Abstract
RNA is a versatile biomolecule with a broad range of biological functions that go far beyond its initially described role as a simple information carrier. The development of chemical methods to control, manipulate and modify RNA has the potential to yield new insights into its many functions and properties. Traditionally, most of these methods involved the chemical modification of RNA structure using solid-state synthesis or enzymatic transformations. However, over the past 15 years, the direct functionalization of RNA by selective acylation of the 2′-hydroxyl (2′-OH) group has emerged as a powerful alternative that enables the simple modification of both synthetic and transcribed RNAs. In this Review, we discuss the chemical properties and design of effective reagents for RNA 2′-OH acylation, highlighting the unique problem of 2′-OH reactivity in the presence of water. We elaborate on how RNA 2′-OH acylation is being exploited to develop selective chemical probes that enable interrogation of RNA structure and function, and describe new developments and applications in the field.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Chemical reversible crosslinking enables measurement of RNA 3D distances and alternative conformations in cells
Nature Communications Open Access 17 February 2022
-
Construction of a reduction-responsive oligonucleotide via a post-modification approach utilizing 4-nitrophenyl diazomethane
Polymer Journal Open Access 15 February 2021
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout








References
Cech, T. R. & Steitz, J. A. The noncoding RNA revolution—trashing old rules to forge new ones. Cell 157, 77–94 (2014).
Lieberman, J. Tapping the RNA world for therapeutics. Nat. Struct. Mol. Biol. 25, 357–364 (2018).
Lin, C. & Yang, L. Long noncoding RNA in cancer: wiring signaling circuitry. Trends Cell Biol. 28, 287–301 (2018).
Kilchert, C., Wittmann, S. & Vasiljeva, L. The regulation and functions of the nuclear RNA exosome complex. Nat. Rev. Mol. Cell Biol. 17, 227–239 (2016).
La Manno, G. et al. RNA velocity of single cells. Nature 560, 494–498 (2018).
Houseley, J. & Tollervey, D. The many pathways of RNA degradation. Cell 136, 763–776 (2009).
Serganov, A. & Nudler, E. A decade of riboswitches. Cell 152, 17–24 (2013).
Serganov, A. & Patel, D. J. Ribozymes, riboswitches and beyond: regulation of gene expression without proteins. Nat. Rev. Genet. 8, 776–790 (2007).
Doherty, E. A. & Doudna, J. A. Ribozyme structures and mechanisms. Annu. Rev. Biochem. 69, 597–615 (2000).
Beringer, M. & Rodnina, M. V. The ribosomal peptidyl transferase. Mol. Cell 26, 311–321 (2007).
Zhao, B. S., Roundtree, I. A. & He, C. Post-transcriptional gene regulation by mRNA modifications. Nat. Rev. Mol. Cell Biol. 18, 31–42 (2017).
Roundtree, I. A., Evans, M. E., Pan, T. & He, C. Dynamic RNA modifications in gene expression regulation. Cell 169, 1187–1200 (2017).
Harcourt, E. M., Kietrys, A. M. & Kool, E. T. Chemical and structural effects of base modifications in messenger RNA. Nature 541, 339–346 (2017).
Quinn, J. J. & Chang, H. Y. Unique features of long non-coding RNA biogenesis and function. Nat. Rev. Genet. 17, 47–62 (2016).
Anastasiadou, E., Jacob, L. S. & Slack, F. J. Non-coding RNA networks in cancer. Nat. Rev. Cancer 18, 5–18 (2018).
Engreitz, J. M., Ollikainen, N. & Guttman, M. Long non-coding RNAs: spatial amplifiers that control nuclear structure and gene expression. Nat. Rev. Mol. Cell Biol. 17, 756–770 (2016).
Chen, L.-L. Linking long noncoding RNA localization and function. Trends Biochem. Sci. 41, 761–772 (2016).
Adams, D. et al. Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. N. Engl. J. Med. 379, 11–21 (2018).
Fellmann, C., Gowen, B. G., Lin, P.-C., Doudna, J. A. & Corn, J. E. Cornerstones of CRISPR–Cas in drug discovery and therapy. Nat. Rev. Drug Discov. 16, 89–100 (2016).
Sahin, U., Karikó, K. & Türeci, Ö. mRNA-based therapeutics—developing a new class of drugs. Nat. Rev. Drug Discov. 13, 759–780 (2014).
Sullenger, B. A. & Nair, S. From the RNA world to the clinic. Science 352, 1417–1420 (2016).
Kapranov, P. & St. Laurent, G. Dark matter RNA: existence, function, and controversy. Front. Genet. 3, 60 (2012).
Riddihough, G. In the forests of RNA dark matter. Science 309, 1507 (2005).
Hentze, M. W., Castello, A., Schwarzl, T. & Preiss, T. A brave new world of RNA-binding proteins. Nat. Rev. Mol. Cell Biol. 19, 327–341 (2018).
Lu, Z. & Chang, H. Y. Decoding the RNA structurome. Curr. Opin. Struct. Biol. 36, 142–148 (2016).
Ozsolak, F. & Milos, P. M. RNA sequencing: advances, challenges and opportunities. Nat. Rev. Genet. 12, 87–98 (2011).
Peer, E., Rechavi, G. & Dominissini, D. Epitranscriptomics: regulation of mRNA metabolism through modifications. Curr. Opin. Chem. Biol. 41, 93–98 (2017).
Lu, Z. et al. RNA duplex map in living cells reveals higher-order transcriptome structure. Cell 165, 1267–1279 (2016).
Hafner, M. et al. Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 141, 129–141 (2010).
Weeks, K. M. & Mauger, D. M. Exploring RNA structural codes with shape chemistry. Acc. Chem. Res. 44, 1280–1291 (2011).
Tijerina, P., Mohr, S. & Russell, R. DMS footprinting of structured RNAs and RNA–protein complexes. Nat. Protoc. 2, 2608–2623 (2007).
Hulscher, R. M. et al. Probing the structure of ribosome assembly intermediates in vivo using DMS and hydroxyl radical footprinting. Methods 103, 49–56 (2016).
Paige, J. S., Wu, K. Y. & Jaffrey, S. R. RNA mimics of green fluorescent protein. Science 333, 683–686 (2011).
Shin, D., Sinkeldam, R. W. & Tor, Y. Emissive RNA alphabet. J. Am. Chem. Soc. 133, 14912–14915 (2011).
Kawai, R. et al. Site-specific fluorescent labeling of RNA molecules by specific transcription using unnatural base pairs. J. Am. Chem. Soc. 127, 17286–17295 (2005).
Anhäuser, L. & Rentmeister, A. Enzyme-mediated tagging of RNA. Curr. Opin. Biotechnol. 48, 69–76 (2017).
Soutschek, J. et al. Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature 432, 173–178 (2004).
Juliano, R. L. The delivery of therapeutic oligonucleotides. Nucleic Acids Res. 44, 6518–6548 (2016).
Shabanpoor, F. et al. Bi-specific splice-switching PMO oligonucleotides conjugated via a single peptide active in a mouse model of Duchenne muscular dystrophy. Nucleic Acids Res. 43, 29–39 (2015).
Ankenbruck, N., Courtney, T., Naro, Y. & Deiters, A. Optochemical control of biological processes in cells and animals. Angew. Chem. Int. Ed. 57, 2768–2798 (2018).
Lubbe, A. S., Szymanski, W. & Feringa, B. L. Recent developments in reversible photoregulation of oligonucleotide structure and function. Chem. Soc. Rev. 46, 1052–1079 (2017).
Xia, Y., Zhang, R., Wang, Z., Tian, J. & Chen, X. Recent advances in high-performance fluorescent and bioluminescent RNA imaging probes. Chem. Soc. Rev. 46, 2824–2843 (2017).
Gaspar, I., Wippich, F. & Ephrussi, A. Enzymatic production of single-molecule FISH and RNA capture probes. RNA 23, 1582–1591 (2017).
Spitale, R. C. et al. RNA SHAPE analysis in living cells. Nat. Chem. Biol. 9, 18–20 (2013).
Paredes, E., Evans, M. & Das, S. R. RNA labeling, conjugation and ligation. Methods 54, 251–259 (2011).
Cusack, S. Aminoacyl-tRNA synthetases. Curr. Opin. Struct. Biol. 7, 881–889 (1997).
Ayadi, L., Galvanin, A., Pichot, F., Marchand, V. & Motorin, Y. RNA ribose methylation (2′-O-methylation): Occurrence, biosynthesis and biological functions. Biochim. Biophys. Acta Gene Regul. Mech. 1862, 253–269 (2019).
Stuart, A. & Khorana, H. G. The selective acetylation of terminal hydroxyl groups in deoxyribo-oligonucleotides. J. Am. Chem. Soc. 85, 2346–2347 (1963).
Knorre, D. G., Pustoshilova, N. M., Teplova, N. & Shamovsk, G. G. Production of transfer RNA acetylated at its 2′-hydroxy groups. Biokhimiya 30, 1218–1224 (1965).
Kochetkov, N. K. & Budovskii, E. I. in Organic Chemistry of Nucleic Acids: Part B 449–476 (Springer, 1972).
Cox, J. R. & Ramsay, O. B. Mechanisms of nucleophilic substitution in phosphate esters. Chem. Rev. 64, 317–352 (1964).
Velema, W. A., Kietrys, A. M. & Kool, E. T. RNA control by photoreversible acylation. J. Am. Chem. Soc. 140, 3491–3495 (2018).
Merino, E. J., Wilkinson, K. A., Coughlan, J. L. & Weeks, K. M. RNA structure analysis at single nucleotide resolution by selective 2′-hydroxyl acylation and primer extension (SHAPE). J. Am. Chem. Soc. 127, 4223–4231 (2005).
Lin, C. et al. Identification of acylation products in SHAPE chemistry. Bioorg. Med. Chem. Lett. 27, 2506–2509 (2017).
Keith, G. & Ebel, J.-P. Action de l’anhydride acétique sur les acides ribonucléiques de levure en milieu diméthylformamide. Biochim. Biophys. Acta 166, 16–28 (1968).
Meister, E. C., Willeke, M., Angst, W., Togni, A. & Walde, P. Confusing quantitative descriptions of Brønsted–Lowry acid–base equilibria in chemistry textbooks – a critical review and clarifications for chemical educators. Helv. Chim. Acta 97, 1–31 (2014).
Thaplyal, P. & Bevilacqua, P. C. in Riboswitch Discovery, Structure and Function Vol. 549 (ed. Burke-Aguero, D. H.) 189–219 (Academic, 2014).
Velikyan, I., Acharya, S., Trifonova, A., Földesi, A. & Chattopadhyaya, J. The pKa’s of 2′-hydroxyl group in nucleosides and nucleotides. J. Am. Chem. Soc. 123, 2893–2894 (2001).
Knorre, D. G., Pustoshi, N. M. & Teplova, N. Action of spleen and snake venom phosphodiesterases on transfer-RNA acetylated on the ribose 2′-hydroxyl group. Biokhimiya 31, 666–669 (1966).
McGinnis, J. L., Dunkle, J. A., Cate, J. H. D. & Weeks, K. M. The mechanisms of RNA shape chemistry. J. Am. Chem. Soc. 134, 6617–6624 (2012).
Mortimer, S. A. & Weeks, K. M. A fast-acting reagent for accurate analysis of RNA secondary and tertiary structure by SHAPE chemistry. J. Am. Chem. Soc. 129, 4144–4145 (2007).
Park, H. S., Kietrys, A. M. & Kool, E. T. Simple alkanoyl acylating agents for reversible RNA functionalization and control. Chem. Commun. 55, 5135–5138 (2019).
Kadina, A., Kietrys, A. M. & Kool, E. T. RNA cloaking by reversible acylation. Angew. Chem. Int. Ed. 57, 3059–3063 (2018).
Fessler, A., Garmon, C., Heavey, T., Fowler, A. & Ogle, C. Water-soluble and UV traceable isatoic anhydride-based reagents for bioconjugation. Org. Biomol. Chem. 15, 9599–9602 (2017).
Fessler, A. B. et al. Water-soluble isatoic anhydrides: a platform for RNA-SHAPE analysis and protein bioconjugation. Bioconjug. Chem. 29, 3196–3202 (2018).
Velema, W. A. & Kool, E. T. Water-soluble leaving group enables hydrophobic functionalization of RNA. Org. Lett. 20, 6587–6590 (2018).
Nodin, L. et al. RNA SHAPE chemistry with aromatic acylating reagents. Bioorg. Med. Chem. Lett. 25, 566–570 (2015).
Kutchko, K. M. & Laederach, A. Transcending the prediction paradigm: novel applications of SHAPE to RNA function and evolution. Wiley Interdiscip. RNA 8, e1374 (2017).
Bevilacqua, P. C., Ritchey, L. E., Su, Z. & Assmann, S. M. Genome-wide analysis of RNA secondary structure. Annu. Rev. Genet. 50, 235–266 (2016).
Strobel, E. J., Watters, K. E., Loughrey, D. & Lucks, J. B. RNA systems biology: uniting functional discoveries and structural tools to understand global roles of RNAs. Curr. Opin. Biotechnol. 39, 182–191 (2016).
Mortimer, S. A. et al. SHAPE-Seq: high-throughput RNA structure analysis. Curr. Protoc. Chem. Biol. 4, 275–297 (2012).
Lucks, J. B. et al. Multiplexed RNA structure characterization with selective 2′-hydroxyl acylation analyzed by primer extension sequencing (SHAPE-Seq). Proc. Natl Acad. Sci.USA 108, 11063–11068 (2011).
Siegfried, N. A., Busan, S., Rice, G. M., Nelson, J. A. E. & Weeks, K. M. RNA motif discovery by SHAPE and mutational profiling (SHAPE-MaP). Nat. Methods 11, 959–965 (2014).
Wilkinson, K. A., Merino, E. J. & Weeks, K. M. RNA SHAPE chemistry reveals nonhierarchical interactions dominate equilibrium structural transitions in tRNAAsp transcripts. J. Am. Chem. Soc. 127, 4659–4667 (2005).
Hiratsuka, T. New fluorescent analogs of cAMP and cGMP available as substrates for cyclic nucleotide phosphodiesterase. J. Biol. Chem. 257, 13354–13358 (1982).
Hiratsuka, T. New ribose-modified fluorescent analogs of adenine and guanine nucleotides available as subtrates for various enzymes. Biochim. Biophys. Acta 742, 496–508 (1983).
Deigan, K. E., Li, T. W., Mathews, D. H. & Weeks, K. M. Accurate SHAPE-directed RNA structure determination. Proc. Natl Acad. Sci. USA 106, 97–102 (2009).
Ding, Y. et al. In vivo genome-wide profiling of RNA secondary structure reveals novel regulatory features. Nature 505, 696–700 (2014).
Spitale, R. C. et al. Structural imprints in vivo decode RNA regulatory mechanisms. Nature 519, 486–490 (2015).
Sun, L. et al. RNA structure maps across mammalian cellular compartments. Nat. Struct. Mol. Biol. 26, 322–330 (2019).
Bhatt, D. M. et al. Transcript dynamics of proinflammatory genes revealed by sequence analysis of subcellular RNA fractions. Cell 150, 279–290 (2012).
McGinnis, J. L. et al. In-cell SHAPE reveals that free 30S ribosome subunits are in the inactive state. Proc. Natl Acad. Sci. USA 112, 2425–2430 (2015).
Mustoe, A. M. et al. Pervasive regulatory functions of mRNA structure revealed by high-resolution SHAPE probing. Cell 173, 181–195.e18 (2018).
Watters, K. E., Abbott, T. R. & Lucks, J. B. Simultaneous characterization of cellular RNA structure and function with in-cell SHAPE-Seq. Nucleic Acids Res. 44, e12 (2016).
Lee, B. et al. Comparison of SHAPE reagents for mapping RNA structures inside living cells. RNA 23, 169–174 (2017).
Smola, M. J., Calabrese, J. M. & Weeks, K. M. Detection of RNA–protein interactions in living cells with SHAPE. Biochemistry 54, 6867–6875 (2015).
Watters, K. E., Yu, A. M., Strobel, E. J., Settle, A. H. & Lucks, J. B. Characterizing RNA structures in vitro and in vivo with selective 2′-hydroxyl acylation analyzed by primer extension sequencing (SHAPE-Seq). Methods 103, 34–48 (2016).
Ursuegui, S. et al. Biotin-conjugated N-methylisatoic anhydride: A chemical tool for nucleic acid separation by selective 2′-hydroxyl acylation of RNA. Chem. Commun. 50, 5748–5751 (2014).
Ursuegui, S. et al. A biotin-conjugated pyridine-based isatoic anhydride, a selective room temperature RNA-acylating agent for the nucleic acid separation. Org. Biomol. Chem. 13, 3625–3632 (2015).
Fernández-García, C. & Powner, M. W. Selective acylation of nucleosides, nucleotides, and glycerol-3-phosphocholine in water. Synlett 28, 78–83 (2017).
Pieken, W. A., Olsen, D. B., Benseler, F., Aurup, H. & Eckstein, F. Kinetic characterization of ribonuclease-resistant 2′-modified hammerhead ribozymes. Science 253, 314–317 (1991).
Sproat, B. S., Lamond, A. I., Beijer, B., Neuner, P. & Ryder, U. Highly efficient chemical synthesis of 2′-O-methyloligoribonucleotides and tetrabiotinylated derivatives; novel probes that are resistant to degradation by RNA or DNA specific nucleases. Nucleic Acids Res. 17, 3373–3386 (1989).
Garry, D. J. et al. Transcription yield of fully 2′-modified RNA can be increased by the addition of thermostabilizing mutations to T7 RNA polymerase mutants. Nucleic Acids Res. 43, 7480–7488 (2015).
Ovodov, S. Y. & Alakhov, Y. B. mRNA acetylated at 2′-OH-groups of ribose residues is functionally active in the cell-free translation system from wheat embryos. FEBS Lett. 270, 111–114 (1990).
Goldsborough, S. Modified polynucleotides and uses thereof. US Patent US20030039985A1 (2003).
Steen, K.-A., Malhotra, A. & Weeks, K. M. Selective 2′-hydroxyl acylation analyzed by protection from exoribonuclease. J. Am. Chem. Soc. 132, 9940–9943 (2010).
Steen, K.-A., Siegfried, N. A. & Weeks, K. M. Selective 2′-hydroxyl acylation analyzed by protection from exoribonuclease (RNase-detected SHAPE) for direct analysis of covalent adducts and of nucleotide flexibility in RNA. Nat. Protoc. 6, 1683–1694 (2011).
Chin, J. W. Expanding and reprogramming the genetic code. Nature 550, 53–60 (2017).
Ibba, M. & Söll, D. Aminoacyl-tRNA synthesis. Annu. Rev. Biochem. 69, 617–650 (2000).
Robertson, S. A., Ellman, J. A. & Schultz, P. G. A general and efficient route for chemical aminoacylation of transfer RNAs. J. Am. Chem. Soc. 113, 2722–2729 (1991).
Hecht, S. M., Alford, B. L., Kuroda, Y. & Kitano, S. ‘‘Chemical aminoacylation” of tRNA’s. J. Biol. Chem. 253, 4517–4520 (1978).
Wagner, A. M. et al. N-terminal protein modification using simple aminoacyl transferase substrates. J. Am. Chem. Soc. 133, 15139–15147 (2011).
Yu, X. et al. Probing of CD4 binding pocket of HIV-1 gp120 glycoprotein using unnatural phenylalanine analogues. Bioorg. Med. Chem. Lett. 24, 5699–5703 (2014).
Chen, S., Fahmi, N. E., Nangreave, R. C., Mehellou, Y. & Hecht, S. M. Synthesis of pdCpAs and transfer RNAs activated with thiothreonine and derivatives. Bioorg. Med. Chem. 20, 2679–2689 (2012).
Matsubara, T., Iijima, K., Watanabe, T., Hohsaka, T. & Sato, T. Incorporation of glycosylated amino acid into protein by an in vitro translation system. Bioorg. Med. Chem. Lett. 23, 5634–5636 (2013).
Fahmi, N. E., Dedkova, L., Wang, B., Golovine, S. & Hecht, S. M. Site-specific incorporation of glycosylated serine and tyrosine derivatives into proteins. J. Am. Chem. Soc. 129, 3586–3597 (2007).
Gao, R., Zhang, Y., Choudhury, A. K., Dedkova, L. M. & Hecht, S. M. Analogues of vaccinia virus DNA topoisomerase I modified at the active site tyrosine. J. Am. Chem. Soc. 127, 3321–3331 (2005).
Kwiatkowski, M., Wang, J. & Forster, A. C. Facile synthesis of N-acyl-aminoacyl-pCpA for preparation of mischarged fully ribo tRNA. Bioconjug. Chem. 25, 2086–2091 (2014).
Lee, N., Bessho, Y., Wei, K., Szostak, J. W. & Suga, H. Ribozyme-catalyzed tRNA aminoacylation. Nat. Struct. Biol. 7, 28–33 (2000).
Murakami, H., Saito, H. & Suga, H. A versatile tRNA aminoacylation catalyst based on RNA. Chem. Biol. 10, 655–662 (2003).
Murakami, H., Ohta, A., Ashigai, H. & Suga, H. A highly flexible tRNA acylation method for non-natural polypeptide synthesis. Nat. Methods 3, 357–359 (2006).
Ad, O. et al. Translation of diverse aramid- and 1,3-dicarbonyl-peptides by wild type ribosomes in vitro. ACS Cent. Sci. 5, 1289–1294 (2019).
Effraim, P. R. et al. Natural amino acids do not require their native tRNAs for efficient selection by the ribosome. Nat. Chem. Biol. 5, 947–953 (2009).
Fleming, S. R. et al. Flexizyme-enabled benchtop biosynthesis of thiopeptides. J. Am. Chem. Soc. 141, 758–762 (2019).
Ogawa, A., Namba, Y. & Gakumasawa, M. Rational optimization of amber suppressor tRNAs toward efficient incorporation of a non-natural amino acid into protein in a eukaryotic wheat germ extract. Org. Biomol. Chem. 14, 2671–2678 (2016).
Resendiz, M. J. E., Schön, A., Freire, E. & Greenberg, M. M. Photochemical control of RNA structure by disrupting π-stacking. J. Am. Chem. Soc. 134, 12478–12481 (2012).
Mikat, V. & Heckel, A. Light-dependent RNA interference with nucleobase-caged siRNAs. RNA 13, 2341–2347 (2007).
Pothoulakis, G., Ceroni, F., Reeve, B. & Ellis, T. The Spinach RNA aptamer as a characterization tool for synthetic biology. ACS Synth. Biol. 3, 182–187 (2014).
Filonov, G. S. & Jaffrey, S. R. RNA imaging with dimeric Broccoli in live bacterial and mammalian cells. Curr. Protoc. Chem. Biol. 8, 1–28 (2016).
Miyamae, T. Further search for small molecular inactivants capable of eliciting respiratory mucosal immunogenicity by modifying Sendai virus core RNA. Microbiol. Immunol. 40, 761–766 (1996).
Steward, D. L., Herndon, W. C. & Schell, K. R. Influence of 2′-O-acetylation on the antiviral activity of polyribonucleotides. Biochim. Biophys. Acta 262, 227–232 (1972).
Field, A. K., Tytell, A. A., Lampson, G. P. & Hilleman, M. R. Inducers of interferon and host resistance. II. Multistranded synthetic polynucleotide complexes. Proc. Natl Acad. Sci. USA 58, 1004–1010 (1967).
Bowler, F. R. et al. Prebiotically plausible oligoribonucleotide ligation facilitated by chemoselective acetylation. Nat. Chem. 5, 383–389 (2013).
Xu, J., Duffy, C. D., Chan, C. K. W. & Sutherland, J. D. Solid-phase synthesis and hybrization behavior of partially 2′/3′-O-acetylated RNA oligonucleotides. J. Org. Chem. 79, 3311–3326 (2014).
Alfonso, L., Ai, G., Spitale, R. C. & Bhat, G. J. Molecular targets of aspirin and cancer prevention. Br. J. Cancer 111, 61–67 (2014).
Lunde, B. M., Moore, C. & Varani, G. RNA-binding proteins: modular design for efficient function. Nat. Rev. Mol. Cell Biol. 8, 479–490 (2007).
Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012).
Yan, J. et al. Effective small RNA destruction by the expression of a short tandem target mimic in arabidopsis. Plant Cell 24, 415–427 (2012).
Niu, Q.-W. et al. Expression of artificial microRNAs in transgenic Arabidopsis thaliana confers virus resistance. Nat. Biotechnol. 24, 1420–1428 (2006).
Acknowledgements
The authors thank the U.S. National Institutes of Health (GM127295 and GM130704) for grant support.
Author information
Authors and Affiliations
Contributions
The authors contributed equally to this manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review information
Nature Reviews Chemistry thanks L. Jaeger, Y. Tor, J. Lucks and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Glossary
- Non-coding RNAs
-
(ncRNAs). RNA molecules that are not translated into proteins, but often have other biological roles, such as assisting in splicing, gene regulation and DNA replication.
- Transfer RNA
-
(tRNA). A non-coding RNA molecule that carries an amino acid and helps to decode messenger RNA (mRNA) into protein; tRNAs contain a three-nucleotide sequence (anticodon) that matches to a three-nucleotide sequence on mRNA (codon).
- Messenger RNAs
-
(mRNAs). Coding RNA molecules that convey the genetic information from DNA to facilitate biosynthesis of functional proteins; the mRNA nucleotide sequence is translated into protein by the ribosome.
- Psoralen analysis of RNA interactions
-
(PARIS). A method for mapping RNA structure in cells using the small-molecule psoralen as an RNA crosslinker; crosslinked RNA fragments are analysed with next-generation sequencing and, using informatics methods, duplex regions can be assigned throughout the transcriptome.
- Crosslinking immunoprecipitation
-
(CLIP). A method for studying protein–RNA interactions whereby cells are exposed to high-intensity ultraviolet light, which crosslinks proteins and RNA molecules that are in close proximity; using immunoprecipitation, the complexes can be isolated and RNAs can be identified with sequencing.
- Selective 2′-hydroxyl acylation analysed by primer extension
-
(SHAPE). A method for analysing RNA structure whereby 2′-OH groups in RNA can be acylated with small-molecule reagents in unpaired, accessible and flexible regions; the acylation groups block reverse transcriptase during primer extension. Subsequent analysis of primer extension products is used to predict accessible regions and secondary structures of RNAs.
- Dimethyl sulfate footprinting
-
(DMS footpinting). A method for determining unpaired regions of nucleic acids using DMS, which can methylate the N1 position of adenine and N3 position of cytosine; methylation occurs selectively on unpaired nucleobases and can block reverse transcriptase. Analysis of reverse-transcription products reveals unpaired regions in nucleic acids.
- Reverse transcriptases
-
A class of DNA polymerase enzymes that produces complementary DNA (cDNA) from an RNA template.
- Next-generation sequencing
-
(NGS). A term used to describe different modern sequencing technologies, all of which are capable of determining the sequence of millions of DNA fragments in a single reaction volume.
- Ribozyme
-
An RNA molecule that can carry out an enzymatic function, such as ligation or hydrolysis reactions.
- Viral RNA
-
RNA that defines the genetic material of a virus; this can be single-stranded or double-stranded in structure.
- Prebiotic RNA synthesis
-
Refers to part of the ‘RNA World’ hypothesis that suggests that RNA molecules proliferated before DNA and proteins and relied on self-replication.
Rights and permissions
About this article
Cite this article
Velema, W.A., Kool, E.T. The chemistry and applications of RNA 2′-OH acylation. Nat Rev Chem 4, 22–37 (2020). https://doi.org/10.1038/s41570-019-0147-6
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41570-019-0147-6
This article is cited by
-
Reversible 2′-OH acylation enhances RNA stability
Nature Chemistry (2023)
-
Chemical reversible crosslinking enables measurement of RNA 3D distances and alternative conformations in cells
Nature Communications (2022)
-
Construction of a reduction-responsive oligonucleotide via a post-modification approach utilizing 4-nitrophenyl diazomethane
Polymer Journal (2021)