the Council for their encouragement and assistance in developing this workshop. In addition, the authors are indebted to the agencies responsible for funding their individual research efforts, without which this article would not have been possible.

Author information

Authors and Affiliations

Authors

Contributions

M.R.W., M.D.E.F., N.L.F., K.K., G.D.S. and J.Y.-Z. wrote and edited the final version of this Perspective, with contributed sections from all the other authors.

Corresponding author

Correspondence to Michael R. Wasielewski.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wasielewski, M.R., Forbes, M.D.E., Frank, N.L. et al. Exploiting chemistry and molecular systems for quantum information science. Nat Rev Chem 4, 490–504 (2020). https://doi.org/10.1038/s41570-020-0200-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-020-0200-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing