Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Bimetallic cooperation across the periodic table

Abstract

Organometallic chemistry and its applications in homogeneous catalysis have been dominated by mononuclear transition-metal complexes. The catalytic performance and physico-chemical properties of these mononuclear complexes can be rationally tuned by ligand modification, which has also led to the discovery of new reactions. There is a growing body of evidence implicating the participation of two metals in catalytic processes originally believed to follow monometallic mechanisms. Moreover, the deliberate preparation of bimetallic structures has proven popular because these preorganized structures have many tunable features, such as metal–metal bond order and polarity. These structures can exhibit metal–metal complementarity and allow for multisite activation — reactivity unattainable with truly mononuclear species. This Perspective summarizes the features that are exclusive to bimetallic systems and their roles in substrate activation.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Tunable features of monometallic and bimetallic complexes.
Fig. 2: Metal–metal bond order affects the reactivity of bimetallics.
Fig. 3: Polar and non-polar metal–metal bonds can both be reactive towards small molecules.
Fig. 4: Tuning metal–metal complementarity unveils cooperative reactivity and enhances catalysis.
Fig. 5: Single-site versus multisite bond activation and catalysis in bimetallic complexes.

References

  1. 1.

    Liddle, S. T. (ed.) Molecular Metal–Metal Bonds: Compounds, Synthesis, Properties 1st edn (Wiley, 2015).

  2. 2.

    Berry, J. F. & Thomas, C. M. Multimetallic complexes: synthesis and applications. Dalton Trans. 46, 5472–5473 (2017).

    CAS  PubMed  Google Scholar 

  3. 3.

    Berry, J. F. & Lu, C. C. Metal–metal bonds: from fundamentals to applications. Inorg. Chem. 56, 7577–7581 (2017).

    CAS  PubMed  Google Scholar 

  4. 4.

    Farley, C. M. & Uyeda, C. Organic reactions enabled by catalytically active metal–metal bonds. Trends Chem. 1, 497–509 (2019).

    CAS  Google Scholar 

  5. 5.

    Buchwalter, P., Rosé, J. & Braunstein, P. Multimetallic catalysis based on heterometallic complexes and clusters. Chem. Rev. 115, 28–126 (2015).

    CAS  PubMed  Google Scholar 

  6. 6.

    Cammarota, R. C., Clouston, L. J. & Lu, C. C. Leveraging molecular metal–support interactions for H2 and N2 activation. Coord. Chem. Rev. 334, 100–111 (2017).

    CAS  Google Scholar 

  7. 7.

    Pye, D. R. & Mankad, N. P. Bimetallic catalysis for C–C and C–X coupling reactions. Chem. Sci. 8, 1705–1718 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Powers, I. G. & Uyeda, C. Metal–metal bonds in catalysis. ACS Catal. 7, 936–958 (2017).

    CAS  Google Scholar 

  9. 9.

    Park, J. & Hong, S. Cooperative bimetallic catalysis in asymmetric transformations. Chem. Soc. Rev. 41, 6931–6943 (2012).

    CAS  PubMed  Google Scholar 

  10. 10.

    Georgiev, V. P., Mohan, P. J., DeBrincat, D. & McGrady, J. E. Low-symmetry distortions in extended metal atom chains (EMACs): origins and consequences for electron transport. Coord. Chem. Rev. 257, 290–298 (2013).

    CAS  Google Scholar 

  11. 11.

    Krogman, J. P. & Thomas, C. M. Metal–metal multiple bonding in C3-symmetric bimetallic complexes of the first row transition metals. Chem. Commun. 50, 5115–5127 (2014).

    CAS  Google Scholar 

  12. 12.

    Whittemore, T. J., Xue, C., Huang, J., Gallucci, J. C. & Turro, C. Single-chromophore single-molecule photocatalyst for the production of dihydrogen using low-energy light. Nat. Chem. 12, 180–185 (2020).

    CAS  PubMed  Google Scholar 

  13. 13.

    Feng, G. et al. Transition-metal-bridged bimetallic clusters with multiple uranium–metal bonds. Nat. Chem. 248, 248–253 (2019).

    Google Scholar 

  14. 14.

    Lindahl, P. A. Metal–metal bonds in biology. J. Inorg. Biochem. 106, 172–178 (2012).

    CAS  PubMed  Google Scholar 

  15. 15.

    Lubitz, W., Ogata, H., Rüdiger, O. & Reijerse, E. Hydrogenases. Chem. Rev. 114, 4081–4148 (2014).

    CAS  Google Scholar 

  16. 16.

    Clausen, J. & Junge, W. Detection of an intermediate of photosynthetic water oxidation. Nature 430, 480–483 (2004).

    CAS  PubMed  Google Scholar 

  17. 17.

    Lee, S. J., McCormick, M. S., Lippard, S. J. & Cho, U.-S. Control of substrate access to the active site in methane monooxygenase. Nature 494, 380–384 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Weigand, W. & Schollhammer, P. (eds) Bioinspired Catalysis (Wiley, 2015).

  19. 19.

    Ogo, S. et al. A functional [NiFe]hydrogenase mimic that catalyzes electron and hydride transfer from H2. Science 339, 682–684 (2013).

    CAS  PubMed  Google Scholar 

  20. 20.

    Schilter, D., Camara, J. M., Huynh, M. T., Hammes-Schiffer, S. & Rauchfuss, T. B. Hydrogenase enzymes and their synthetic models: the role of metal hydrides. Chem. Rev. 116, 8693–8749 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Wang, W. et al. Efficient upgrading of CO to C3 fuel using asymmetric C–C coupling active sites. Nat. Commun. 10, 5186 (2019).

    PubMed  PubMed Central  Google Scholar 

  22. 22.

    Zhang, S. et al. Catalysis on singly dispersed bimetallic sites. Nat. Commun. 6, 7938 (2015).

    CAS  PubMed  Google Scholar 

  23. 23.

    Chen, T. & Rodionov, V. O. Controllable catalysis with nanoparticles: bimetallic alloy systems and surface adsorbates. ACS Catal. 6, 4025–4033 (2016).

    CAS  Google Scholar 

  24. 24.

    Filez, M. Formation and functioning of bimetallic nanocatalysts: the power of X-ray probes. Angew. Chem. Int. Ed. 58, 13220–13230 (2019).

    CAS  Google Scholar 

  25. 25.

    Goulas, K. A. et al. Synergistic effects in bimetallic palladium–copper catalysts improve selectivity in oxygenate coupling reactions. J. Am. Chem. Soc. 138, 6805–6812 (2016).

    CAS  PubMed  Google Scholar 

  26. 26.

    Liu, G. et al. CO2 hydrogenation to formate and formic acid by bimetallic palladium–copper hydride clusters. J. Am. Chem. Soc. 142, 7930–7936 (2020).

    CAS  PubMed  Google Scholar 

  27. 27.

    Monakhov, K. Y., Gourlaouen, C. & Braunstein, P. Stabilisation of a triply-bridging cyclopentadienyl ligand in a tetrapalladium cluster. Chem. Commun. 48, 8317–8319 (2012).

    CAS  Google Scholar 

  28. 28.

    Liu, J. et al. Bioinspired complex–nanoparticle hybrid catalyst system for aqueous perchlorate reduction: rhenium speciation and its influence on catalyst activity. ACS Catal. 5, 511–522 (2015).

    CAS  Google Scholar 

  29. 29.

    Druker, S. H. & Curtis, M. D. Activation of C–S bond homolysis by coordination to a Mo/Co/S-containing cluster. J. Am. Chem. Soc. 117, 6366–6367 (1997).

    Google Scholar 

  30. 30.

    Hao, L., Xiao, J., Vittal, J. J. & Puddephatt, R. P. Models for platinum–rhenium bimetallic catalysts: sulfidation of Pt3Re clusters. Organometallics 16, 2165–2174 (1997).

    CAS  Google Scholar 

  31. 31.

    Zacchini, S. Using metal carbonyl clusters to develop a molecular approach towards metal nanoparticles. Eur. J. Inorg. Chem. 2011, 4125–4145 (2011).

    CAS  Google Scholar 

  32. 32.

    Pérez-Temprano, M. H., Casares, J. A., de Lera, A. R., Alvarez, R. & Espinet, P. Strong metallophilic interactions in the palladium arylation by gold aryls. Angew. Chem. Int. Ed. 51, 4917–4920 (2012).

    Google Scholar 

  33. 33.

    Oeschger, R. J. & Chen, P. Structure and gas-phase thermochemistry of a Pd/Cu complex: studies on a model for transmetalation transition states. J. Am. Chem. Soc. 139, 1069–1072 (2017).

    CAS  PubMed  Google Scholar 

  34. 34.

    Chen, C., Hou, C., Wang, Y., Hor, T. S. A. & Weng, Z. Copper-catalyzed trifluoromethylselenolation of aryl and alkyl halides: the silver effect in transmetalation. Org. Lett. 16, 524–527 (2014).

    CAS  PubMed  Google Scholar 

  35. 35.

    Cotton, F. A. et al. Mononuclear and polynuclear chemistry of rhenium(iii): its pronounced homophilicity. Science 145, 1305–1307 (1964).

    CAS  PubMed  Google Scholar 

  36. 36.

    Nguyen, T. et al. Synthesis of a stable compound with fivefold bonding between two chromium(i) centers. Science 310, 844–847 (2005).

    CAS  PubMed  Google Scholar 

  37. 37.

    Frenking, G. & Tonner, R. The six-bond bound. Nature 446, 276–277 (2007).

    CAS  PubMed  Google Scholar 

  38. 38.

    Lyngdoh, R. H. D., Schaefer, H. F. III & King, R. B. Metal–metal (MM) bond distances and bond orders in binuclear metal complexes of the first row transition metals titanium through zinc. Chem. Rev. 118, 11626–11706 (2018).

    Google Scholar 

  39. 39.

    Falvello, L. R., Foxman, B. M. & Murillo, C. A. Fitting the pieces of the puzzle: the δ bond. Inorg. Chem. 53, 9441–9456 (2014).

    CAS  PubMed  Google Scholar 

  40. 40.

    Schilter, D. et al. Synthesis and vibrational spectroscopy of 57Fe-labeled models of [NiFe] hydrogenase: first direct observation of a nickel–iron interaction. Chem. Commun. 50, 13469–13472 (2014).

    CAS  Google Scholar 

  41. 41.

    Roos, B. O., Borin, A. C. & Gagliardi, L. Reaching the maximum multiplicity of the covalent chemical bond. Angew. Chem. Int. Ed. 46, 1469–1472 (2007).

    CAS  Google Scholar 

  42. 42.

    Koritsanszky, T. S. & Coppens, P. Chemical applications of X-ray charge-density analysis. Chem. Rev. 101, 1583–1627 (2001).

    CAS  PubMed  Google Scholar 

  43. 43.

    Lepetit, C., Fau, P., Fajerwerg, K., Kahn, M. L. & Silvi, B. Topological analysis of the metal–metal bond: a tutorial review. Coord. Chem. Rev. 345, 150–181 (2017).

    CAS  Google Scholar 

  44. 44.

    Farrugia, L. J. & Macchi, P. in Electron Density and Chemical Bonding I (ed. Stalke, D.) 127–158 (Springer, 2012).

  45. 45.

    Joy, J., Danovich, D., Kaupp, M. & Shaik, S. Covalent vs charge-shift nature of the metal–metal bond in transition metal complexes: a unified understanding. J. Am. Chem. Soc. 142, 12277–12287 (2020).

    CAS  PubMed  Google Scholar 

  46. 46.

    Manz, T. A. Introducing DDEC6 atomic population analysis: part 3. Comprehensive method to compute bond orders. RSC Adv. 7, 45552–45581 (2017).

    CAS  Google Scholar 

  47. 47.

    Chen, H.-Z. et al. Reactions of metal–metal quintuple bonds with alkynes: [2+2+2] and [2+2] cycloadditions. Angew. Chem. Int. Ed. 51, 10342–10346 (2012).

    CAS  Google Scholar 

  48. 48.

    Carrasco, M. et al. Interconversion of quadruply and quintuply bonded molybdenum complexes by reductive elimination and oxidative addition of dihydrogen. Angew. Chem. Int. Ed. 52, 3227–3231 (2013).

    CAS  Google Scholar 

  49. 49.

    Chen, Y. & Sakaki, S. Mo–Mo quintuple bond is highly reactive in H–H, C–H, and O–H σ-bond cleavages because of the polarized electronic structure in transition state. Inorg. Chem. 56, 4011–4020 (2017).

    CAS  PubMed  Google Scholar 

  50. 50.

    Pyykkö, P. Strong closed-shell interactions in inorganic chemistry. Chem. Rev. 97, 597–636 (1997).

    PubMed  Google Scholar 

  51. 51.

    Gazvoda, M., Virant, M., Pinter, B. & Košmrlj, J. Mechanism of copper-free Sonogashira reaction operates through palladium–palladium transmetallation. Nat. Commun. 9, 4814 (2018).

    PubMed  PubMed Central  Google Scholar 

  52. 52.

    Liang, L. & Astruc, D. The copper(i)-catalyzed alkyne–azide cycloaddition (CuAAC) “click” reaction and its applications. An overview. Coord. Chem. Rev. 255, 2933–2945 (2011).

    CAS  Google Scholar 

  53. 53.

    Jin, L., Tolentino, D. R., Melaimi, M. & Bertrand, G. Isolation of bis(copper) key intermediates in Cu-catalyzed azide–alkyne “click reaction”. Sci. Adv. 1, e1500304 (2015).

    PubMed  PubMed Central  Google Scholar 

  54. 54.

    Stephan, D. W. The broadening reach of frustrated Lewis pair chemistry. Science 354, aaf7229 (2016).

    PubMed  Google Scholar 

  55. 55.

    Welch, G. C., San Juan, R. R., Masuda, J. D. & Stephan, D. W. Reversible, metal-free hydrogen activation. Science 314, 1124–1126 (2006).

    CAS  PubMed  Google Scholar 

  56. 56.

    Campos, J. Dihydrogen and acetylene activation by a gold(i)/platinum(0) transition metal only frustrated Lewis pair. J. Am. Chem. Soc. 139, 2944–2947 (2017).

    CAS  PubMed  Google Scholar 

  57. 57.

    Hidalgo, N. et al. Evidence for genuine bimetallic frustrated Lewis pair activation of dihydrogen with gold(i)/platinum(0) systems. Chem. Eur. J. 26, 5982–5993 (2020).

    CAS  PubMed  Google Scholar 

  58. 58.

    Gade, L. H. Highly polar metal–metal bonds in “early–late” heterodimetallic complexes. Angew. Chem. Int. Ed. 39, 2658–2678 (2000).

    CAS  Google Scholar 

  59. 59.

    Cooper, B. G., Napoline, J. W. & Thomas, C. M. Catalytic applications of early/late heterobimetallic complexes. Catal. Rev. 54, 1–40 (2012).

    CAS  Google Scholar 

  60. 60.

    Mankad, N. P. Diverse bimetallic mechanisms emerging from transition metal Lewis acid/base pairs: development of co-catalysis with metal carbenes and metal carbonyl anions. Chem. Commun. 54, 1291–1302 (2018).

    CAS  Google Scholar 

  61. 61.

    Bauer, J., Braunschweig, H. & Dewhurst, R. D. Metal-only Lewis pairs with transition metal Lewis bases. Chem. Rev. 112, 4329–4346 (2012).

    CAS  PubMed  Google Scholar 

  62. 62.

    Flynn, S. R. & Wass, D. F. Transition metal frustrated Lewis pairs. ACS Catal. 3, 2574–2581 (2013).

    CAS  Google Scholar 

  63. 63.

    Bagherzadeh, S. & Mankad, N. P. Catalyst control of selectivity in CO2 reduction using a tunable heterobimetallic effect. J. Am. Chem. Soc. 137, 10898–10901 (2015).

    CAS  PubMed  Google Scholar 

  64. 64.

    Mazzacano, T. J. & Mankad, N. P. Base metal catalysts for photochemical C–H borylation that utilize metal–metal cooperativity. J. Am. Chem. Soc. 135, 17258–17261 (2013).

    CAS  PubMed  Google Scholar 

  65. 65.

    Zhou, Y.-Y. & Uyeda, C. Reductive cyclopropanations catalyzed by dinuclear nickel complexes. Angew. Chem. Int. Ed. 55, 3171–3175 (2016).

    CAS  Google Scholar 

  66. 66.

    Pal, S., Zhou, Y.-Y. & Uyeda, C. Catalytic reductive vinylidene transfer reactions. J. Am. Chem. Soc. 139, 11686–11689 (2017).

    CAS  PubMed  Google Scholar 

  67. 67.

    Zhou, Y.-Y. & Uyeda, C. Catalytic reductive [4+1]-cycloadditions of vinylidenes and dienes. Science 363, 857–862 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. 68.

    Planas, O., Wang, F., Leutzsch, M. & Cornella, J. Fluorination of arylboronic esters enabled by bismuth redox catalysis. Science 367, 313–317 (2020).

    CAS  PubMed  Google Scholar 

  69. 69.

    Inomata, K., Watanabe, T., Miyazaki, Y. & Tobita, H. Insertion of a cationic metallogermylene into E–H bonds (E=H, B, Si). J. Am. Chem. Soc. 137, 11935–11937 (2015).

    CAS  PubMed  Google Scholar 

  70. 70.

    Falcone, M., Chatelain, L., Scopelliti, R., Živković, I. & Mazzanti, M. Nitrogen reduction and functionalization by a multimetallic uranium nitride complex. Nature 547, 332–335 (2017).

    CAS  PubMed  Google Scholar 

  71. 71.

    Robertson, S. D., Uzelac, M. & Mulvey, R. E. Alkali-metal-mediated synergistic effects in polar main group organometallic chemistry. Chem. Rev. 119, 8332–8405 (2019).

    CAS  PubMed  Google Scholar 

  72. 72.

    Mulvey, R. E. Avant-garde metalating agents: structural basis of alkali-metal-mediated metalation. Acc. Chem. Res. 42, 743–755 (2009).

    CAS  PubMed  Google Scholar 

  73. 73.

    Martínez-Martínez, A. J., Kennedy, A. R., Mulvey, R. E. & O’Hara, C. T. Directed ortho-meta′- and meta-meta′-dimetalations: a template base approach to deprotonation. Science 346, 834–837 (2014).

    PubMed  Google Scholar 

  74. 74.

    Deacy, A. C., Kilpatrick, A. F. R., Regoutz, A. & Williams, C. K. Understanding metal synergy in heterodinuclear catalysts for the copolymerization of CO2 and epoxides. Nat. Chem. 12, 372–380 (2020).

    CAS  PubMed  Google Scholar 

  75. 75.

    Hashmi, A. S. K. Gold-catalyzed organic reactions. Chem. Rev. 107, 3180–3211 (2007).

    CAS  PubMed  Google Scholar 

  76. 76.

    Ranieri, B., Escofeta, I. & Echavarren, A. M. Anatomy of gold catalysts: facts and myths. Org. Biomol. Chem. 13, 7103–7118 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. 77.

    Hicks, J., Vasko, P., Goicoechea, J. M. & Aldridge, S. Synthesis, structure and reaction chemistry of a nucleophilic aluminyl anion. Nature 557, 92–95 (2018).

    CAS  PubMed  Google Scholar 

  78. 78.

    Hicks, J., Mansikkamäki, A., Vasko, P., Goicoechea, J. M. & Aldridge, S. A nucleophilic gold complex. Nat. Chem. 11, 237–241 (2019).

    CAS  PubMed  Google Scholar 

  79. 79.

    You, D. & Gabbaï, F. P. Unmasking the catalytic activity of a platinum complex with a Lewis acidic, non-innocent antimony ligand. J. Am. Chem. Soc. 139, 6843–6846 (2017).

    CAS  PubMed  Google Scholar 

  80. 80.

    Cammarota, R. C. et al. A bimetallic nickel–gallium complex catalyzes CO2 hydrogenation via the intermediacy of an anionic d10 nickel hydride. J. Am. Chem. Soc. 139, 14244–14250 (2017).

    CAS  PubMed  Google Scholar 

  81. 81.

    Vollmer, M. V. et al. Cobalt-group 13 complexes catalyze CO2 hydrogenation via a Co(−i)/Co(i) redox cycle. ACS Catal. 10, 2459–2470 (2020).

    CAS  Google Scholar 

  82. 82.

    Zhang, H. et al. Investigation of ketone C=O bond activation processes by heterobimetallic Zr/Co and Ti/Co tris(phosphinoamide) complexes. Organometallics 36, 3498–3507 (2017).

    CAS  Google Scholar 

  83. 83.

    Zhang, H. et al. O2 Activation by a heterobimetallic Zr/Co complex. J. Am. Chem. Soc. 141, 9516–9520 (2019).

    CAS  PubMed  Google Scholar 

  84. 84.

    Kornecki, K. P. et al. Direct spectroscopic characterization of a transitory dirhodium donor–acceptor carbene complex. Science 342, 351–354 (2013).

    CAS  PubMed  Google Scholar 

  85. 85.

    Werlé, C., Goddard, R., Philipps, P., Farès, C. & Fürstner, A. Structures of reactive donor/acceptor and donor/donor rhodium carbenes in the solid state and their implications for catalysis. J. Am. Chem. Soc. 138, 3797–3805 (2016).

    PubMed  Google Scholar 

  86. 86.

    Berry, J. F. The role of three-center/four-electron bonds in superelectrophilic dirhodium carbene and nitrene catalytic intermediates. Dalton Trans. 41, 700–713 (2012).

    CAS  PubMed  Google Scholar 

  87. 87.

    Collins, L. R., van Gastel, M., Neese, F. & Fürstner, A. Enhanced electrophilicity of heterobimetallic Bi–Rh paddlewheel carbene complexes: a combined experimental, spectroscopic, and computational study. J. Am. Chem. Soc. 140, 13042–13055 (2018).

    CAS  PubMed  Google Scholar 

  88. 88.

    Liao, K. et al. Site-selective and stereoselective functionalization of unactivated C–H bonds. Nature 533, 230–234 (2016).

    CAS  PubMed  Google Scholar 

  89. 89.

    Liao, K. et al. Site-selective and stereoselective functionalization of non-activated tertiary C–H bonds. Nature 551, 609–613 (2017).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

J.C. thanks the Spanish Ministry of Science and Education for support (project PID2019-110856GA-I00).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jesús Campos.

Ethics declarations

Competing interests

The author declares no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Campos, J. Bimetallic cooperation across the periodic table. Nat Rev Chem 4, 696–702 (2020). https://doi.org/10.1038/s41570-020-00226-5

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing