Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Carbon dioxide reduction in tandem with light-alkane dehydrogenation

Abstract

A greenhouse gas and mild oxidant, CO2 can effect the oxidative dehydrogenation (CO2-ODH) of light alkanes over heterogeneous catalysts. These catalysts are bifunctional in that they mediate CO2 reduction while oxidizing the alkanes, most notably the C2–C4 components in shale gas. In this way, one obtains CO and alkenes as value-added products. Although desirable, this transformation has proven challenging in terms of catalyst design, with most catalysts for the CO2-ODH being metal oxides that typically undergo rapid deactivation. More recently, bimetallic catalysts have been identified as promising systems to activate alkanes by either selectively cleaving C–H bonds to produce alkenes or breaking all the C–C and C–H bonds to produce the dry reforming products CO and H2. This Review describes general trends in the CO2-ODH of light alkanes. We will also outline how to use a combined approach involving flow reactor experiments, in operando characterization and density functional theory to determine whether a catalyst is intrinsically active for CO2-ODH or dry reforming.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Thermodynamics of CO2-effected oxidative dehydrogenation and direct dehydrogenation of alkanes.
Fig. 2: Oxidative dehydrogenation of alkanes proceeds over metal-oxide catalysts.
Fig. 3: Flow reactions of C2H6 with CO2 over FexNiy/CeO2 catalysts.
Fig. 4: In situ XANES provides information on catalyst oxidation state and bonding.
Fig. 5: ADF-STEM and EELS of FexNiy/CeO2 catalysts reveal the active sites.
Fig. 6: Conversion of C2H6 and CO2 occurs at interfacial sites of FexNiy/CeO2 catalysts.
Fig. 7: Energetics of C2H6 and CO2 reactions over FexNiy catalysts.
Fig. 8: CO2 reacts with C3H8 over bimetallic catalysts supported on CeO2.

Similar content being viewed by others

References

  1. Speight, J. G. in Handbook of Alternative Fuel Technologies 2nd edn (eds. Lee, S., Speight, J. G. & Loyalka, S. K.) 162 (Taylor and Francis Group, 2015).

  2. Tang, P., Zhu, Q., Wu, Z. & Ma, D. Methane activation: the past and future. Energy Environ. Sci. 7, 2580–2591 (2014).

    CAS  Google Scholar 

  3. Kawi, S. & Kathiraser, Y. CO2 as an oxidant for high-temperature reactions. Front. Energy Res. 3, 13 (2015). A review of catalysts for high-temperature CO 2 reactions, including the CO 2 -ODH of light alkanes, the conversion of ethylbenzene into styrene and CO 2 reforming of CH 4 and alcohols.

    Google Scholar 

  4. Plotkin, J. S. The propylene gap: how can it be filled? ACS News Industrial Chemistry and Engineering https://www.acs.org/content/acs/en/pressroom/cutting-edge-chemistry/the-propylene-gap-how-can-it-be-filled.html (2015).

  5. Tian, P., Wei, Y., Ye, M. & Liu, Z. Methanol to olefins (MTO): from fundamentals to commercialization. ACS Catal. 5, 1922–1938 (2015).

    CAS  Google Scholar 

  6. Li, Y. et al. Hierarchical SAPO-34/18 zeolite with low acid site density for converting methanol to olefins. Catal. Today 233, 2–7 (2014).

    CAS  Google Scholar 

  7. Amghizar, I., Vandewalle, L. A., Geem, K. M. Van & Marin, G. B. New trends in olefin production. Engineering 3, 171–178 (2017).

    CAS  Google Scholar 

  8. Zhai, P. et al. Highly tunable selectivity for syngas-derived alkenes over zinc and sodium-modulated Fe5C2 catalyst. Angew. Chem. Int. Ed. 55, 9902–9907 (2016).

    CAS  Google Scholar 

  9. IHS Markit. Propylene, Ethylene, Butadiene — Chemical Economics Handbook. (2018).

  10. Hasanbeigi, A. Chemical industry’s energy use and emissions. Global Efficiency Intelligence https://www.globalefficiencyintel.com/new-blog/2018/chemical-industrys-energy-use-emissions (2018).

  11. U.S. Energy Information Administration. What is the volume of world natural gas reserves?. https://www.eia.gov/tools/faqs/faq.php?id=52&t=8 (2019).

  12. Mukherjee, D., Park, S.-E. & Reddy, B. M. CO2 as a soft oxidant for oxidative dehydrogenation reaction: an eco benign process for industry. J. CO 2 Util. 16, 301–312 (2016). This review describes the advantages and challenges of using CO 2 as a soft oxidant, with a focus on CO 2 activation and factors such as promoters, surface acid–base residues, redox activity and lattice oxygen, and the influence of supports.

    CAS  Google Scholar 

  13. Aresta, M., Dibenedetto, A. & Quaranta, E. State of the art and perspectives in catalytic processes for CO2 conversion into chemicals and fuels: the distinctive contribution of chemical catalysis and biotechnology. J. Catal. 343, 2–45 (2016).

    CAS  Google Scholar 

  14. Álvarez, A. et al. CO2 activation over catalytic surfaces. ChemPhysChem 18, 3135–3141 (2017).

    PubMed  Google Scholar 

  15. van Santen, R. A., Tranca, I. & Hensen, E. J. M. Theory of surface chemistry and reactivity of reducible oxides. Catal. Today 244, 63–84 (2015).

    Google Scholar 

  16. Xu, B., Zheng, B., Hua, W., Yue, Y. & Gao, Z. Support effect in dehydrogenation of propane in the presence of CO2 over supported gallium oxide catalysts. J. Catal. 239, 470–477 (2006).

    CAS  Google Scholar 

  17. Osaki, T. & Mori, T. Kinetics of the reverse-Boudouard reaction over supported nickel catalysts. React. Kinet. Catal. Lett. 89, 333–339 (2006).

    CAS  Google Scholar 

  18. Wang, S. & Zhu, Z. H. Catalytic conversion of alkanes to olefins by carbon dioxide oxidative dehydrogenation — a review. Energy Fuels 18, 1126–1139 (2004). A useful review of catalysts to utilize CO 2 to accept H 2 from light alkanes, CH 4 or ethylbenzene. At the time, these studies mainly consisted of activity trends and ex situ characterization.

    CAS  Google Scholar 

  19. Gärtner, C. A., van Veen, A. C. & Lercher, J. A. Oxidative dehydrogenation of ethane: common principles and mechanistic aspects. ChemCatChem 5, 3196–3217 (2013).

    Google Scholar 

  20. Védrine, J. C. Heterogeneous partial (amm)oxidation and oxidative dehydrogenation catalysis on mixed metal oxides. Catalysts 6, 22 (2016).

    Google Scholar 

  21. Grabowski, R. Kinetics of oxidative dehydrogenation of C2–C3 alkanes on oxide catalysts. Catal. Rev. 48, 199–268 (2006).

    CAS  Google Scholar 

  22. Cavani, F. & Trifirò, F. The oxidative dehydrogenation of ethane and propane as an alternative way for the production of light olefins. Catal. Today 24, 307–313 (1995).

    CAS  Google Scholar 

  23. Ansari, M. B. & Park, S.-E. Carbon dioxide utilization as a soft oxidant and promoter in catalysis. Energy Environ. Sci. 5, 9419–9437 (2012). A useful background on CO 2 activation, describing catalyst properties for the CO 2 -ODH reaction and other chemistries for which CO 2 may act as a soft oxidant, including ethylbenzene to styrene.

    CAS  Google Scholar 

  24. Atanga, M. A., Rezaei, F., Jawad, A., Fitch, M. & Rownaghi, A. A. Oxidative dehydrogenation of propane to propylene with carbon dioxide. Appl. Catal. B Environ. 220, 429–445 (2018). This review focuses on the CO 2 -ODH of propane over zeolite and metal-oxide catalysts, and suggests that future work should be geared towards catalyst design platforms that address the operating-temperature constraints for CO 2 -ODH.

    CAS  Google Scholar 

  25. Du, X. et al. Catalytic dehydrogenation of propane by carbon dioxide: a medium-temperature thermochemical process for carbon dioxide utilisation. Faraday Discuss. 183, 161–176 (2015).

    CAS  PubMed  Google Scholar 

  26. Zangeneh, F. T., Taeb, A., Gholivand, K. & Sahebdelfar, S. Thermodynamic equilibrium analysis of propane dehydrogenation with carbon dioxide and side reactions. Chem. Eng. Commun. 203, 557–565 (2016).

    CAS  Google Scholar 

  27. Michorczyk, P., Zéczak, K., Niekurzak, R. & Ogonowski, J. Dehydrogenation of propane with CO2 — a new green process for propene and synthesis gas production. Polish J. Chem. Technol. 14, 77–82 (2012).

    Google Scholar 

  28. Krylov, O. V., Mamedov, A. Kh & Mirzabekova, S. R. The regularities in the interaction of alkanes with CO2 on oxide catalysts. Catal. Today 24, 371–375 (1995).

    CAS  Google Scholar 

  29. Mimura, N., Takahara, I., Inaba, M., Okamoto, M. & Murata, K. High-performance Cr/H-ZSM-5 catalysts for oxidative dehydrogenation of ethane to ethylene with CO2 as an oxidant. Catal. Commun. 3, 257–262 (2002).

    CAS  Google Scholar 

  30. Mimura, N., Okamoto, M., Yamashita, H., Oyama, S. T. & Murata, K. Oxidative dehydrogenation of ethane over Cr/ZSM-5 catalysts using CO2 as an oxidant. J. Phys. Chem. B 110, 21764–21770 (2006).

    CAS  PubMed  Google Scholar 

  31. Deng, S., Li, H., Li, S. & Zhang, Y. Activity and characterization of modified Cr2O3/ZrO2 nano-composite catalysts for oxidative dehydrogenation of ethane to ethylene with CO2. J. Mol. Catal. A Chem. 268, 169–175 (2007).

    CAS  Google Scholar 

  32. Raju, G., Reddy, B. M. & Park, S.-E. Utilization of carbon dioxide in oxidative dehydrogenation reactions. Indian J. Chem. Sect. A 51, 1315–1324 (2012).

    Google Scholar 

  33. Wei, C. et al. Dehydrogenation of isobutane with carbon dioxide over SBA-15-supported vanadium oxide catalysts. Catalysts 6, 171 (2016).

    Google Scholar 

  34. Sun, G. et al. Vanadium oxide supported on MSU-1 as a highly active catalyst for dehydrogenation of isobutane with CO2. Catalysts 6, 41 (2016).

    Google Scholar 

  35. Shen, Z. et al. Dehydrogenation of ethane to ethylene over a highly efficient Ga2O3/HZSM-5 catalyst in the presence of CO2. Appl. Catal. A General 356, 148–153 (2009).

    CAS  Google Scholar 

  36. Koirala, R., Buechel, R., Krumeich, F., Pratsinis, S. E. & Baiker, A. Oxidative dehydrogenation of ethane with CO2 over flame-made Ga-loaded TiO2. ACS Catal. 5, 690–702 (2015).

    CAS  Google Scholar 

  37. Chen, M. et al. Dehydrogenation of propane over In2O3–Al2O3 mixed oxide in the presence of carbon dioxide. J. Catal. 272, 101–108 (2010).

    CAS  Google Scholar 

  38. Chen, M. et al. Study in support effect of In2O3/MOx (M=Al, Si, Zr) catalysts for dehydrogenation of propane in the presence of CO2. Appl. Catal. A General 407, 20–28 (2011).

    CAS  Google Scholar 

  39. Zhang, X., Ye, Q., Xu, B. & He, D. Oxidative dehydrogenation of ethane over Co–BaCO3 catalysts using CO2 as oxidant: effects of Co promoter. Catal. Lett. 117, 140–145 (2007).

    CAS  Google Scholar 

  40. Koirala, R., Buechel, R., Pratsinis, S. E. & Baiker, A. Silica is preferred over various single and mixed oxides as support for CO2-assisted cobalt-catalyzed oxidative dehydrogenation of ethane. Appl. Catal. A General 527, 96–108 (2016).

    CAS  Google Scholar 

  41. Zhu, J. et al. Na2WO4/Mn/SiO2 catalyst for oxidative dehydrogenation of ethane using CO2 as oxidant. Catal. Today 148, 310–315 (2009).

    CAS  Google Scholar 

  42. Baidya, T., van Vegten, N. & Baiker, A. Selective conversion of ethane to ethene via oxidative dehydrogenation over Ca-doped ThO2 using CO2 as oxidant. Top. Catal. 54, 881–887 (2011).

    CAS  Google Scholar 

  43. Valenzuela, R. X., Bueno, G., Cortés Corberán, V., Xu, Y. & Chen, C. Selective oxidehydrogenation of ethane with CO2 over CeO2-based catalysts. Catal. Today 61, 43–48 (2000).

    CAS  Google Scholar 

  44. Talati, A., Haghighi, M. & Rahmani, F. Oxidative dehydrogenation of ethane to ethylene by carbon dioxide over Cr/TiO2–ZrO2 nanocatalyst: effect of active phase and support composition on catalytic properties and performance. Adv. Powder Technol. 27, 1195–1206 (2016).

    CAS  Google Scholar 

  45. Ramesh, Y. et al. Oxidative dehydrogenation of ethane to ethylene on Cr2O3/Al2O3–ZrO2 catalysts: the influence of oxidizing agent on ethylene selectivity. Appl. Petrochem. Res. 4, 247–252 (2014).

    CAS  Google Scholar 

  46. Bugrova, T. A., Dutov, V. V., Svetlichnyi, V. A., Cortés Corberán, V. & Mamontov, G. V. Oxidative dehydrogenation of ethane with CO2 over CrOx catalysts supported on Al2O3, ZrO2, CeO2 and CexZr1–xO2. Catal. Today 333, 71–80 (2018).

    Google Scholar 

  47. Michorczyk, P., Ogonowski, J. & Gajek, T. Dehydrogenation of light alkanes over mesoporous-siliceous supported chromium, vanadium, gallium and iron oxides in presence of carbon dioxide. Przem. Chem. 91, 84–88 (2012).

    CAS  Google Scholar 

  48. Zhao, X. & Wang, X. Oxidative dehydrogenation of ethane to ethylene by carbon dioxide over Cr/TS-1 catalysts. Catal. Commun. 7, 633–638 (2006).

    CAS  Google Scholar 

  49. Aresta, M., Dibenedetto, A. & Quaranta, E. Reaction Mechanisms in Carbon Dioxide Conversion (Springer, 2016).

  50. Kocoń, M., Michorczyk, P. & Ogonowski, J. Effect of supports on catalytic activity of chromium oxide-based catalysts in the dehydrogenation of propane with CO2. Catal. Lett. 101, 53–57 (2005).

    Google Scholar 

  51. Wang, S., Murata, K., Hayakawa, T., Hamakawa, S. & Suzuki, K. Dehydrogenation of ethane with carbon dioxide over supported chromium oxide catalysts. Appl. Catal. A General 196, 1–8 (2000).

    CAS  Google Scholar 

  52. Jin, L. et al. Studies on dehydrogenation of ethane in the presence of CO2 over octahedral molecular sieve (OMS-2) catalysts. ChemCatChem 1, 441–444 (2009).

    CAS  Google Scholar 

  53. Shishido, T., Shimamura, K., Teramura, K. & Tanaka, T. Role of CO2 in dehydrogenation of propane over Cr-based catalysts. Catal. Today 185, 151–156 (2012).

    CAS  Google Scholar 

  54. Liu, L., Li, H. & Zhang, Y. A comparative study on catalytic performances of chromium incorporated and supported mesoporous MSU-x catalysts for the oxidehydrogenation of ethane to ethylene with carbon dioxide. Catal. Today 115, 235–241 (2006).

    CAS  Google Scholar 

  55. Takehira, K. et al. Behavior of active sites on Cr-MCM-41 catalysts during the dehydrogenation of propane with CO2. J. Catal. 224, 404–416 (2004).

    CAS  Google Scholar 

  56. Liu, L., Li, H. & Zhang, Y. Mesoporous silica-supported chromium catalyst: characterization and excellent performance in dehydrogenation of propane to propylene with carbon dioxide. Catal. Commun. 8, 565–570 (2007).

    CAS  Google Scholar 

  57. Takahara, I. & Saito, M. Promoting effects of carbon dioxide on dehydrogenation of propane over a SiO2-supported Cr2O3 catalyst. Chem. Lett. 25, 973–974 (1998).

    Google Scholar 

  58. Baek, J., Yun, H. J., Yun, D., Choi, Y. & Yi, J. Preparation of highly dispersed chromium oxide catalysts supported on mesoporous silica for the oxidative dehydrogenation of propane using CO2: insight into the nature of catalytically active chromium sites. ACS Catal. 2, 1893–1903 (2012).

    CAS  Google Scholar 

  59. Nakagawa, K., Okamura, M., Ikenaga, N., Suzuki, T. & Kobayashi, T. Dehydrogenation of ethane over gallium oxide in the presence of carbon dioxide. Chem. Commun. 9, 1025–1026 (1998).

    Google Scholar 

  60. Zhang, F. et al. Chromium oxide supported on ZSM-5 as a novel efficient catalyst for dehydrogenation of propane with CO2. Microporous Mesoporous Mater. 145, 194–199 (2011).

    CAS  Google Scholar 

  61. Asghari, E., Haghighi, M. & Rahmani, F. CO2-oxidative dehydrogenation of ethane to ethylene over Cr/MCM-41 nanocatalyst synthesized via hydrothermal/impregnation methods: influence of chromium content on catalytic properties and performance. J. Mol. Catal. A Chem. 418–419, 115–124 (2016).

    Google Scholar 

  62. Botavina, M. A. et al. Oxidative dehydrogenation of C3–C4 paraffins in the presence of CO2 over CrOx/SiO2 catalysts. Appl. Catal. A Gen. 347, 126–132 (2008).

    CAS  Google Scholar 

  63. Deng, S., Li, S., Li, H. & Zhang, Y. Oxidative dehydrogenation of ethane to ethylene with CO2 over Fe–Cr/ZrO2 catalysts. Ind. Eng. Chem. Res. 48, 7561–7566 (2009).

    CAS  Google Scholar 

  64. Yun, D. et al. Promotional effect of Ni on a CrOx catalyst supported on silica in the oxidative dehydrogenation of propane with CO2. ChemCatChem 4, 1952–1959 (2012).

    CAS  Google Scholar 

  65. Ajayi, B. P., Rabindran Jermy, B., Abussaud, B. A. & Al-Khattaf, S. Oxidative dehydrogenation of n-butane over bimetallic mesoporous and microporous zeolites with CO2 as mild oxidant. J. Porous Mater. 20, 1257–1270 (2013).

    CAS  Google Scholar 

  66. Ascoop, I. et al. The role of CO2 in the dehydrogenation of propane over WOx–VOx/SiO2. J. Catal. 335, 1–10 (2016).

    CAS  Google Scholar 

  67. Cavani, F., Ballarini, N. & Cericola, A. Oxidative dehydrogenation of ethane and propane: how far from commercial implementation? Catal. Today 127, 113–131 (2007).

    CAS  Google Scholar 

  68. Chen, K., Bell, A. T. & Iglesia, E. The relationship between the electronic and redox properties of dispersed metal oxides and their turnover rates in oxidative dehydrogenation reactions. J. Catal. 209, 35–42 (2002).

    CAS  Google Scholar 

  69. Raju, G., Reddy, B. M. & Park, S.-E. CO2 promoted oxidative dehydrogenation of n-butane over VOx/MO2–ZrO2 (M=Ce or Ti) catalysts. J. CO 2 Util. 5, 41–46 (2014).

    CAS  Google Scholar 

  70. Raju, G., Reddy, B. M., Abhishek, B., Mo, Y.-H. & Park, S.-E. Synthesis of C4 olefins from n-butane over a novel VOx/SnO2–ZrO2 catalyst using CO2 as soft oxidant. Appl. Catal. A General 423–424, 168–175 (2012).

    Google Scholar 

  71. Wang, X. et al. Synthesis of V-MCM-41 catalysts and their application in CO2-assisted isobutane dehydrogenation. Chem. Eng. Technol. 41, 563–572 (2018).

    CAS  Google Scholar 

  72. Han, Z.-F., Xue, X.-L., Wu, J.-M., Lang, W.-Z. & Guo, Y.-J. Preparation and catalytic properties of mesoporous nV-MCM-41 for propane oxidative dehydrogenation in the presence of CO2. Chin. J. Catal. 39, 1099–1109 (2018).

    CAS  Google Scholar 

  73. Taghavinezhad, P., Haghighi, M. & Alizadeh, R. CO2/O2-oxidative dehydrogenation of ethane to ethylene over highly dispersed vanadium oxide on MgO-promoted sulfated-zirconia nanocatalyst: effect of sulfation on catalytic properties and performance. Korean J. Chem. Eng. 34, 1346–1357 (2017).

    CAS  Google Scholar 

  74. Rozanska, X., Fortrie, R. & Sauer, J. Size-dependent catalytic activity of supported vanadium oxide species: oxidative dehydrogenation of propane. J. Am. Chem. Soc. 136, 7751–7761 (2014).

    CAS  PubMed  Google Scholar 

  75. Xue, X.-L., Lang, W.-Z., Yan, X. & Guo, Y.-J. Dispersed vanadium in three-dimensional dendritic mesoporous silica nanospheres: active and stable catalysts for the oxidative dehydrogenation of propane in the presence of CO2. ACS Appl. Mater. Interfaces 9, 15408–15423 (2017).

    CAS  PubMed  Google Scholar 

  76. Ye, J., Liu, C. & Ge, Q. DFT study of CO2 adsorption and hydrogenation on the In2O3 surface. J. Phys. Chem. C 116, 7817–7825 (2012).

    CAS  Google Scholar 

  77. Chen, M. et al. Supported indium oxide as novel efficient catalysts for dehydrogenation of propane with carbon dioxide. Appl. Catal. A General 377, 35–41 (2010).

    CAS  Google Scholar 

  78. Wang, W. et al. Reverse water gas shift over In2O3–CeO2 catalysts. Catal. Today 259, 402–408 (2016).

    CAS  Google Scholar 

  79. Pan, Y.-x., Liu, C.-j., Mei, D. & Ge, Q. Effects of hydration and oxygen vacancy on CO2 adsorption and activation on β-Ga2O3(100). Langmuir 26, 5551–5558 (2010).

    CAS  PubMed  Google Scholar 

  80. Liu, Y., Li, Z. H., Lu, J. & Fan, K.-N. Periodic density functional theory study of propane dehydrogenation over perfect Ga2O3(100) surface. J. Phys. Chem. C 112, 20382–20392 (2008).

    CAS  Google Scholar 

  81. Michorczyk, P. & Ogonowski, J. Dehydrogenation of propane in the presence of carbon dioxide over oxide-based catalysts. React. Kinet. Catal. Lett. 78, 41–47 (2003).

    CAS  Google Scholar 

  82. Chen, J. G. Carbide and nitride overlayers on early transition metal surfaces: preparation, characterization, and reactivities. Chem. Rev. 96, 1477–1498 (1996).

    CAS  PubMed  Google Scholar 

  83. Yu, W., Porosoff, M. D. & Chen, J. G. Review of Pt-based bimetallic catalysis: from model surfaces to supported catalysts. Chem. Rev. 112, 5780–5817 (2012).

    CAS  PubMed  Google Scholar 

  84. Porosoff, M. D., Yu, W. & Chen, J. G. Challenges and opportunities in correlating bimetallic model surfaces and supported catalysts. J. Catal. 308, 2–10 (2013).

    CAS  Google Scholar 

  85. Porosoff, M. D., Yan, B. & Chen, J. G. Catalytic reduction of CO2 by H2 for synthesis of CO, methanol and hydrocarbons: challenges and opportunities. Energy Environ. Sci. 9, 62–73 (2016).

    CAS  Google Scholar 

  86. Trovarelli, A. Catalytic properties of ceria and CeO2-containing materials. Catal. Rev. 38, 439–520 (1996).

    CAS  Google Scholar 

  87. Cheng, Z., Sherman, B. J. & Lo, C. S. Carbon dioxide activation and dissociation on ceria (110): a density functional theory study. J. Chem. Phys. 138, 014702 (2013).

    PubMed  Google Scholar 

  88. Appel, L. G., Eon, J. G. & Schmal, M. The CO2–CeO2 interaction and its role in the CeO2 reactivity. Catal. Lett. 56, 199–202 (1998).

    CAS  Google Scholar 

  89. Chueh, W. C. & Haile, S. M. A thermochemical study of ceria: exploiting an old material for new modes of energy conversion and CO2 mitigation. Philos. Trans. R. Soc. A 368, 3269–3294 (2010).

    CAS  Google Scholar 

  90. Bueno-López, A., Krishna, K. & Makkee, M. Oxygen exchange mechanism between isotopic CO2 and Pt/CeO2. Appl. Catal. A General 342, 144–149 (2008).

    Google Scholar 

  91. Demoulin, O., Navez, M., Mugabo, J.-L. & Ruiz, P. The oxidizing role of CO2 at mild temperature on ceria-based catalysts. Appl. Catal. B Environ. 70, 284–293 (2007).

    CAS  Google Scholar 

  92. Myint, M. N. Z., Yan, B., Wan, J., Zhao, S. & Chen, J. G. Reforming and oxidative dehydrogenation of ethane with CO2 as a soft oxidant over bimetallic catalysts. J. Catal. 343, 168–177 (2016).

    CAS  Google Scholar 

  93. Yan, B. et al. Active sites for tandem reactions of CO2 reduction and ethane dehydrogenation. Proc. Natl Acad. Sci. USA 115, 8278–8283 (2018).

    PubMed  Google Scholar 

  94. Solymosi, F. & Németh, R. The oxidative dehydrogenation of ethane with CO2 over Mo2C/SiO2 catalyst. Catal. Lett. 62, 197–200 (1999).

    CAS  Google Scholar 

  95. Solymosi, F., Németh, R., Óvári, L. & Egri, L. Reactions of propane on supported Mo2C catalysts. J. Catal. 195, 316–325 (2000).

    CAS  Google Scholar 

  96. Neylon, M. K., Choi, S., Kwon, H., Curry, K. E. & Thompson, L. T. Catalytic properties of early transition metal nitrides and carbides: n-butane hydrogenolysis, dehydrogenation and isomerization. Appl. Catal. A General 183, 253–263 (1999).

    CAS  Google Scholar 

  97. Porosoff, M. D., Yang, X., Boscoboinik, J. A. & Chen, J. G. Molybdenum carbide as alternative catalysts to precious metals for highly selective reduction of CO2 to CO. Angew. Chem. Int. Ed. 53, 6705–6709 (2014).

    CAS  Google Scholar 

  98. Zhang, X. et al. Highly dispersed copper over β-Mo2C as an efficient and stable catalyst for the reverse water gas shift (RWGS) reaction. ACS Catal. 7, 912–918 (2017).

    CAS  Google Scholar 

  99. Porosoff, M. D. et al. Identifying different types of catalysts for CO2 reduction by ethane through dry reforming and oxidative dehydrogenation. Angew. Chem. Int. Ed. 54, 15501–15505 (2015).

    CAS  Google Scholar 

  100. Yao, S. et al. Combining CO2 reduction with ethane oxidative dehydrogenation by oxygen-modification of molybdenum carbide. ACS Catal. 8, 5374–5381 (2018).

    CAS  Google Scholar 

  101. Gomez, E., Xie, Z. & Chen, J. G. The effects of bimetallic interactions for CO2-assisted oxidative dehydrogenation and dry reforming of propane. AIChE J. 65, e16670 (2019).

    Google Scholar 

  102. Gomez, E. et al. Combining CO2 reduction with propane oxidative dehydrogenation over bimetallic catalysts. Nat. Commun. 9, 1398 (2018).

    PubMed  PubMed Central  Google Scholar 

  103. Li, X. et al. Oxidative dehydrogenation and dry reforming of n-butane with CO2 over NiFe bimetallic catalysts. Appl. Catal. B Environ. 231, 213–223 (2018).

    CAS  Google Scholar 

  104. Kainulainen, T. A., Niemelä, M. K. & Krause, A. O. I. Rh/C catalysts in ethene hydroformylation: the effect of different supports and pretreatments. J. Mol. Catal. A Chem. 140, 173–184 (1999).

    CAS  Google Scholar 

  105. Ahlers, S. J., Pohl, M.-M., Holena, M., Linke, D. & Kondratenko, E. V. Direct propanol synthesis from CO2, C2H4, and H2 over Cs–Au/TiO2 rutile: effect of promoter loading, temperature and feed composition. Catal. Sci. Technol. 6, 2171–2180 (2016).

    CAS  Google Scholar 

  106. Navidi, N., Thybaut, J. W. & Marin, G. B. Experimental investigation of ethylene hydroformylation to propanal on Rh and Co based catalysts. Appl. Catal. A General 469, 357–366 (2014).

    CAS  Google Scholar 

Download references

Acknowledgements

The work is sponsored by the U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Biosciences, and Geosciences, under contract no. DE-SC0012704. E.G. acknowledges the U.S. National Science Foundation Graduate Research Fellowship Program: DGE-16-44869 and the Gates Millennium Scholarship Foundation.

Author information

Authors and Affiliations

Authors

Contributions

E.G. and J.G.C. prepared the manuscript with contributions from Y.B.H and S.K. E.G. conducted thermodynamic calculations with contributions from Y.B.H.

Corresponding author

Correspondence to Jingguang G. Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomez, E., Yan, B., Kattel, S. et al. Carbon dioxide reduction in tandem with light-alkane dehydrogenation. Nat Rev Chem 3, 638–649 (2019). https://doi.org/10.1038/s41570-019-0128-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-019-0128-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing