Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Biosynthesis of inorganic nanomaterials using microbial cells and bacteriophages

Abstract

Inorganic nanomaterials are widely used in chemical, electronics, photonics, energy and medical industries. Preparing a nanomaterial (NM) typically requires physical and/or chemical methods that involve harsh and environmentally hazardous conditions. Recently, wild-type and genetically engineered microorganisms have been harnessed for the biosynthesis of inorganic NMs under mild and environmentally friendly conditions. Microorganisms such as microalgae, fungi and bacteria, as well as bacteriophages, can be used as biofactories to produce single-element and multi-element inorganic NMs. This Review describes the emerging area of inorganic NM biosynthesis, emphasizing the mechanisms of inorganic-ion reduction and detoxification, while also highlighting the proteins and peptides involved. We show how analysing a Pourbaix diagram can help us devise strategies for the predictive biosynthesis of NMs with high producibility and crystallinity and also describe how to control the size and morphology of the product. Here, we survey biosynthetic inorganic NMs of 55 elements and their applications in catalysis, energy harvesting and storage, electronics, antimicrobials and biomedical therapy. Furthermore, a step-by-step flow chart is presented to aid the design and biosynthesis of inorganic NMs employing microbial cells. Future research in this area will add to the diversity of available inorganic NMs but should also address scalability and purity.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Single-element and two-element map of inorganic nanomaterials synthesized using microbial cells and bacteriophages.
Fig. 2: Inorganic-nanomaterial synthesis in microbial cells and bacteriophages.
Fig. 3: Inorganic-nanomaterial biosynthesis using genetically engineered bacterial cells and M13 bacteriophage.
Fig. 4: Strategies for controlling the size of a biosynthetic inorganic nanomaterial.
Fig. 5: Inorganic nanomaterials in chemical production, energy harvesting and storage components, electronics, antimicrobial agents and drug delivery.
Fig. 6: How to develop a strategy for inorganic-nanomaterial synthesis using microbial cells or bacteriophages.

References

  1. 1.

    Davies, D. W. et al. Computational screening of all stoichiometric inorganic materials. Chem 1, 617–627 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Chen, P.-C. et al. Polyelemental nanoparticle libraries. Science 352, 1565–1569 (2016).

    CAS  PubMed  Google Scholar 

  3. 3.

    Lemire, J. A., Harrison, J. J. & Turner, R. J. Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nat. Rev. Microbiol. 11, 371–384 (2013).

    CAS  PubMed  Google Scholar 

  4. 4.

    Escárcega-González, C. E., Garza-Cervantes, J. A., Vázquez-Rodríguez, A. & Morones-Ramírez, J. R. Bacterial exopolysaccharides as reducing and/or stabilizing agents during synthesis of metal nanoparticles with biomedical applications. Int. J. Polym. Sci. 2018, 1–15 (2018).

    Google Scholar 

  5. 5.

    Seo, J. M., Kim, E. B., Hyun, M. S., Kim, B. B. & Park, T. J. Self-assembly of biogenic gold nanoparticles and their use to enhance drug delivery into cells. Colloids Surf. B Biointerfaces 135, 27–34 (2015).

    CAS  PubMed  Google Scholar 

  6. 6.

    Kolev, S. K. et al. Interaction of Na+, K+, Mg2+ and Ca2+ counter cations with RNA. Metallomics 10, 659–678 (2018).

    CAS  PubMed  Google Scholar 

  7. 7.

    Sadler, W. R. & Trudinger, P. A. The inhibition of microorganisms by heavy metals. Miner. Deposita 2, 158–168 (1967).

    CAS  Google Scholar 

  8. 8.

    Choi, Y., Kim, H.-A., Kim, K.-W. & Lee, B.-T. Comparative toxicity of silver nanoparticles and silver ions to Escherichia coli. J. Environ. Sci. 66, 50–60 (2018).

    Google Scholar 

  9. 9.

    Huang, F. et al. Biosorption of Cd(ii) by live and dead cells of Bacillus cereus RC-1 isolated from cadmium-contaminated soil. Colloids Surf. B Biointerfaces 107, 11–18 (2013).

    CAS  PubMed  Google Scholar 

  10. 10.

    Iravani, S. & Varma, R. S. Bacteria in heavy metal remediation and nanoparticle biosynthesis. ACS Sustain. Chem. Eng. 8, 5395–5409 (2020).

    CAS  Google Scholar 

  11. 11.

    Choi, Y., Park, T. J., Lee, D. C. & Lee, S. Y. Recombinant Escherichia coli as a biofactory for various single- and multi-element nanomaterials. Proc. Natl Acad. Sci. USA 115, 5944–5949 (2018).

    CAS  PubMed  Google Scholar 

  12. 12.

    Kalimuthu, K., Suresh Babu, R., Venkataraman, D., Bilal, M. & Gurunathan, S. Biosynthesis of silver nanocrystals by Bacillus licheniformis. Colloids Surf. B Biointerfaces 65, 150–153 (2008).

    CAS  PubMed  Google Scholar 

  13. 13.

    Riddin, T. L., Gericke, M. & Whiteley, C. G. Analysis of the inter- and extracellular formation of platinum nanoparticles by Fusarium oxysporum f. sp. lycopersici using response surface methodology. Nanotechnology 17, 3482 (2006).

    CAS  PubMed  Google Scholar 

  14. 14.

    Rautaray, D., Sanyal, A., Adyanthaya, S. D., Ahmad, A. & Sastry, M. Biological synthesis of strontium carbonate crystals using the fungus Fusarium oxysporum. Langmuir 20, 6827–6833 (2004).

    CAS  PubMed  Google Scholar 

  15. 15.

    Bansal, V., Rautaray, D., Ahmad, A. & Sastry, M. Biosynthesis of zirconia nanoparticles using the fungus Fusarium oxysporum. J. Mater. Chem. 14, 3303–3305 (2004).

    CAS  Google Scholar 

  16. 16.

    Mirzadeh, S., Darezereshki, E., Bakhtiari, F., Fazaelipoor, M. H. & Hosseini, M. R. Characterization of zinc sulfide (ZnS) nanoparticles biosynthesized by Fusarium oxysporum. Mater. Sci. Semicond. Process. 16, 374–378 (2013).

    CAS  Google Scholar 

  17. 17.

    Bai, H.-J., Zhang, Z.-M. & Gong, J. Biological synthesis of semiconductor zinc sulfide nanoparticles by immobilized Rhodobacter sphaeroides. Biotechnol. Lett. 28, 1135–1139 (2006).

    CAS  PubMed  Google Scholar 

  18. 18.

    Hamer, D. H. Metallothionein. Annu. Rev. Biochem. 55, 913–951 (1986).

    CAS  PubMed  Google Scholar 

  19. 19.

    Inouhe, M. Phytochelatins. Braz. J. Plant Physiol. 17, 65–78 (2005).

    CAS  Google Scholar 

  20. 20.

    Cobbett, C. S. Phytochelatin biosynthesis and function in heavy-metal detoxification. Curr. Opin. Plant Biol. 3, 211–216 (2000).

    CAS  PubMed  Google Scholar 

  21. 21.

    Li, Y. et al. Overexpression of phytochelatin synthase in Arabidopsis leads to enhanced arsenic tolerance and cadmium hypersensitivity. Plant Cell. Physiol. 45, 1787–1797 (2004).

    CAS  PubMed  Google Scholar 

  22. 22.

    Kang, S. H., Bozhilov, K. N., Myung, N. V., Mulchandani, A. & Chen, W. Microbial synthesis of CdS nanocrystals in genetically engineered E. coli. Angew. Chem. Int. Ed. Engl. 47, 5186–5189 (2008).

    CAS  PubMed  Google Scholar 

  23. 23.

    Park, T. J., Lee, S. Y., Heo, N. S. & Seo, T. S. In vivo synthesis of diverse metal nanoparticles by recombinant Escherichia coli. Angew. Chem. Int. Ed. Engl. 49, 7019–7024 (2010).

    CAS  PubMed  Google Scholar 

  24. 24.

    Lee, K. G. et al. In vitro biosynthesis of metal nanoparticles in microdroplets. ACS Nano 6, 6998–7008 (2012).

    CAS  PubMed  Google Scholar 

  25. 25.

    Kim, E. B., Seo, J. M., Kim, G. W., Lee, S. Y. & Park, T. J. In vivo synthesis of europium selenide nanoparticles and related cytotoxicity evaluation of human cells. Enzyme Microb. Technol. 95, 201–208 (2016).

    CAS  PubMed  Google Scholar 

  26. 26.

    Jung, J. H., Lee, S. Y. & Seo, T. S. In vivo synthesis of nanocomposites using the recombinant Escherichia coli. Small 14, 1803133 (2018).

    Google Scholar 

  27. 27.

    Jung, J. H., Park, T. J., Lee, S. Y. & Seo, T. S. Homogeneous biogenic paramagnetic nanoparticle synthesis based on a microfluidic droplet generator. Angew. Chem. Int. Ed. 51, 5634–5637 (2012).

    CAS  Google Scholar 

  28. 28.

    Li, D.-B. et al. Selenite reduction by Shewanella oneidensis MR-1 is mediated by fumarate reductase in periplasm. Sci. Rep. 4, 3735 (2014).

    PubMed  PubMed Central  Google Scholar 

  29. 29.

    Xiao, X. et al. Biosynthesis of FeS nanoparticles from contaminant degradation in one single system. Biochem. Eng. J. 105, 214–219 (2016).

    CAS  Google Scholar 

  30. 30.

    Fredrickson, J. K. et al. Towards environmental systems biology of Shewanella. Nat. Rev. Microbiol. 6, 592–603 (2008).

    CAS  PubMed  Google Scholar 

  31. 31.

    Shi, L. et al. Extracellular electron transfer mechanisms between microorganisms and minerals. Nat. Rev. Microbiol. 14, 651–662 (2016).

    CAS  PubMed  Google Scholar 

  32. 32.

    Shirodkar, S., Reed, S., Romine, M. & Saffarini, D. The octahaem SirA catalyses dissimilatory sulfite reduction in Shewanella oneidensis MR-1. Environ. Microbiol. 13, 108–115 (2011).

    CAS  PubMed  Google Scholar 

  33. 33.

    Perez-Gonzalez, T. et al. Magnetite biomineralization induced by Shewanella oneidensis. Geochim. Cosmochim. Acta 74, 967–979 (2010).

    CAS  Google Scholar 

  34. 34.

    Bose, S. et al. Bioreduction of hematite nanoparticles by the dissimilatory iron reducing bacterium Shewanella oneidensis MR-1. Geochim. Cosmochim. Acta 73, 962–976 (2009).

    CAS  Google Scholar 

  35. 35.

    Xiao, X. et al. Self-assembly of complex hollow CuS nano/micro shell by an electrochemically active bacterium Shewanella oneidensis MR-1. Int. Biodeterior. Biodegrad. 116, 10–16 (2017).

    CAS  Google Scholar 

  36. 36.

    Fellowes, J. et al. Use of biogenic and abiotic elemental selenium nanospheres to sequester elemental mercury released from mercury contaminated museum specimens. J. Hazard. Mater. 189, 660–669 (2011).

    CAS  PubMed  Google Scholar 

  37. 37.

    Cologgi, D. L., Lampa-Pastirk, S., Speers, A. M., Kelly, S. D. & Reguera, G. Extracellular reduction of uranium via Geobacter conductive pili as a protective cellular mechanism. Proc. Natl Acad. Sci. USA 108, 15248–15252 (2011).

    CAS  PubMed  Google Scholar 

  38. 38.

    Lin, I. W.-S., Lok, C.-N. & Che, C.-M. Biosynthesis of silver nanoparticles from silver(i) reduction by the periplasmic nitrate reductase c-type cytochrome subunit NapC in a silver-resistant E. coli. Chem. Sci. 5, 3144–3150 (2014).

    CAS  Google Scholar 

  39. 39.

    Potter, L. C. & Cole, J. A. Essential roles for the products of the napABCD genes, but not napFGH, in periplasmic nitrate reduction by Escherichia coli K-12. Biochem. J. 344, 69–76 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Gescher, J. S., Cordova, C. D. & Spormann, A. M. Dissimilatory iron reduction in Escherichia coli: identification of CymA of Shewanella oneidensis and NapC of E. coli as ferric reductases. Mol. Microbiol. 68, 706–719 (2008).

    CAS  PubMed  Google Scholar 

  41. 41.

    Jeong, C. K. et al. Virus-directed design of a flexible BaTiO3 nanogenerator. ACS Nano 7, 11016–11025 (2013).

    CAS  PubMed  Google Scholar 

  42. 42.

    Dang, X. et al. Virus-templated self-assembled single-walled carbon nanotubes for highly efficient electron collection in photovoltaic devices. Nat. Nanotechnol. 6, 377–384 (2011).

    CAS  PubMed  Google Scholar 

  43. 43.

    Gahlawat, G. & Choudhury, A. R. A review on the biosynthesis of metal and metal salt nanoparticles by microbes. RSC Adv. 9, 12944–12967 (2019).

    CAS  Google Scholar 

  44. 44.

    Ali, J., Ali, N., Wang, L., Waseem, H. & Pan, G. Revisiting the mechanistic pathways for bacterial mediated synthesis of noble metal nanoparticles. J. Microbiol. Methods 159, 18–25 (2019).

    CAS  PubMed  Google Scholar 

  45. 45.

    Iravani, S. & Varma, R. S. Biofactories: engineered nanoparticles via genetically engineered organisms. Green Chem. 21, 4583–4603 (2019).

    CAS  Google Scholar 

  46. 46.

    Khan, M. R. et al. Metal nanoparticle–microbe interactions: synthesis and antimicrobial effects. Part. Part. Syst. Charact. 37, 1900419 (2020).

    CAS  Google Scholar 

  47. 47.

    Mirabello, G., Lenders, J. J. M. & Sommerdijk, N. A. J. M. Bioinspired synthesis of magnetite nanoparticles. Chem. Soc. Rev. 45, 5085–5106 (2016).

    CAS  PubMed  Google Scholar 

  48. 48.

    Bazylinski, D. A. & Frankel, R. B. Magnetosome formation in prokaryotes. Nat. Rev. Microbiol. 2, 217–230 (2004).

    CAS  PubMed  Google Scholar 

  49. 49.

    Jacob, J. J. & Suthindhiran, K. Magnetotactic bacteria and magnetosomes — scope and challenges. Mater. Sci. Eng. C Mater. Biol. Appl. 68, 919–928 (2016).

    CAS  PubMed  Google Scholar 

  50. 50.

    Blakemore, R. Magnetotactic bacteria. Science 190, 377–379 (1975).

    CAS  PubMed  Google Scholar 

  51. 51.

    Faramarzi, M. A. & Sadighi, A. Insights into biogenic and chemical production of inorganic nanomaterials and nanostructures. Adv. Colloid Interface Sci. 189–190, 1–20 (2013).

    PubMed  Google Scholar 

  52. 52.

    Jogler, C. & Schüler, D. in Magnetoreception and Magnetosomes in Bacteria (ed. Schüler, D.) 133–161 (Springer, 2006).

  53. 53.

    Vargas, G. et al. Applications of magnetotactic bacteria, magnetosomes and magnetosome crystals in biotechnology and nanotechnology: mini-review. Molecules 23, 2348 (2018).

    Google Scholar 

  54. 54.

    Vilchis-Nestor, A. R. et al. Solventless synthesis and optical properties of Au and Ag nanoparticles using Camellia sinensis extract. Mater. Lett. 62, 3103–3105 (2008).

    CAS  Google Scholar 

  55. 55.

    Al juraifani, A. A. A. & Ghazwani, A. A. Biosynthesis of silver nanoparticles by Aspergillus niger, Fusarium oxysporum and Alternaria solani. Afr. J. Biotechnol. 14, 2170–2174 (2015).

    Google Scholar 

  56. 56.

    Hosseini, M. R., Schaffie, M., Pazouki, M., Darezereshki, E. & Ranjbar, M. Biologically synthesized copper sulfide nanoparticles: production and characterization. Mater. Sci. Semicond. Process. 15, 222–225 (2012).

    CAS  Google Scholar 

  57. 57.

    Schaffie, M. & Hosseini, M. R. Biological process for synthesis of semiconductor copper sulfide nanoparticle from mine wastewaters. J. Environ. Chem. Eng. 2, 386–391 (2014).

    CAS  Google Scholar 

  58. 58.

    Syed, A. & Ahmad, A. Extracellular biosynthesis of CdTe quantum dots by the fungus Fusarium oxysporum and their anti-bacterial activity. Spectrochim. Acta A Mol. Biomol. Spectrosc. 106, 41–47 (2013).

    CAS  PubMed  Google Scholar 

  59. 59.

    Bansal, V. et al. Fungus-mediated biosynthesis of silica and titania particles. J. Mater. Chem. 15, 2583–2589 (2005).

    CAS  Google Scholar 

  60. 60.

    Bharde, A. et al. Extracellular biosynthesis of magnetite using fungi. Small 2, 135–141 (2006).

    CAS  PubMed  Google Scholar 

  61. 61.

    Bansal, V., Poddar, P., Ahmad, A. & Sastry, M. Room-temperature biosynthesis of ferroelectric barium titanate nanoparticles. J. Am. Chem. Soc. 128, 11958–11963 (2006).

    CAS  PubMed  Google Scholar 

  62. 62.

    Uddin, I. et al. Structure and microbial synthesis of sub-10 nm Bi2O3 nanocrystals. J. Nanosci. Nanotechnol. 8, 3909–3913 (2008).

    CAS  PubMed  Google Scholar 

  63. 63.

    Kawazoe, H. et al. P-type electrical conduction in transparent thin films of CuAlO2. Nature 389, 939–942 (1997).

    CAS  Google Scholar 

  64. 64.

    Ahmad, A. et al. Fungus-based synthesis of chemically difficult-to-synthesize multifunctional nanoparticles of CuAlO2. Adv. Mater. 19, 3295–3299 (2007).

    CAS  Google Scholar 

  65. 65.

    Lian, S. et al. Characterization of biogenic selenium nanoparticles derived from cell-free extracts of a novel yeast Magnusiomyces ingens. 3 Biotech 9, 221 (2019).

    PubMed  PubMed Central  Google Scholar 

  66. 66.

    Bao, H., Hao, N., Yang, Y. & Zhao, D. Biosynthesis of biocompatible cadmium telluride quantum dots using yeast cells. Nano Res. 3, 481–489 (2010).

    CAS  Google Scholar 

  67. 67.

    Dameron, C. T. et al. Biosynthesis of cadmium sulphide quantum semiconductor crystallites. Nature 338, 596–597 (1989).

    CAS  Google Scholar 

  68. 68.

    Waghmare, S. R., Mulla, M. N., Marathe, S. R. & Sonawane, K. D. Ecofriendly production of silver nanoparticles using Candida utilis and its mechanistic action against pathogenic microorganisms. 3 Biotech 5, 33–38 (2015).

    PubMed  Google Scholar 

  69. 69.

    Apte, M. et al. Psychrotrophic yeast Yarrowia lipolytica NCYC 789 mediates the synthesis of antimicrobial silver nanoparticles via cell-associated melanin. AMB Express 3, 32 (2013).

    PubMed  PubMed Central  Google Scholar 

  70. 70.

    Pimprikar, P. S., Joshi, S. S., Kumar, A. R., Zinjarde, S. S. & Kulkarni, S. K. Influence of biomass and gold salt concentration on nanoparticle synthesis by the tropical marine yeast Yarrowia lipolytica NCIM 3589. Colloids Surf. B Biointerfaces 74, 309–316 (2009).

    CAS  PubMed  Google Scholar 

  71. 71.

    Chen, X. et al. Microorganism-assisted synthesis of Au/Pd/Ag nanowires. Mater. Lett. 165, 29–32 (2016).

    CAS  Google Scholar 

  72. 72.

    Seshadri, S., Saranya, K. & Kowshik, M. Green synthesis of lead sulfide nanoparticles by the lead resistant marine yeast, Rhodosporidium diobovatum. Biotechnol. Prog. 27, 1464–1469 (2011).

    CAS  PubMed  Google Scholar 

  73. 73.

    Kowshik, M., Vogel, W., Urban, J., Kulkarni, S. K. & Paknikar, K. M. Microbial synthesis of semiconductor PbS nanocrystallites. Adv. Mater. 14, 815–818 (2002).

    CAS  Google Scholar 

  74. 74.

    Jha, A. K., Prasad, K. & Kulkarni, A. R. Synthesis of TiO2 nanoparticles using microorganisms. Colloids Surf. B Biointerfaces 71, 226–229 (2009).

    CAS  PubMed  Google Scholar 

  75. 75.

    Salunke, B. K., Sawant, S. S., Lee, S. I. & Kim, B. S. Comparative study of MnO2 nanoparticle synthesis by marine bacterium Saccharophagus degradans and yeast Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 99, 5419–5427 (2015).

    CAS  PubMed  Google Scholar 

  76. 76.

    Zhou, W. et al. Biosynthesis and magnetic properties of mesoporous Fe3O4 composites. J. Magn. Magn. Mater. 321, 1025–1028 (2009).

    CAS  Google Scholar 

  77. 77.

    Anal K. Jha, K. P. Biological synthesis of cobalt ferrite nanoparticles. Nanotechnol. Dev. 2, 46–51 (2012).

    Google Scholar 

  78. 78.

    Prasad, K., Jha, A. K., Prasad, K. & Kulkarni, A. R. Can microbes mediate nano-transformation? Indian J. Phys. 84, 1355–1360 (2010).

    CAS  Google Scholar 

  79. 79.

    Jha, A. K., Prasad, K. & Prasad, K. A green low-cost biosynthesis of Sb2O3 nanoparticles. Biochem. Eng. J. 43, 303–306 (2009).

    CAS  Google Scholar 

  80. 80.

    Wang, L., Pang, Q., Song, Q., Pan, X. & Jia, L. Novel microbial synthesis of Cu doped LaCoO3 photocatalyst and its high efficient hydrogen production from formaldehyde solution under visible light irradiation. Fuel 140, 267–274 (2015).

    CAS  Google Scholar 

  81. 81.

    Jiang, M. et al. Biological nano-mineralization of Ce phosphate by Saccharomyces cerevisiae. Chem. Geol. 277, 61–69 (2010).

    CAS  Google Scholar 

  82. 82.

    Jiang, M., Ohnuki, T. & Utsunomiya, S. Biomineralization of middle rare earth element samarium in yeast and bacteria systems. Geomicrobiol. J. 35, 375–384 (2018).

    CAS  Google Scholar 

  83. 83.

    Jiang, M. et al. Post-adsorption process of Yb phosphate nano-particle formation by Saccharomyces cerevisiae. Geochim. Cosmochim. Acta 93, 30–46 (2012).

    CAS  Google Scholar 

  84. 84.

    Pei, X. et al. Green synthesis of gold nanoparticles using fungus Mariannaea sp. HJ and their catalysis in reduction of 4-nitrophenol. Environ. Sci. Pollut. Res. 24, 21649–21659 (2017).

    CAS  Google Scholar 

  85. 85.

    Qu, Y. et al. Biosynthesis of gold nanoparticles using cell-free extracts of Magnusiomyces ingens LH-F1 for nitrophenols reduction. Bioprocess Biosyst. Eng. 41, 359–367 (2018).

    CAS  PubMed  Google Scholar 

  86. 86.

    Gopinath, K., Karthika, V., Sundaravadivelan, C., Gowri, S. & Arumugam, A. Mycogenesis of cerium oxide nanoparticles using Aspergillus niger culture filtrate and their applications for antibacterial and larvicidal activities. J. Nanostruct. Chem. 5, 295–303 (2015).

    CAS  Google Scholar 

  87. 87.

    Chokshi, K. et al. Green synthesis, characterization and antioxidant potential of silver nanoparticles biosynthesized from de-oiled biomass of thermotolerant oleaginous microalgae Acutodesmus dimorphus. RSC Adv. 6, 72269–72274 (2016).

    CAS  Google Scholar 

  88. 88.

    Aziz, N. et al. Facile algae-derived route to biogenic silver nanoparticles: synthesis, antibacterial, and photocatalytic properties. Langmuir 31, 11605–11612 (2015).

    CAS  PubMed  Google Scholar 

  89. 89.

    Singaravelu, G., Arockiamary, J. S., Kumar, V. G. & Govindaraju, K. A novel extracellular synthesis of monodisperse gold nanoparticles using marine alga, Sargassum wightii Greville. Colloids Surf. B Biointerfaces 57, 97–101 (2007).

    CAS  PubMed  Google Scholar 

  90. 90.

    Dahoumane, S. A. et al. Improvement of kinetics, yield, and colloidal stability of biogenic gold nanoparticles using living cells of Euglena gracilis microalga. J. Nanopart. Res. 18, 79 (2016).

    Google Scholar 

  91. 91.

    Vanathi, P., Rajiv, P. & Sivaraj, R. Synthesis and characterization of Eichhornia-mediated copper oxide nanoparticles and assessing their antifungal activity against plant pathogens. Bull. Mater. Sci. 39, 1165–1170 (2016).

    CAS  Google Scholar 

  92. 92.

    Abboud, Y. et al. Biosynthesis, characterization and antimicrobial activity of copper oxide nanoparticles (CONPs) produced using brown alga extract (Bifurcaria bifurcata). Appl. Nanosci. 4, 571–576 (2014).

    CAS  Google Scholar 

  93. 93.

    Xia, Y. et al. Biotemplating of phosphate hierarchical rechargeable LiFePO4/C spirulina microstructures. J. Mater. Chem. 21, 6498–6501 (2011).

    CAS  Google Scholar 

  94. 94.

    He, J. et al. Diatom-templated TiO2 with enhanced photocatalytic activity: biomimetics of photonic crystals. Appl. Phys. A 113, 327–332 (2013).

    CAS  Google Scholar 

  95. 95.

    Chen, L., Feng, W., Pu, Z., Wang, X. & Song, C. Impact of pH on preparation of LiFePO4@C cathode materials by a sol-gel route assisted by biomineralization. Ionics 25, 5625–5632 (2019).

    CAS  Google Scholar 

  96. 96.

    Santomauro, G. et al. Biomineralization of zinc-phosphate-based nano needles by living microalgae. J. Biomater. Nanobiotechnol. 3, 362–370 (2012).

    CAS  Google Scholar 

  97. 97.

    Hou, L., Gao, F. & Li, N. T4 virus-based toolkit for the direct synthesis and 3D organization of metal quantum particles. Chem. Eur. J. 16, 14397–14403 (2010).

    CAS  PubMed  Google Scholar 

  98. 98.

    Kim, I. et al. Virus-templated self-mineralization of ligand-free colloidal palladium nanostructures for high surface activity and stability. Adv. Funct. Mater. 27, 1703262 (2017).

    Google Scholar 

  99. 99.

    Kim, Y.-H. et al. Electrical charging characteristics of palladium nanoparticles synthesized on tobacco mosaic virus nanotemplate for organic memory device. ECS J. Solid State Sci. Technol. 5, Q226–Q230 (2016).

    CAS  Google Scholar 

  100. 100.

    Love, A. J. et al. A genetically modified tobacco mosaic virus that can produce gold nanoparticles from a metal salt precursor. Front. Plant Sci. 6, 984 (2015).

    PubMed  PubMed Central  Google Scholar 

  101. 101.

    Oh, M. H., Yu, J. H., Kim, I. & Nam, Y. S. Genetically programmed clusters of gold nanoparticles for cancer cell-targeted photothermal therapy. ACS Appl. Mater. Interfaces 7, 22578–22586 (2015).

    CAS  PubMed  Google Scholar 

  102. 102.

    Vera-Robles, L. I., Escobar-Alarcón, L., Picquart, M., Hernández-Pozos, J. L. & Haro-Poniatowski, E. A biological approach for the synthesis of bismuth nanoparticles: using thiolated M13 phage as scaffold. Langmuir 32, 3199–3206 (2016).

    CAS  PubMed  Google Scholar 

  103. 103.

    Mao, C. et al. Virus-based toolkit for the directed synthesis of magnetic and semiconducting nanowires. Science 303, 213–217 (2004).

    CAS  PubMed  Google Scholar 

  104. 104.

    Shenton, W., Douglas, T., Young, M., Stubbs, G. & Mann, S. Inorganic–organic nanotube composites from template mineralization of tobacco mosaic virus. Adv. Mater. 11, 253–256 (1999).

    CAS  Google Scholar 

  105. 105.

    Jung, S. M., Qi, J., Oh, D., Belcher, A. & Kong, J. M13 virus aerogels as a scaffold for functional inorganic materials. Adv. Funct. Mater. 27, 1603203 (2017).

    Google Scholar 

  106. 106.

    Nuraje, N. et al. Biotemplated synthesis of perovskite nanomaterials for solar energy conversion. Adv. Mater. 24, 2885–2889 (2012).

    CAS  PubMed  Google Scholar 

  107. 107.

    Nam, Y. S. et al. Virus-templated iridium oxide–gold hybrid nanowires for electrochromic application. Nanoscale 4, 3405–3409 (2012).

    CAS  PubMed  Google Scholar 

  108. 108.

    Mao, C. et al. Viral assembly of oriented quantum dot nanowires. Proc. Natl Acad. Sci. USA 100, 6946–6951 (2003).

    CAS  PubMed  Google Scholar 

  109. 109.

    Nam, K. T. et al. Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes. Science 312, 885–888 (2006).

    CAS  PubMed  Google Scholar 

  110. 110.

    Yang, C., Meldon, J. H., Lee, B. & Yi, H. Investigation on the catalytic reduction kinetics of hexavalent chromium by viral-templated palladium nanocatalysts. Catal. Today 233, 108–116 (2014).

    CAS  Google Scholar 

  111. 111.

    Avery, K. N., Schaak, J. E. & Schaak, R. E. M13 bacteriophage as a biological scaffold for magnetically-recoverable metal nanowire catalysts: combining specific and nonspecific interactions to design multifunctional nanocomposites. Chem. Mater. 21, 2176–2178 (2009).

    CAS  Google Scholar 

  112. 112.

    Mi, C. et al. Biosynthesis and characterization of CdS quantum dots in genetically engineered Escherichia coli. J. Biotechnol. 153, 125–132 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. 113.

    Ouyang, C.-Y., Lin, Y.-K., Tsai, D.-Y. & Yeh, Y.-C. Secretion of metal-binding proteins by a newly discovered OsmY homolog in Cupriavidus metallidurans for the biogenic synthesis of metal nanoparticles. RSC Adv. 6, 16798–16801 (2016).

    CAS  Google Scholar 

  114. 114.

    Yuan, Q., Bomma, M. & Xiao, Z. Enhanced silver nanoparticle synthesis by Escherichia coli transformed with Candida albicans metallothionein gene. Materials 12, 4180 (2019).

    CAS  PubMed Central  Google Scholar 

  115. 115.

    Tsai, Y.-J. et al. Biosynthesis and display of diverse metal nanoparticles by recombinant Escherichia coli. RSC Adv. 4, 58717–58719 (2014).

    CAS  Google Scholar 

  116. 116.

    Monrás, J. P. et al. Enhanced glutathione content allows the in vivo synthesis of fluorescent CdTe nanoparticles by Escherichia coli. PLoS ONE 7, e48657 (2012).

    PubMed  PubMed Central  Google Scholar 

  117. 117.

    Edmundson, M. C. & Horsfall, L. Construction of a modular arsenic-resistance operon in E. coli and the production of arsenic nanoparticles. Front. Bioeng. Biotechnol. 3, 160 (2015).

    PubMed  PubMed Central  Google Scholar 

  118. 118.

    Chellamuthu, P. et al. Engineering bacteria for biogenic synthesis of chalcogenide nanomaterials. Microb. Biotechnol. 12, 161–172 (2019).

    CAS  PubMed  Google Scholar 

  119. 119.

    Choi, K. R. et al. Systems metabolic engineering strategies: integrating systems and synthetic biology with metabolic engineering. Trends Biotechnol. 37, 817–837 (2019).

    CAS  PubMed  Google Scholar 

  120. 120.

    Tofanello, A. et al. pH-dependent synthesis of anisotropic gold nanostructures by bioinspired cysteine-containing peptides. ACS Omega 1, 424–434 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. 121.

    Wang, S., Qian, K., Bi, X. & Huang, W. Influence of speciation of aqueous HAuCl4 on the synthesis, structure, and property of Au colloids. J. Phys. Chem. C 113, 6505–6510 (2009).

    CAS  Google Scholar 

  122. 122.

    Kumari, M. et al. Physico-chemical condition optimization during biosynthesis lead to development of improved and catalytically efficient gold nano particles. Sci. Rep. 6, 27575 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. 123.

    Rizki, N. I. & Okibe, N. Size-controlled production of gold bionanoparticles using the extremely acidophilic Fe(iii)-reducing bacterium, Acidocella aromatica. Minerals 8, 81 (2018).

    Google Scholar 

  124. 124.

    Wang, M. et al. Microorganism-mediated synthesis of chemically difficult-to-synthesize Au nanohorns with excellent optical properties in the presence of hexadecyltrimethylammonium chloride. Nanoscale 5, 6599–6606 (2013).

    CAS  PubMed  Google Scholar 

  125. 125.

    Jing, X. et al. Microorganism-mediated, CTAC-directed synthesis of SERS-sensitive Au nanohorns with three-dimensional nanostructures by Escherichia coli cells. J. Chem. Technol. Biotechnol. 90, 678–685 (2015).

    CAS  Google Scholar 

  126. 126.

    Phanjom, P. & Ahmed, G. Effect of different physicochemical conditions on the synthesis of silver nanoparticles using fungal cell filtrate of Aspergillus oryzae (MTCC No. 1846) and their antibacterial effect. Adv. Nat. Sci. Nanosci. Nanotechnol. 8, 045016 (2017).

    Google Scholar 

  127. 127.

    Gurunathan, S. et al. Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli. Colloids Surf. B Biointerfaces 74, 328–335 (2009).

    CAS  PubMed  Google Scholar 

  128. 128.

    Debabov, V. et al. Bacterial synthesis of silver sulfide nanoparticles. Nanotechnol. Russ. 8, 269–276 (2013).

    Google Scholar 

  129. 129.

    Enyedi, N. T. et al. Cave bacteria-induced amorphous calcium carbonate formation. Sci. Rep. 10, 8696 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. 130.

    Wang, T., Yang, L., Zhang, B. & Liu, J. Extracellular biosynthesis and transformation of selenium nanoparticles and application in H2O2 biosensor. Colloids Surf. B Biointerfaces 80, 94–102 (2010).

    CAS  PubMed  Google Scholar 

  131. 131.

    Ruiz Fresneda, M. A. et al. Green synthesis and biotransformation of amorphous Se nanospheres to trigonal 1D Se nanostructures: impact on Se mobility within the concept of radioactive waste disposal. Environ. Sci. Nano 5, 2103–2116 (2018).

    CAS  Google Scholar 

  132. 132.

    Wang, G. et al. DNA-templated plasmonic Ag/AgCl nanostructures for molecular selective photocatalysis and photocatalytic inactivation of cancer cells. J. Mater. Chem. B 1, 5899–5907 (2013).

    CAS  PubMed  Google Scholar 

  133. 133.

    Martins, M. et al. Biogenic platinum and palladium nanoparticles as new catalysts for the removal of pharmaceutical compounds. Water Res. 108, 160–168 (2017).

    CAS  PubMed  Google Scholar 

  134. 134.

    Srivastava, N. & Mukhopadhyay, M. Biosynthesis of SnO2 nanoparticles using bacterium Erwinia herbicola and their photocatalytic activity for degradation of dyes. Ind. Eng. Chem. Res. 53, 13971–13979 (2014).

    CAS  Google Scholar 

  135. 135.

    Zhang, H. & Hu, X. Biosynthesis of Pd and Au as nanoparticles by a marine bacterium Bacillus sp. GP and their enhanced catalytic performance using metal oxides for 4-nitrophenol reduction. Enzyme Microb. Technol. 113, 59–66 (2018).

    CAS  PubMed  Google Scholar 

  136. 136.

    Tuo, Y. et al. Microbial synthesis of bimetallic PdPt nanoparticles for catalytic reduction of 4-nitrophenol. Environ. Sci. Pollut. Res. 24, 5249–5258 (2017).

    CAS  Google Scholar 

  137. 137.

    Xu, H. et al. Microbial synthesis of Pd–Pt alloy nanoparticles using Shewanella oneidensis MR-1 with enhanced catalytic activity for nitrophenol and azo dyes reduction. Nanotechnology 30, 065607 (2019).

    CAS  PubMed  Google Scholar 

  138. 138.

    Tuo, Y. et al. Microbial synthesis of Pd/Fe3O4, Au/Fe3O4 and PdAu/Fe3O4 nanocomposites for catalytic reduction of nitroaromatic compounds. Sci. Rep. 5, 13515 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. 139.

    Zhang, S., Yu, H., Yang, J. & Shen, Z. Design of the nanoarray pattern Fe–Ni bi-metal nanoparticles@M13 virus for the enhanced reduction of p-chloronitrobenzene through the micro-electrolysis effect. Environ. Sci. Nano 4, 876–885 (2017).

    CAS  Google Scholar 

  140. 140.

    Nichols, E. M. et al. Hybrid bioinorganic approach to solar-to-chemical conversion. Proc. Natl Acad. Sci. USA 112, 11461–11466 (2015).

    CAS  PubMed  Google Scholar 

  141. 141.

    Su, Y. et al. Close-packed nanowire–bacteria hybrids for efficient solar-driven CO2 fixation. Joule 4, 800–811 (2020).

    CAS  Google Scholar 

  142. 142.

    Sakimoto, K. K., Wong, A. B. & Yang, P. Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production. Science 351, 74–77 (2016).

    CAS  PubMed  Google Scholar 

  143. 143.

    Zhang, H. et al. Bacteria photosensitized by intracellular gold nanoclusters for solar fuel production. Nat. Nanotechnol. 13, 900–905 (2018).

    CAS  PubMed  Google Scholar 

  144. 144.

    Guo, J. et al. Light-driven fine chemical production in yeast biohybrids. Science 362, 813–816 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. 145.

    Cestellos-Blanco, S., Zhang, H., Kim, J. M., Shen, Y.-X. & Yang, P. Photosynthetic semiconductor biohybrids for solar-driven biocatalysis. Nat. Catal. 3, 245–255 (2020).

    CAS  Google Scholar 

  146. 146.

    Ding, Y. et al. Nanorg microbial factories: light-driven renewable biochemical synthesis using quantum dot–bacteria nanobiohybrids. J. Am. Chem. Soc. 141, 10272–10282 (2019).

    CAS  PubMed  Google Scholar 

  147. 147.

    Kilper, S. et al. Genetically induced in situ-poling for piezo-active biohybrid nanowires. Adv. Mater. 31, 1805597 (2018).

    Google Scholar 

  148. 148.

    Lee, B. Y. et al. Virus-based piezoelectric energy generation. Nat. Nanotechnol. 7, 351–356 (2012).

    CAS  PubMed  Google Scholar 

  149. 149.

    Cung, K. et al. Biotemplated synthesis of PZT nanowires. Nano Lett. 13, 6197–6202 (2013).

    CAS  PubMed  Google Scholar 

  150. 150.

    Shin, D.-M. et al. Bioinspired piezoelectric nanogenerators based on vertically aligned phage nanopillars. Energy Environ. Sci. 8, 3198–3203 (2015).

    CAS  Google Scholar 

  151. 151.

    Kim, T.-Y., Kim, M. G., Lee, J.-H. & Hur, H.-G. Biosynthesis of nanomaterials by Shewanella species for application in lithium ion batteries. Front. Microbiol. 9, 2817 (2018).

    PubMed  PubMed Central  Google Scholar 

  152. 152.

    Chen, P.-Y. et al. Versatile three-dimensional virus-based template for dye-sensitized solar cells with improved electron transport and light harvesting. ACS Nano 7, 6563–6574 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. 153.

    Órdenes-Aenishanslins, N. et al. Biological synthesis of CdS/CdSe core/shell nanoparticles and its application in quantum dot sensitized solar cells. Front. Microbiol. 10, 1587 (2019).

    PubMed  PubMed Central  Google Scholar 

  154. 154.

    Durán, N. et al. Silver nanoparticles: a new view on mechanistic aspects on antimicrobial activity. Nanomedicine 12, 789–799 (2016).

    PubMed  Google Scholar 

  155. 155.

    Courtney, C. M. et al. Photoexcited quantum dots for killing multidrug-resistant bacteria. Nat. Mater. 15, 529–534 (2016).

    CAS  PubMed  Google Scholar 

  156. 156.

    Kazempour, Z. B., Yazdi, M. H., Rafii, F. & Shahverdi, A. R. Sub-inhibitory concentration of biogenic selenium nanoparticles lacks post antifungal effect for Aspergillus niger and Candida albicans and stimulates the growth of Aspergillus niger. Iran. J. Microbiol. 5, 81–85 (2013).

    PubMed  PubMed Central  Google Scholar 

  157. 157.

    Zare, B., Babaie, S., Setayesh, N. & Shahverdi, A. R. Isolation and characterization of a fungus for extracellular synthesis of small selenium nanoparticles. Nanomed. J. 1, 13–19 (2013).

    Google Scholar 

  158. 158.

    Cruz, L. Y., Wang, D. & Liu, J. Biosynthesis of selenium nanoparticles, characterization and X-ray induced radiotherapy for the treatment of lung cancer with interstitial lung disease. J. Photochem. Photobiol. B 191, 123–127 (2019).

    CAS  PubMed  Google Scholar 

  159. 159.

    Hariharan, H., Al-Harbi, N., Karuppiah, P. & Rajaram, S. Microbial synthesis of selenium nanocomposite using Saccharomyces cerevisiae and its antimicrobial activity against pathogens causing nosocomial infection. Chalcogenide Lett. 9, 509–515 (2012).

    CAS  Google Scholar 

  160. 160.

    Burdușel, A.-C. et al. Biomedical applications of silver nanoparticles: an up-to-date overview. Nanomaterials 8, 681 (2018).

    PubMed Central  Google Scholar 

  161. 161.

    Suresh, A. K. et al. Monodispersed biocompatible silver sulfide nanoparticles: facile extracellular biosynthesis using the γ-proteobacterium, Shewanella oneidensis. Acta Biomater. 7, 4253–4258 (2011).

    CAS  PubMed  Google Scholar 

  162. 162.

    Gajbhiye, M., Kesharwani, J., Ingle, A., Gade, A. & Rai, M. Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomedicine 5, 382–386 (2009).

    CAS  PubMed  Google Scholar 

  163. 163.

    Ingle, A., Gade, A., Pierrat, S., Sonnichsen, C. & Rai, M. Mycosynthesis of silver nanoparticles using the fungus Fusarium acuminatum and its activity against some human pathogenic bacteria. Curr. Nanosci. 4, 141–144 (2008).

    CAS  Google Scholar 

  164. 164.

    Fayaz, A. M. et al. Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. Nanomedicine 6, 103–109 (2010).

    CAS  PubMed  Google Scholar 

  165. 165.

    Jayaseelan, C. et al. Biological approach to synthesize TiO2 nanoparticles using Aeromonas hydrophila and its antibacterial activity. Spectrochim. Acta A Mol. Biomol. Spectrosc. 107, 82–89 (2013).

    CAS  PubMed  Google Scholar 

  166. 166.

    Składanowski, M. et al. Silver and gold nanoparticles synthesized from Streptomyces sp. isolated from acid forest soil with special reference to its antibacterial activity against pathogens. J. Clust. Sci. 28, 59–79 (2017).

    Google Scholar 

  167. 167.

    Hamouda, R. A., Yousuf, W. E., Abdeen, E. E. & Mohamed, A. Biological and chemical synthesis of silver nanoparticles: characterization, MIC and antibacterial activity against pathogenic bacteria. J. Chem. Pharm. Res. 11, 1–12 (2019).

    CAS  Google Scholar 

  168. 168.

    Cumberland, S. A. & Lead, J. R. Synthesis of NOM-capped silver nanoparticles: size, morphology, stability, and NOM binding characteristics. ACS Sustain. Chem. Eng. 1, 817–825 (2013).

    CAS  Google Scholar 

  169. 169.

    Kim, H. A., Choi, Y. J., Kim, K.-W., Lee, B.-T. & Ranville James, F. Nanoparticles in the environment: stability and toxicity. Rev. Environ. Health 27, 175–179 (2012).

    CAS  PubMed  Google Scholar 

  170. 170.

    Tian, L.-J. et al. A sustainable biogenic route to synthesize quantum dots with tunable fluorescence properties for live cell imaging. Biochem. Eng. J. 124, 130–137 (2017).

    CAS  Google Scholar 

  171. 171.

    Fan, T.-X., Chow, S.-K. & Zhang, D. Biomorphic mineralization: from biology to materials. Prog. Mater. Sci. 54, 542–659 (2009).

    CAS  Google Scholar 

  172. 172.

    Dilnawaz, F. & Sahoo, S. K. Therapeutic approaches of magnetic nanoparticles for the central nervous system. Drug Discov. Today 20, 1256–1264 (2015).

    CAS  PubMed  Google Scholar 

  173. 173.

    Tilley, R. D. Synthesis and applications of nanoparticles and quantum dots. Chem. N. Z. 72, 146–150 (2008).

    CAS  Google Scholar 

  174. 174.

    Xie, H. et al. An intrinsically fluorescent recognition ligand scaffold based on chaperonin protein and semiconductor quantum-dot conjugates. Small 5, 1036–1042 (2009).

    CAS  PubMed  Google Scholar 

  175. 175.

    Yong, K.-T., Roy, I., Ding, H., Bergey, E. J. & Prasad, P. N. Biocompatible near-infrared quantum dots as ultrasensitive probes for long-term in vivo imaging applications. Small 5, 1997–2004 (2009).

    CAS  PubMed  Google Scholar 

  176. 176.

    Zibik, E. A. et al. Long lifetimes of quantum-dot intersublevel transitions in the terahertz range. Nat. Mater. 8, 803–807 (2009).

    CAS  PubMed  Google Scholar 

  177. 177.

    Bao, H. et al. Extracellular microbial synthesis of biocompatible CdTe quantum dots. Acta Biomater. 6, 3534–3541 (2010).

    CAS  PubMed  Google Scholar 

  178. 178.

    Sun, S. & Zeng, H. Size-controlled synthesis of magnetite nanoparticles. J. Am. Chem. Soc. 124, 8204–8205 (2002).

    CAS  PubMed  Google Scholar 

  179. 179.

    Park, T. J., Lee, K. G. & Lee, S. Y. Advances in microbial biosynthesis of metal nanoparticles. Appl. Microbiol. Biotechnol. 100, 521–534 (2016).

    CAS  PubMed  Google Scholar 

  180. 180.

    Kundu, D., Hazra, C., Chatterjee, A., Chaudhari, A. & Mishra, S. Extracellular biosynthesis of zinc oxide nanoparticles using Rhodococcus pyridinivorans NT2: multifunctional textile finishing, biosafety evaluation and in vitro drug delivery in colon carcinoma. J. Photochem. Photobiol. B 140, 194–204 (2014).

    CAS  PubMed  Google Scholar 

  181. 181.

    Shivani, V., Puneet, U., Mahfoozur, R., Deo Nandan, P. & Lalit, K. Gold nanoparticles and their applications in cancer treatment. Curr. Nanomed. 8, 184–201 (2018).

    Google Scholar 

  182. 182.

    El-Kassas, H. Y. & El-Sheekh, M. M. Cytotoxic activity of biosynthesized gold nanoparticles with an extract of the red seaweed Corallina officinalis on the MCF-7 human breast cancer cell line. Asian Pac. J. Cancer Prev. 15, 4311–4317 (2014).

    PubMed  Google Scholar 

  183. 183.

    Chen, C. et al. Bacterial magnetic nanoparticles for photothermal therapy of cancer under the guidance of MRI. Biomaterials 104, 352–360 (2016).

    CAS  PubMed  Google Scholar 

  184. 184.

    Moon, J.-W. et al. Large-scale production of magnetic nanoparticles using bacterial fermentation. J. Ind. Microbiol. Biotechnol. 37, 1023–1031 (2010).

    CAS  PubMed  Google Scholar 

  185. 185.

    Moon, J.-W. et al. Manufacturing demonstration of microbially mediated zinc sulfide nanoparticles in pilot-plant scale reactors. Appl. Microbiol. Biotechnol. 100, 7921–7931 (2016).

    CAS  PubMed  Google Scholar 

  186. 186.

    Moon, J.-W. et al. Scalable production of microbially mediated zinc sulfide nanoparticles and application to functional thin films. Acta Biomater. 10, 4474–4483 (2014).

    CAS  PubMed  Google Scholar 

  187. 187.

    Moon, J.-W. et al. Scalable economic extracellular synthesis of CdS nanostructured particles by a non-pathogenic thermophile. J. Ind. Microbiol. Biotechnol. 40, 1263–1271 (2013).

    CAS  PubMed  Google Scholar 

  188. 188.

    Lee, S. Y. High cell-density culture of Escherichia coli. Trends Biotechnol. 14, 98–105 (1996).

    CAS  PubMed  Google Scholar 

  189. 189.

    Marguet, P., Tanouchi, Y., Spitz, E., Smith, C. & You, L. Oscillations by minimal bacterial suicide circuits reveal hidden facets of host-circuit physiology. PLoS ONE 5, e11909 (2010).

    PubMed  PubMed Central  Google Scholar 

  190. 190.

    Peng, G. et al. Diagnosing lung cancer in exhaled breath using gold nanoparticles. Nat. Nanotechnol. 4, 669–673 (2009).

    CAS  PubMed  Google Scholar 

  191. 191.

    Cui, S. et al. Controllable synthesis of silver nanoparticle-decorated reduced graphene oxide hybrids for ammonia detection. Analyst 138, 2877–2882 (2013).

    CAS  PubMed  Google Scholar 

  192. 192.

    Raman, R. & Langer, R. Biohybrid design gets personal: new materials for patient-specific therapy. Adv. Mater. 32, 1901969 (2020).

    CAS  Google Scholar 

  193. 193.

    Yoon, J. et al. Nanobiohybrid material-based bioelectronic devices. Biotechnol. J. 15, 1900347 (2020).

    CAS  Google Scholar 

  194. 194.

    Pourbaix, M. Atlas of Electrochemical Equilibria in Aqueous Solutions (English edition) (Oxford Univ. Press, 1966).

  195. 195.

    Huang, H.-H. The Eh–pH diagram and its advances. Metals 6, 23 (2016).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Technology Development Program to Solve Climate Changes on Systems Metabolic Engineering for Biorefineries from the Ministry of Science and ICT through the National Research Foundation of Korea (NRF-2012M1A2A2026556 and NRF-2012M1A2A2026557).

Author information

Affiliations

Authors

Contributions

S.Y.L. and Y.C. designed the content and flow of the paper. Y.C. collected the necessary information and data. Y.C. and S.Y.L. wrote the paper together.

Corresponding author

Correspondence to Sang Yup Lee.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Choi, Y., Lee, S.Y. Biosynthesis of inorganic nanomaterials using microbial cells and bacteriophages. Nat Rev Chem 4, 638–656 (2020). https://doi.org/10.1038/s41570-020-00221-w

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing