Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Metal–organic cages for molecular separations

Abstract

Separation technology is central to industries as diverse as petroleum, pharmaceuticals, mining and life sciences. Metal–organic cages, a class of molecular containers formed via coordination-driven self-assembly, show great promise as separation agents. Precise control of the shape, size and functionalization of cage cavities enables them to selectively bind and distinguish a wide scope of physicochemically similar substances in solution. Extensive research has, thus, been performed involving separations of high-value targets using coordination cages, ranging from gases and liquids to compounds dissolved in solution. Enantiopure capsules also show great potential for the separation of chiral molecules. The use of crystalline cages as absorbents, or the incorporation of cages into polymer membranes, could increase the selectivity and efficiency of separation processes. This Review covers recent progress in using metal–organic cages to achieve separations, with discussion of the many methods of using them in this context. Challenges and potential future developments are also discussed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Metal–organic cages used for cargo extraction in solution.
Fig. 2: Phase transfer of metal–organic cages for target separation.
Fig. 3: Metal–organic cages for guest separation through crystallization or precipitation.
Fig. 4: Crystalline metal–organic cages as absorbents for target separation.
Fig. 5: Crystalline metal–organic cages for fullerene separation.
Fig. 6: Amorphous metal–organic cages as absorbents for guest separation.
Fig. 7: Metal–organic-cage-incorporated polymer membranes for target separation.
Fig. 8: Metal–organic-cage-decorated capillary electrochromatography column for target separation.

Similar content being viewed by others

References

  1. Sholl, D. S. & Lively, R. P. Seven chemical separations to change the world. Nature 532, 435–437 (2016).

    Article  PubMed  Google Scholar 

  2. Park, H. B. et al. Polymers with cavities tuned for fast selective transport of small molecules and ions. Science 318, 254–258 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. McKeown, N. B. & Budd, P. M. Polymers of intrinsic microporosity (PIMs): organic materials for membrane separations, heterogeneous catalysis and hydrogen storage. Chem. Soc. Rev. 35, 675–683 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Jie, K., Zhou, Y., Li, E. & Huang, F. Nonporous adaptive crystals of pillararenes. Acc. Chem. Res. 51, 2064–2072 (2018).

    Article  CAS  PubMed  Google Scholar 

  5. Surwade, S. P. et al. Water desalination using nanoporous single-layer graphene. Nat. Nanotechnol. 10, 459–464 (2015).

    Article  CAS  PubMed  Google Scholar 

  6. Davis, M. E. Ordered porous materials for emerging applications. Nature 417, 813–821 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Zhang, D., Ronson, T. K. & Nitschke, J. R. Functional capsules via subcomponent self-assembly. Acc. Chem. Res. 51, 2423–2436 (2018).

    Article  CAS  PubMed  Google Scholar 

  8. Cook, T. R. & Stang, P. J. Recent developments in the preparation and chemistry of metallacycles and metallacages via coordination. Chem. Rev. 115, 7001–7045 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. Han, M., Engelhard, D. M. & Clever, G. H. Self-assembled coordination cages based on banana-shaped ligands. Chem. Soc. Rev. 43, 1848–1860 (2014).

    Article  CAS  PubMed  Google Scholar 

  10. Little, M. A. & Cooper, A. I. The chemistry of porous organic molecular materials. Adv. Funct. Mater. 30, 1909842 (2020).

    Article  CAS  Google Scholar 

  11. Brotin, T. & Dutasta, J. P. Cryptophanes and their complexes–present and future. Chem. Rev. 109, 88–130 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. Isaacs, L. Stimuli responsive systems constructed using cucurbit[n]uril-type molecular containers. Acc. Chem. Res. 47, 2052–2062 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhang, M., Yan, X., Huang, F., Niu, Z. & Gibson, H. W. Stimuli-responsive host–guest systems based on the recognition of cryptands by organic guests. Acc. Chem. Res. 47, 1995–2005 (2014).

    Article  CAS  PubMed  Google Scholar 

  14. Qi, Z. & Schalley, C. A. Exploring macrocycles in functional supramolecular gels: from stimuli responsiveness to systems chemistry. Acc. Chem. Res. 47, 2222–2233 (2014).

    Article  CAS  PubMed  Google Scholar 

  15. Peng, S. et al. Strapped calix[4]pyrroles: from syntheses to applications. Chem. Soc. Rev. 49, 865–907 (2020).

    Article  CAS  PubMed  Google Scholar 

  16. Mastalerz, M. Porous shape-persistent organic cage compounds of different size, geometry, and function. Acc. Chem. Res. 51, 2411–2422 (2018).

    Article  CAS  PubMed  Google Scholar 

  17. Ward, M. D., Hunter, C. A. & Williams, N. H. Coordination cages based on bis(pyrazolylpyridine) ligands: structures, dynamic behavior, guest binding, and catalysis. Acc. Chem. Res. 51, 2073–2082 (2018).

    Article  CAS  PubMed  Google Scholar 

  18. Custelcean, R. Anion encapsulation and dynamics in self-assembled coordination cages. Chem. Soc. Rev. 43, 1813–1824 (2014).

    Article  CAS  PubMed  Google Scholar 

  19. Ballester, P. Anion binding in covalent and self-assembled molecular capsules. Chem. Soc. Rev. 39, 3810–3830 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. Hembury, G. A., Borovkov, V. V. & Inoue, Y. Chirality-sensing supramolecular systems. Chem. Rev. 108, 1–73 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Young, M. C., Holloway, L. R., Johnson, A. M. & Hooley, R. J. A supramolecular sorting hat: stereocontrol in metal–ligand self-assembly by complementary hydrogen bonding. Angew. Chem. Int. Ed. 53, 9832–9836 (2014).

    Article  CAS  Google Scholar 

  22. Galan, A. & Ballester, P. Stabilization of reactive species by supramolecular encapsulation. Chem. Soc. Rev. 45, 1720–1737 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. Yamashina, M., Sei, Y., Akita, M. & Yoshizawa, M. Safe storage of radical initiators within a polyaromatic nanocapsule. Nat. Commun. 5, 4662 (2014).

    Article  CAS  PubMed  Google Scholar 

  24. Brown, C. J., Toste, F. D., Bergman, R. G. & Raymond, K. N. Supramolecular catalysis in metal–ligand cluster hosts. Chem. Rev. 115, 3012–3035 (2015).

    Article  CAS  PubMed  Google Scholar 

  25. Grommet, A. B., Feller, M. & Klajn, R. Chemical reactivity under nanoconfinement. Nat. Nanotechnol. 15, 256–271 (2020).

    Article  CAS  PubMed  Google Scholar 

  26. Chen, L. J., Yang, H. B. & Shionoya, M. Chiral metallosupramolecular architectures. Chem. Soc. Rev. 46, 2555–2576 (2017).

    Article  CAS  PubMed  Google Scholar 

  27. Pullen, S. & Clever, G. H. Mixed-ligand metal – organic frameworks and heteroleptic coordination cages as multifunctional scaffolds—a comparison. Acc. Chem. Res. 51, 3052–3064 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. De, S., Mahata, K. & Schmittel, M. Metal-coordination-driven dynamic heteroleptic architectures. Chem. Soc. Rev. 39, 1555–1575 (2010).

    Article  CAS  PubMed  Google Scholar 

  29. Li, J. R., Sculley, J. & Zhou, H. C. Metal–organic frameworks for separations. Chem. Rev. 112, 869–932 (2012).

    Article  CAS  PubMed  Google Scholar 

  30. Rojas, S. & Horcajada, P. Metal–organic frameworks for the removal of emerging organic contaminants in water. Chem. Rev. 120, 8378–8415 (2020).

    Article  CAS  PubMed  Google Scholar 

  31. Zhao, X., Wang, Y., Li, D. S., Bu, X. & Feng, P. Metal–organic frameworks for separation. Adv. Mater. 30, 1705189 (2018).

    Article  Google Scholar 

  32. Adil, K. et al. Gas/vapour separation using ultra-microporous metal–organic frameworks: insights into the structure/separation relationship. Chem. Soc. Rev. 46, 3402–3430 (2017).

    Article  CAS  PubMed  Google Scholar 

  33. Percastegui, E. G., Mosquera, J. & Nitschke, J. R. Anion exchange renders hydrophobic capsules and cargoes water-soluble. Angew. Chem. Int. Ed. 56, 9136–9140 (2017).

    Article  CAS  Google Scholar 

  34. Cook, T. R., Zheng, Y. R. & Stang, P. J. Metal–organic frameworks and self-assembled supramolecular coordination complexes: comparing and contrasting the design, synthesis, and functionality of metal–organic materials. Chem. Rev. 113, 734–777 (2013).

    Article  CAS  PubMed  Google Scholar 

  35. Gu, Y. et al. Photoswitching topology in polymer networks with metal–organic cages as crosslinks. Nature 560, 65–69 (2018).

    Article  CAS  PubMed  Google Scholar 

  36. Zhukhovitskiy, A. V. et al. Highly branched and loop-rich gels via formation of metal–organic cages linked by polymers. Nat. Chem. 8, 33–41 (2016).

    Article  CAS  PubMed  Google Scholar 

  37. Hosono, N. & Kitagawa, S. Modular design of porous soft materials via self-organization of metal–organic cages. Acc. Chem. Res. 51, 2437–2446 (2018).

    Article  CAS  PubMed  Google Scholar 

  38. Foster, J. A. et al. Differentially addressable cavities within metal–organic cage-cross-linked polymeric hydrogels. J. Am. Chem. Soc. 137, 9722–9729 (2015).

    Article  CAS  PubMed  Google Scholar 

  39. Koros, W. J. & Zhang, C. Materials for next-generation molecularly selective synthetic membranes. Nat. Mater. 16, 289–297 (2017).

    Article  CAS  PubMed  Google Scholar 

  40. Liu, G., Jin, W. & Xu, N. Two-dimensional-material membranes: a new family of high-performance separation membranes. Angew. Chem. Int. Ed. 55, 13384–13397 (2016).

    Article  CAS  Google Scholar 

  41. Dechnik, J., Gascon, J., Doonan, C. J., Janiak, C. & Sumby, C. J. Mixed-matrix membranes. Angew. Chem. Int. Ed. 56, 9292–9310 (2017).

    Article  CAS  Google Scholar 

  42. Bastani, D., Esmaeili, N. & Asadollahi, M. Polymeric mixed matrix membranes containing zeolites as a filler for gas separation applications: A review. J. Ind. Eng. Chem. 19, 375–393 (2013).

    Article  CAS  Google Scholar 

  43. Han, M. et al. Light-triggered guest uptake and release by a photochromic coordination cage. Angew. Chem. Int. Ed. 52, 1319–1323 (2013).

    Article  CAS  Google Scholar 

  44. Kim, T. Y., Vasdev, R. A. S., Preston, D. & Crowley, J. D. Strategies for reversible guest uptake and release from metallosupramolecular architectures. Chem. Eur. J. 24, 14878–14890 (2018).

    Article  CAS  PubMed  Google Scholar 

  45. Cullen, W., Turega, S., Hunter, C. A. & Ward, M. D. pH-dependent binding of guests in the cavity of a polyhedral coordination cage: reversible uptake and release of drug molecules. Chem. Sci. 6, 625–631 (2015).

    Article  CAS  PubMed  Google Scholar 

  46. Kishi, N. et al. Facile catch and release of fullerenes using a photoresponsive molecular tube. J. Am. Chem. Soc. 135, 12976–12979 (2013).

    Article  CAS  PubMed  Google Scholar 

  47. Chan, A. K., Lam, W. H., Tanaka, Y., Wong, K. M. & Yam, V. W. Multiaddressable molecular rectangles with reversible host–guest interactions: modulation of pH-controlled guest release and capture. Proc. Natl Acad. Sci. USA 112, 690–695 (2015).

    Article  CAS  PubMed  Google Scholar 

  48. Zhang, D. et al. Anion binding in water drives structural adaptation in an azaphosphatrane-functionalized FeII4L4 tetrahedron. J. Am. Chem. Soc. 139, 6574–6577 (2017).

    Article  CAS  PubMed  Google Scholar 

  49. Zhang, D., Ronson, T. K., Mosquera, J., Martinez, A. & Nitschke, J. R. Selective anion extraction and recovery using a FeII4L4 cage. Angew. Chem. Int. Ed. 57, 3717–3721 (2018). This work reported the first example of the use of a metal–organic cage for selective biphasic extraction of anions from aqueous mixtures.

    Article  CAS  Google Scholar 

  50. Zhang, H. N., Lu, Y., Gao, W. X., Lin, Y. J. & Jin, G. X. Selective encapsulation and separation of dihalobenzene isomers with discrete heterometallic macrocages. Chem. Eur. J. 24, 18913–18921 (2018).

    Article  CAS  PubMed  Google Scholar 

  51. Wu, K. et al. Homochiral D4-symmetric metal–organic cages from stereogenic Ru(II) metalloligands for effective enantioseparation of atropisomeric molecules. Nat. Commun. 7, 10487 (2016). This work reported a stepwise process for the assembly of enantiopure metal–organic cages and their use for the resolution of atropisomeric compounds.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hou, Y. J. et al. Design and enantioresolution of homochiral Fe(II)–Pd(II) coordination cages from stereolabile metalloligands: stereochemical stability and enantioselective separation. J. Am. Chem. Soc. 140, 18183–18191 (2018).

    Article  CAS  PubMed  Google Scholar 

  53. Li, X.-Z. et al. A supramolecular lanthanide separation approach based on multivalent cooperative enhancement of metal ion selectivity. Nat. Commun. 9, 547 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Sun, W. et al. Self-assembled carcerand-like cage with a thermoregulated selective binding preference for purification of high-purity C60 and C70. J. Org. Chem. 83, 14667–14675 (2018).

    Article  CAS  PubMed  Google Scholar 

  55. Wei, G. T., Yang, Z., Lee, C. Y., Yang, H. Y. & Wang, C. R. Aqueous–organic phase transfer of gold nanoparticles and gold nanorods using an ionic liquid. J. Am. Chem. Soc. 126, 5036–5037 (2004).

    Article  CAS  PubMed  Google Scholar 

  56. Yuan, X. et al. Synthesis of highly fluorescent metal (Ag, Au, Pt, and Cu) nanoclusters by electrostatically induced reversible phase transfer. ACS Nano 5, 8800–8808 (2011).

    Article  CAS  PubMed  Google Scholar 

  57. Bolliger, J. L., Ronson, T. K., Ogawa, M. & Nitschke, J. R. Solvent effects upon guest binding and dynamics of a FeII4L4 cage. J. Am. Chem. Soc. 136, 14545–14553 (2014).

    Article  CAS  PubMed  Google Scholar 

  58. Grommet, A. B., Bolliger, J. L., Browne, C. & Nitschke, J. R. A triphasic sorting system: coordination cages in ionic liquids. Angew. Chem. Int. Ed. 54, 15100–15104 (2015).

    Article  CAS  Google Scholar 

  59. Grommet, A. B. & Nitschke, J. R. Directed phase transfer of an FeII4L4 cage and encapsulated cargo. J. Am. Chem. Soc. 139, 2176–2179 (2017).

    Article  CAS  PubMed  Google Scholar 

  60. Grommet, A. B. et al. Anion exchange drives reversible phase transfer of coordination cages and their cargoes. J. Am. Chem. Soc. 140, 14770–14776 (2018).

    Article  CAS  PubMed  Google Scholar 

  61. Zhang, D., Ronson, T. K., Lavendomme, R. & Nitschke, J. R. Selective separation of polyaromatic hydrocarbons by phase transfer of coordination cages. J. Am. Chem. Soc. 141, 18949–18953 (2019). This paper described a coordination-cage-based phase-transfer strategy for the selective separation and recovery of coronene from a mixture of other polyaromatic hydrocarbons.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Mihara, N., Ronson, T. K. & Nitschke, J. R. Different modes of anion response cause circulatory phase transfer of a coordination cage with controlled directionality. Angew. Chem. Int. Ed. 58, 12497–12501 (2019).

    Article  CAS  Google Scholar 

  63. Nguyen, B. T., Grommet, A. B., Tron, A., Georges, M. C. A. & Nitschke, J. R. Heat engine drives transport of an FeII4L4 cage and cargo. Adv. Mater. 32, 1907241 (2020).

    Article  CAS  Google Scholar 

  64. Yao, W. et al. Tuning the hydrophilicity and hydrophobicity of the respective cation and anion: reversible phase transfer of ionic liquids. Angew. Chem. Int. Ed. 55, 7934–7938 (2016).

    Article  CAS  Google Scholar 

  65. Grancha, T. et al. Phase transfer of rhodium(II)-based metal–organic polyhedra bearing coordinatively bound cargo enables molecular separation. J. Am. Chem. Soc. 141, 18349–18355 (2019). This study developed a strategy based on acid/base or cation-exchange-triggered phase transfer of a metal–organic cage for the separation of structurally similar cyclic aliphatic and aromatic molecules.

    Article  CAS  PubMed  Google Scholar 

  66. Carne-Sanchez, A. et al. Postsynthetic covalent and coordination functionalization of rhodium(II)-based metal–organic polyhedra. J. Am. Chem. Soc. 141, 4094–4102 (2019).

    Article  CAS  PubMed  Google Scholar 

  67. Liu, T., Liu, Y., Xuan, W. & Cui, Y. Chiral nanoscale metal–organic tetrahedral cages: diastereoselective self-assembly and enantioselective separation. Angew. Chem. Int. Ed. 49, 4121–4124 (2010).

    Article  CAS  Google Scholar 

  68. Li, Y. et al. Bulky metallocavitands with a chiral cavity constructed by aluminum and magnesium atrane-likes: enantioselective recognition and separation of racemic alcohols. Dalton Trans. 44, 5692–5702 (2015).

    Article  CAS  PubMed  Google Scholar 

  69. Rajasekar, P. et al. Imido-P(v) trianion supported enantiopure neutral tetrahedral Pd(II) cages. Chem. Commun. 54, 1873–1876 (2018).

    Article  CAS  Google Scholar 

  70. Rajasekar, P. et al. Chiral separation of styrene oxides supported by enantiomeric tetrahedral neutral Pd(II) cages. Inorg. Chem. 58, 15017–15020 (2019).

    Article  CAS  PubMed  Google Scholar 

  71. Hartlieb, K. J. et al. CD-MOF: A versatile separation medium. J. Am. Chem. Soc. 138, 2292–2301 (2016).

    Article  CAS  PubMed  Google Scholar 

  72. Peng, Y. et al. Engineering chiral porous metal-organic frameworks for enantioselective adsorption and separation. Nat. Commun. 5, 4406 (2014).

    Article  CAS  PubMed  Google Scholar 

  73. Qian, H.-L., Yang, C.-X. & Yan, X.-P. Bottom-up synthesis of chiral covalent organic frameworks and their bound capillaries for chiral separation. Nat. Commun. 7, 12104 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Navarro-Sanchez, J. et al. Peptide metal–organic frameworks for enantioselective separation of chiral drugs. J. Am. Chem. Soc. 139, 4294–4297 (2017).

    Article  CAS  PubMed  Google Scholar 

  75. Zhao, J. et al. Chirality from substitution: enantiomer separation via a modified metal–organic framework. J. Mater. Chem. A 3, 12145–12148 (2015).

    Article  CAS  Google Scholar 

  76. Das, M. C. et al. Interplay of metalloligand and organic ligand to tune micropores within isostructural mixed-metal organic frameworks (M’MOFs) for their highly selective separation of chiral and achiral small molecules. J. Am. Chem. Soc. 134, 8703–8710 (2012).

    Article  CAS  PubMed  Google Scholar 

  77. Zhang, W. Y., Lin, Y. J., Han, Y. F. & Jin, G. X. Facile separation of regioisomeric compounds by a heteronuclear organometallic capsule. J. Am. Chem. Soc. 138, 10700–10707 (2016). This work reported the selective separation and recovery of para-disubstituted benzene derivatives from their corresponding regioisomers using an organometallic capsule host.

    Article  CAS  PubMed  Google Scholar 

  78. Li, G. et al. Self-assembly of a homochiral nanoscale metallacycle from a metallosalen complex for enantioselective separation. Angew. Chem. Int. Ed. 47, 1245–1249 (2008).

    Article  CAS  Google Scholar 

  79. Li, G., Yu, W. & Cui, Y. A homochiral nanotubular crystalline framework of metallomacrocycles for enantioselective recognition and separation. J. Am. Chem. Soc. 130, 4582–4583 (2008). This paper described the formation of a crystalline nanotubular structure based on chiral hexametallic macrocycles, which was an excellent host for the separation of racemic alcohols.

    Article  CAS  PubMed  Google Scholar 

  80. Xuan, W., Zhang, M., Liu, Y., Chen, Z. & Cui, Y. A chiral quadruple-stranded helicate cage for enantioselective recognition and separation. J. Am. Chem. Soc. 134, 6904–6907 (2012).

    Article  CAS  PubMed  Google Scholar 

  81. Janczak, J. et al. Trinuclear cage-like ZnII macrocyclic complexes: enantiomeric recognition and gas adsorption properties. Chem. Eur. J. 22, 598–609 (2016).

    Article  CAS  PubMed  Google Scholar 

  82. García-Simón, C. et al. Sponge-like molecular cage for purification of fullerenes. Nat. Commun. 5, 5557 (2014). This paper described a metal–organic capsule that was able to encapsulate fullerenes of different sizes and the use of a washing-based strategy for the exclusive extraction of C60 from solid mixtures of the host and various fullerenes.

    Article  PubMed  Google Scholar 

  83. Fuertes-Espinosa, C. et al. A copper-based supramolecular nanocapsule that enables straightforward purification of Sc3N-based endohedral metallofullerene soots. Chem. Eur. J. 23, 3553–3557 (2017).

    Article  CAS  PubMed  Google Scholar 

  84. Fuertes-Espinosa, C. et al. Purification of uranium-based endohedral metallofullerenes (EMFs) by selective supramolecular encapsulation and release. Angew. Chem. Int. Ed. 57, 11294–11299 (2018).

    Article  CAS  Google Scholar 

  85. Fuertes-Espinosa, C. et al. Highly selective encapsulation and purification of U-based C78-EMFs within a supramolecular nanocapsule. Nanoscale 11, 23035–23041 (2019).

    Article  CAS  PubMed  Google Scholar 

  86. Zhang, X. et al. Fine-tuning apertures of metal–organic cages: encapsulation of carbon dioxide in solution and solid state. J. Am. Chem. Soc. 141, 11621–11627 (2019).

    Article  CAS  PubMed  Google Scholar 

  87. Li, J. R. & Zhou, H. C. Bridging-ligand-substitution strategy for the preparation of metal–organic polyhedra. Nat. Chem. 2, 893–898 (2010).

    Article  PubMed  Google Scholar 

  88. Prakash, M. J. et al. Edge-directed [(M2)2L4] tetragonal metal–organic polyhedra decorated using a square paddle-wheel secondary building unit. Chem. Commun. 46, 2049–2051 (2010).

    Article  Google Scholar 

  89. Bloch, E. D. et al. Hydrocarbon separations in a metal-organic framework with open iron(II) coordination sites. Science 335, 1606–1610 (2012).

    Article  CAS  PubMed  Google Scholar 

  90. Yang, S. et al. Supramolecular binding and separation of hydrocarbons within a functionalized porous metal–organic framework. Nat. Chem. 7, 121–129 (2015).

    Article  CAS  Google Scholar 

  91. Assen, A. H. et al. Ultra-tuning of the rare-earth fcu-MOF aperture size for selective molecular exclusion of branched paraffins. Angew. Chem. Int. Ed. 54, 14353–14358 (2015).

    Article  CAS  Google Scholar 

  92. Zhai, Q.-G. et al. An ultra-tunable platform for molecular engineering of high-performance crystalline porous materials. Nat. Commun. 7, 13645 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Chen, K.-J. et al. Benchmark C2H2/CO2 and CO2/C2H2 separation by two closely related hybrid ultramicroporous materials. Chem 1, 753–765 (2016).

    Article  CAS  Google Scholar 

  94. Chen, B. et al. A microporous metal–organic framework for gas-chromatographic separation of alkanes. Angew. Chem. Int. Ed. 45, 1390–1393 (2006).

    Article  CAS  Google Scholar 

  95. Herm, Z. R. et al. Separation of hexane isomers in a metal-organic framework with triangular channels. Science 340, 960–964 (2013).

    Article  CAS  PubMed  Google Scholar 

  96. Jin, Z. et al. A novel microporous MOF with the capability of selective adsorption of xylenes. Chem. Commun. 46, 8612–8614 (2010).

    Article  CAS  Google Scholar 

  97. Barea, E., Montoro, C. & Navarro, J. A. Toxic gas removal – metal – organic frameworks for the capture and degradation of toxic gases and vapours. Chem. Soc. Rev. 43, 5419–5430 (2014).

    Article  CAS  PubMed  Google Scholar 

  98. Bobbitt, N. S. et al. Metal–organic frameworks for the removal of toxic industrial chemicals and chemical warfare agents. Chem. Soc. Rev. 46, 3357–3385 (2017).

    Article  CAS  PubMed  Google Scholar 

  99. Oh, H. & Hirscher, M. Quantum sieving for separation of hydrogen isotopes using MOFs. Eur. J. Inorg. Chem. 2016, 4278–4289 (2016).

    Article  CAS  Google Scholar 

  100. Banerjee, D. et al. Potential of metal–organic frameworks for separation of xenon and krypton. Acc. Chem. Res. 48, 211–219 (2015).

    Article  CAS  PubMed  Google Scholar 

  101. Xie, W., Cui, D., Zhang, S.-R., Xu, Y.-H. & Jiang, D.-L. Iodine capture in porous organic polymers and metal–organic frameworks materials. Mater. Horiz. 6, 1571–1595 (2019).

    Article  CAS  Google Scholar 

  102. Gao, Y. et al. The construction of amorphous metal-organic cage-based solid for rapid dye adsorption and time-dependent dye separation from water. Chem. Eng. J. 357, 129–139 (2019).

    Article  CAS  Google Scholar 

  103. Cui, P. F., Lin, Y. J., Li, Z. H. & Jin, G. X. Dihydrogen bond interaction induced separation of hexane isomers by self-assembled carborane metallacycles. J. Am. Chem. Soc. 142, 8532–8538 (2020). This study reported a series of metallacycles based on carborane backbones, which were able to accommodate and separate hexane isomers.

    Article  CAS  PubMed  Google Scholar 

  104. Robeson, L. M. Correlation of separation factor versus permeability for polymeric membranes. J. Membr. Sci. 62, 165–185 (1991).

    Article  CAS  Google Scholar 

  105. Robeson, L. M. The upper bound revisited. J. Membr. Sci. 320, 390–400 (2008).

    Article  CAS  Google Scholar 

  106. Yun, Y. N. et al. Defect-free mixed-matrix membranes with hydrophilic metal-organic polyhedra for efficient carbon dioxide separation. Chem. Asian J. 13, 631–635 (2018).

    Article  CAS  PubMed  Google Scholar 

  107. Furukawa, H., Kim, J., Ockwig, N. W., O’Keeffe, M. & Yaghi, O. M. Control of vertex geometry, structure dimensionality, functionality, and pore metrics in the reticular synthesis of crystalline metal–organic frameworks and polyhedra. J. Am. Chem. Soc. 130, 11650–11661 (2008).

    Article  CAS  PubMed  Google Scholar 

  108. Fulong, C. R. P., Liu, J., Pastore, V. J., Lin, H. & Cook, T. R. Mixed-matrix materials using metal–organic polyhedra with enhanced compatibility for membrane gas separation. Dalton Trans. 47, 7905–7915 (2018).

    Article  CAS  PubMed  Google Scholar 

  109. Ma, J. et al. Mixed-matrix membranes containing functionalized porous metal–organic polyhedrons for the effective separation of CO2–CH4 mixture. Chem. Commun. 51, 4249–4251 (2015).

    Article  CAS  Google Scholar 

  110. Perez, E. V., Balkus, K. J., Ferraris, J. P. & Musselman, I. H. Metal-organic polyhedra 18 mixed-matrix membranes for gas separation. J. Membr. Sci. 463, 82–93 (2014).

    Article  CAS  Google Scholar 

  111. Liu, X. et al. Molecular-scale hybrid membranes derived from metal-organic polyhedra for gas separation. ACS Appl. Mater. Interfaces 10, 21381–21389 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Kitchin, M. et al. AIMs: a new strategy to control physical aging and gas transport in mixed-matrix membranes. J. Mater. Chem. A 3, 15241–15247 (2015).

    Article  CAS  Google Scholar 

  113. Zhao, C. et al. Hybrid membranes of metal–organic molecule nanocages for aromatic/aliphatic hydrocarbon separation by pervaporation. Chem. Commun. 50, 13921–13923 (2014).

    Article  CAS  Google Scholar 

  114. Zhao, C. et al. Functionalized metal-organic polyhedra hybrid membranes for aromatic hydrocarbons recovery. AIChE J. 62, 3706–3716 (2016).

    Article  CAS  Google Scholar 

  115. Andrés, M. A. et al. Ultrathin films of porous metal–organic polyhedra for gas separation. Chem. Eur. J. 26, 143–147 (2020).

    Article  PubMed  Google Scholar 

  116. Liu, J. et al. Self-healing hyper-cross-linked metal–organic polyhedra (HCMOPs) membranes with antimicrobial activity and highly selective separation properties. J. Am. Chem. Soc. 141, 12064–12070 (2019). This work reported the preparation of self-healing hybrid polymer membranes composed of metal–organic cages as high-connectivity nodes and their use for the separation of dye molecules.

    Article  CAS  PubMed  Google Scholar 

  117. Li, Z., Mao, Z., Zhou, W. & Chen, Z. Incorporation of homochiral metal-organic cage into ionic liquid based monolithic column for capillary electrochromatography. Anal. Chim. Acta 1094, 160–167 (2020).

    Article  CAS  PubMed  Google Scholar 

  118. He, L. X. et al. Chiral metal-organic cages used as stationary phase for enantioseparations in capillary electrochromatography. Electrophoresis 41, 104–111 (2020).

    Article  CAS  PubMed  Google Scholar 

  119. Xie, S. M. et al. Homochiral metal–organic cage for gas chromatographic separations. Anal. Chem. 90, 9182–9188 (2018).

    Article  CAS  PubMed  Google Scholar 

  120. Bojdys, M. J. et al. Supramolecular engineering of intrinsic and extrinsic porosity in covalent organic cages. J. Am. Chem. Soc. 133, 16566–16571 (2011).

    Article  CAS  PubMed  Google Scholar 

  121. Hasell, T. & Cooper, A. I. Porous organic cages: soluble, modular and molecular pores. Nat. Rev. Mater. 1, 16053 (2016).

    Article  CAS  Google Scholar 

  122. Ma, L. et al. Coordination cages as permanently porous ionic liquids. Nat. Chem. 12, 270–275 (2020).

    Article  CAS  PubMed  Google Scholar 

  123. Jie, K. et al. Transforming porous organic cages into porous ionic liquids via a supramolecular complexation strategy. Angew. Chem. Int. Ed. 59, 2268–2272 (2020).

    Article  CAS  Google Scholar 

  124. Zhang, J. et al. Porous liquids: a promising class of media for gas separation. Angew. Chem. Int. Ed. 54, 932–936 (2015).

    Article  CAS  Google Scholar 

  125. Giri, N. et al. Liquids with permanent porosity. Nature 527, 216–220 (2015).

    Article  CAS  PubMed  Google Scholar 

  126. Mastalerz, M. Liquefied molecular holes. Nature 527, 174–175 (2015).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the European Research Council (695009) and the UK Engineering and Physical Sciences Research Council (EPSRC EP/P027067/1). D.Z. acknowledges a Herchel Smith Research Fellowship from the University of Cambridge.

Author information

Authors and Affiliations

Authors

Contributions

D.Z. and T.K.R. researched the literature for the Review. D.Z. wrote the first version of the manuscript. T.K.R., Y.-Q.Z. and D.Z. prepared the figures. All authors contributed to the discussion and editing of the manuscript before submission.

Corresponding author

Correspondence to Jonathan R. Nitschke.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Chemistry thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, D., Ronson, T.K., Zou, YQ. et al. Metal–organic cages for molecular separations. Nat Rev Chem 5, 168–182 (2021). https://doi.org/10.1038/s41570-020-00246-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-020-00246-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing