Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Organocatalysis in aqueous media

A Publisher Correction to this article was published on 29 July 2019

This article has been updated

Abstract

Even though enzymes are the cornerstones of living systems, it has so far proven difficult to deploy artificial catalysts in a biological setting. Organocatalysts are arguably well-suited artificial catalysts for this purpose because, compared with enzymes and inorganic catalysts, they are simpler, often less toxic and widely accessible. This Review describes how organocatalysts that operate in aqueous media might enable us to selectively access new chemical transformations and provide new possibilities for chemical biology and biomedicine. Organocatalysts can be categorized according to the mechanisms by which they activate substrates, drawing comparisons with enzymes. We describe the characteristics of a catalyst that are necessary for biological compatibility and in vivo applicability, and use these to evaluate a selection of organocatalytic reactions. The attributes of the catalyst (such as functional groups and pKa values) and the reaction (such as the microenvironment surrounding intermediates) are key considerations when developing efficient organocatalysis in aqueous media. Although we only know of a limited set of organocatalytic reactions with biological potential, on the basis of recent developments we expect a bright future for organocatalysis in biology, to the benefit of chemical biology and biomedicine.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Organocatalysis has developed rapidly in little over half a century.
Fig. 2: Common organocatalysts (including pre-catalysts) for reactions in aqueous media.
Fig. 3: Natural and synthetic amine organocatalysts and their mechanisms.
Fig. 4: The aqueous Diels–Alder reaction of enals and dienes is catalysed by a chiral imidazolidinone
Fig. 5: Imidazolyls are common bases in enzymatic and synthetic organocatalysis.
Fig. 6: Transamination and transthioesterification in organocatalysis.
Fig. 7: Thiazolium-derived catalysts are active for C–C bond formation reactions.
Fig. 8: Flavin-dependent enzymes perform O-atom transfer at organic active sites.

Similar content being viewed by others

Change history

  • 29 July 2019

    An amendment to this paper has been published and can be accessed via a link at the top of the paper.

References

  1. Küchler, A., Yoshimoto, M., Luginbühl, S., Mavelli, F. & Walde, P. Enzymatic reactions in confined environments. Nat. Nanotechnol. 11, 409–420 (2016).

    Article  PubMed  CAS  Google Scholar 

  2. Schoffelen, S. & van Hest, J. C. Multi-enzyme systems: bringing enzymes together in vitro. Soft Matter 8, 1736–1746 (2012).

    Article  CAS  Google Scholar 

  3. Wen, F. et al. Horseradish peroxidase functionalized fluorescent gold nanoclusters for hydrogen peroxide sensing. Anal. Chem. 83, 1193–1196 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. Speers, A. E. & Cravatt, B. F. Profiling enzyme activities in vivo using click chemistry methods. Chem. Biol. 11, 535–546 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Bai, Y., Chen, J. & Zimmerman, S. C. Designed transition metal catalysts for intracellular organic synthesis. Chem. Soc. Rev. 47, 1811–1821 (2018).

    Article  CAS  PubMed  Google Scholar 

  6. Li, J. et al. Palladium-triggered deprotection chemistry for protein activation in living cells. Nat. Chem. 6, 352–361 (2014).

    Article  CAS  PubMed  Google Scholar 

  7. Coverdale, J. P. et al. Asymmetric transfer hydrogenation by synthetic catalysts in cancer cells. Nat. Chem. 10, 347–354 (2018).

    Article  CAS  PubMed  Google Scholar 

  8. Tomás-Gamasa, M., Martínez-Calvo, M., Couceiro, J. R. & Mascareñas, J. L. Transition metal catalysis in the mitochondria of living cells. Nat. Commun. 7, 12538 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Blackmond, D. G., Armstrong, A., Coombe, V. & Wells, A. Water in organocatalytic processes: debunking the myths. Angew. Chem. Int. Ed. 46, 3798–3800 (2007).

    Article  CAS  Google Scholar 

  10. Raj, M. & Singh, V. K. Organocatalytic reactions in water. Chem. Commun. 2009, 6687–6703 (2009).

    Article  CAS  Google Scholar 

  11. Gruttadauria, M., Giacalone, F. & Noto, R. Water in stereoselective organocatalytic reactions. Adv. Synth. Catal. 351, 33–57 (2009).

    Article  CAS  Google Scholar 

  12. Dalko, P. I. (ed.) Comprehensive Enantioselective Organocatalysis: Catalysts, Reactions, and Applications (Wiley-VCH, 2013).

  13. Cruz-Acosta, F., de Armas, P. & García-Tellado, F. Water-compatible hydrogen-bond activation: a scalable and organocatalytic model for the stereoselective multicomponent aza-Henry reaction. Chem. Eur. J. 19, 16550–16554 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. Clayden, J., Greeves, N. & Warren, S. Organic Chemistry (OUP, 2012).

  15. Ingram, I., Lawrenson, S. & North, M. in Encyclopedia of Sustainable Technologies (ed. Abraham, M. A.) 629–643 (Elsevier, 2017).

  16. Jimeno, C. Water in asymmetric organocatalytic systems: a global perspective. Org. Biomol. Chem. 14, 6147–6164 (2016).

    Article  CAS  PubMed  Google Scholar 

  17. Toma, S., Sebesta, R. & Meciarova, M. Organocatalytic reactions under unusual conditions. Curr. Org. Chem. 15, 2257–2281 (2011).

    Article  CAS  Google Scholar 

  18. Lindström, U. M. Stereoselective organic reactions in water. Chem. Rev. 102, 2751–2772 (2002).

    Article  PubMed  CAS  Google Scholar 

  19. Bhowmick, S., Mondal, A., Ghosh, A. & Bhowmick, K. C. Water: the most versatile and nature’s friendly media in asymmetric organocatalyzed direct aldol reactions. Tetrahedron Asymmetry 26, 1215–1244 (2015).

    Article  CAS  Google Scholar 

  20. List, B., Lerner, R. A. & Barbas, C. F. Proline-catalyzed direct asymmetric aldol reactions. J. Am. Chem. Soc. 122, 2395–2396 (2000).

    Article  CAS  Google Scholar 

  21. Notz, W. & List, B. Catalytic asymmetric synthesis of anti-1,2-diols. J. Am. Chem. Soc. 122, 7386–7387 (2000).

    Article  CAS  Google Scholar 

  22. Ahrendt, K. A., Borths, C. J. & MacMillan, D. W. New strategies for organic catalysis: the first highly enantioselective organocatalytic Diels−Alder reaction. J. Am. Chem. Soc. 122, 4243–4244 (2000).

    Article  CAS  Google Scholar 

  23. Mlynarski, J. & Paradowska, J. Catalytic asymmetric aldol reactions in aqueous media. Chem. Soc. Rev. 37, 1502–1511 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Mlynarski, J. & Bas, S. Catalytic asymmetric aldol reactions in aqueous media — a 5 year update. Chem. Soc. Rev. 43, 577–587 (2014).

    Article  CAS  PubMed  Google Scholar 

  25. De Rosa, M. et al. Supramolecular organocatalysis in water mediated by macrocyclic compounds. Front. Chem. 6, 84 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. MacMillan, D. W. The advent and development of organocatalysis. Nature 455, 304–308 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Silvi, M. & Melchiorre, P. Enhancing the potential of enantioselective organocatalysis with light. Nature 554, 41–49 (2018).

    Article  CAS  PubMed  Google Scholar 

  28. List, B. Asymmetric aminocatalysis. Synlett 2001, 1675–1686 (2001).

    Article  Google Scholar 

  29. Nyberg, A. I., Usano, A. & Pihko, P. M. Proline-catalyzed ketone–aldehyde aldol reactions are accelerated by water. Synlett 2004, 1891–1896 (2004).

    Article  CAS  Google Scholar 

  30. Mukherjee, S., Yang, J. W., Hoffmann, S. & List, B. Asymmetric enamine catalysis. Chem. Rev. 107, 5471–5569 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Lai, C., Nakai, N. & Chang, D. Amino acid sequence of rabbit muscle aldolase and the structure of the active center. Science 183, 1204–1206 (1974).

    Article  CAS  PubMed  Google Scholar 

  32. Dalby, A., Dauter, Z. & Littlechild, J. A. Crystal structure of human muscle aldolase complexed with fructose 1,6-bisphosphate: mechanistic implications. Protein Sci. 8, 291–297 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Barbas, C. F. et al. Immune versus natural selection: antibody aldolases with enzymic rates but broader scope. Science 278, 2085–2092 (1997).

    Article  CAS  PubMed  Google Scholar 

  34. List, B. et al. A catalytic enantioselective route to hydroxy-substituted quaternary carbon centers: resolution of tertiary aldols with a catalytic antibody. J. Am. Chem. Soc. 121, 7283–7291 (1999).

    Article  CAS  Google Scholar 

  35. Littlechild, J. A. & Watson, H. C. A data-based reaction mechanism for type I fructose bisphosphate aldolase. Trends Biochem. Sci. 18, 36–39 (1993).

    Article  CAS  PubMed  Google Scholar 

  36. Gefflaut, T., Blonski, C., Perie, J. & Willson, M. Class I aldolases: substrate specificity, mechanism, inhibitors and structural aspects. Prog. Biophys. Mol. Biol. 63, 301–340 (1995).

    CAS  Google Scholar 

  37. Poddar, H., Rahimi, M., Geertsema, E. M., Thunnissen, A.-M. W. H. & Poelarends, G. J. Evidence for the formation of an enamine species during aldol and Michael-type addition reactions promiscuously catalyzed by 4-oxalocrotonate tautomerase. ChemBioChem 16, 738–741 (2015).

    Article  CAS  PubMed  Google Scholar 

  38. Wu, X., Jiang, Z., Shen, H.-M. & Lu, Y. Highly efficient threonine-derived organocatalysts for direct asymmetric aldol reactions in water. Adv. Synth. Catal. 349, 812–816 (2007).

    Article  CAS  Google Scholar 

  39. Dickerson, T. J. & Janda, K. D. Aqueous aldol catalysis by a nicotine metabolite. J. Am. Chem. Soc. 124, 3220–3221 (2002). This work presents pioneering work on the aldol reaction with nornicotine at physiological pH and temperature.

    Article  CAS  PubMed  Google Scholar 

  40. Rogers, C. J., Dickerson, T. J. & Janda, K. D. Kinetic isotope and thermodynamic analysis of the nornicotine-catalyzed aqueous aldol reaction. Tetrahedron 62, 352–356 (2006).

    Article  CAS  Google Scholar 

  41. Yang, G. & Zhou, L. Mechanisms and reactivity differences of proline-mediated catalysis in water and organic solvents. Catal. Sci. Technol. 6, 3378–3385 (2016).

    Article  CAS  Google Scholar 

  42. Aratake, S. et al. Small organic molecule in enantioselective, direct aldol reaction ‘in water’. Chem. Commun. 2007, 2524–2526 (2007).

    Article  Google Scholar 

  43. Córdova, A., Notz, W. & Barbas III, C. F. Direct organocatalytic aldol reactions in buffered aqueous media. Chem. Commun. 2002, 3024–3025 (2002). This work presents pioneering work on the aldol reaction with proline and derivatives in buffered media.

    Article  Google Scholar 

  44. Zhu, X. et al. The origin of enantioselectivity in aldolase antibodies: crystal structure, site-directed mutagenesis, and computational analysis. J. Mol. Biol. 343, 1269–1280 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Mase, N. et al. Organocatalytic direct asymmetric aldol reactions in water. J. Am. Chem. Soc. 128, 734–735 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Brogan, A. P., Dickerson, T. J. & Janda, K. D. Enamine-based aldol organocatalysis in water: are they really ‘all wet’? Angew. Chem. Int. Ed. 118, 8100–8102 (2006).

    Article  Google Scholar 

  47. Mase, N., Noshiro, N., Mokuya, A. & Takabe, K. Effect of long chain fatty acids on organocatalytic aqueous direct aldol reactions. Adv. Synth. Catal. 351, 2791–2796 (2009).

    Article  CAS  Google Scholar 

  48. Wu, Y., Zhang, Y., Yu, M., Zhao, G. & Wang, S. Highly efficient and reusable dendritic catalysts derived from N-prolylsulfonamide for the asymmetric direct aldol reaction in water. Org. Lett. 8, 4417–4420 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Font, D., Jimeno, C. & Pericàs, M. A. Polystyrene-supported hydroxyproline: an insoluble, recyclable organocatalyst for the asymmetric aldol reaction in water. Org. Lett. 8, 4653–4655 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Maya, V., Raj, M. & Singh, V. K. Highly enantioselective organocatalytic direct aldol reaction in an aqueous medium. Org. Lett. 9, 2593–2595 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. De Nisco, M. et al. Proline−β3-amino-ester dipeptides as efficient catalysts for enantioselective direct aldol reaction in aqueous medium. J. Org. Chem. 74, 9562–9565 (2009).

    Article  PubMed  CAS  Google Scholar 

  52. Mase, N. et al. Organocatalytic direct Michael reaction of ketones and aldehydes with β-nitrostyrene in brine. J. Am. Chem. Soc. 128, 4966–4967 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Tang, Z. & Marx, A. Proline-modified DNA as catalyst of the aldol reaction. Angew. Chem. Int. Ed. 46, 7297–7300 (2007).

    Article  CAS  Google Scholar 

  54. Spears, R. J. et al. Site-selective C–C modification of proteins at neutral pH using organocatalyst-mediated cross aldol ligations. Chem. Sci. 9, 5585–5593 (2018). This work is a remarkable example of a tandem-organocatalysed ligation (aldol and oxime) for protein modification.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hu, S. et al. Asymmetric supramolecular primary amine catalysis in aqueous buffer: connections of selective recognition and asymmetric catalysis. J. Am. Chem. Soc. 132, 7216–7228 (2010).

    Article  CAS  PubMed  Google Scholar 

  56. Dickerson, T. J., Lovell, T., Meijler, M. M., Noodleman, L. & Janda, K. D. Nornicotine aqueous aldol reactions: synthetic and theoretical investigations into the origins of catalysis. J. Org. Chem. 69, 6603–6609 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Rogers, C. J., Dickerson, T. J., Brogan, A. P. & Janda, K. D. Hammett correlation of nornicotine analogues in the aqueous aldol reaction: implications for green organocatalysis. J. Org. Chem. 70, 3705–3708 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Cruz-Hernández, C., Hernández-González, P. E. & Juaristi, E. Proline–glycine dipeptidic derivatives of chiral phosphoramides as organocatalysts for the enantiodivergent aldol reaction of aryl aldehydes and isatins with cyclohexanone in the presence of water. Synthesis 50, 3445–3459 (2018). In this work, the authors define the criteria for efficient aldol reaction catalysts based on previous work (lessons learned from the past).

    Article  CAS  Google Scholar 

  59. Markert, M., Scheffler, U. & Mahrwald, R. Asymmetric histidine-catalyzed cross-aldol reactions of enolizable aldehydes: access to defined configured quaternary stereogenic centers. J. Am. Chem. Soc. 131, 16642–16643 (2009).

    Article  CAS  PubMed  Google Scholar 

  60. Scheffler, U. & Mahrwald, R. Histidine-catalyzed asymmetric aldol addition of enolizable aldehydes: insights into its mechanism. J. Org. Chem. 77, 2310–2330 (2012).

    Article  CAS  PubMed  Google Scholar 

  61. Burroughs, L. et al. Efficient asymmetric organocatalytic formation of erythrose and threose under aqueous conditions. Chem. Commun. 46, 4776–4778 (2010).

    Article  CAS  Google Scholar 

  62. Pizzarello, S. & Weber, A. L. Prebiotic amino acids as asymmetric catalysts. Science 303, 1151 (2004).

    Article  CAS  PubMed  Google Scholar 

  63. Owolabi, I. A. et al. A new type of amino amide organocatalyzed enantioselective crossed aldol reaction of ketones with aromatic aldehydes. Tetrahedron 74, 4705–4711 (2018).

    Article  CAS  Google Scholar 

  64. Pellissier, H. Recent developments in enantioselective organocatalytic Michael reactions in aqueous media. Curr. Org. Chem. 22, 323–344 (2018).

    Article  CAS  Google Scholar 

  65. Kumar, T. P., Radhika, L., Haribabu, K. & Kumar, V. N. Pyrrolidine-oxyimides: new chiral catalysts for enantioselective Michael addition of ketones to nitroolefins in water. Tetrahedron Asymmetry 25, 1555–1560 (2014).

    Article  CAS  Google Scholar 

  66. Kamito, Y. et al. Asymmetric conjugate addition of malonate to α,β-unsaturated ketones in water using a perfluoroalkanesulfonamide organocatalyst. Tetrahedron Asymmetry 25, 974–979 (2014).

    Article  CAS  Google Scholar 

  67. Chandrasekhar, S. et al. Peptidomimetic organocatalysts: efficient Michael addition of ketones onto nitroolefins with very low catalyst loading. RSC Adv. 4, 30325–30331 (2014).

    Article  CAS  Google Scholar 

  68. Seayad, J. & List, B. Asymmetric organocatalysis. Org. Biomol. Chem. 3, 719–724 (2005).

    Article  CAS  PubMed  Google Scholar 

  69. Izzo, J. A., Poulsen, P. H., Intrator, J. A., Jørgensen, K. A. & Vetticatt, M. J. Isotope effects reveal an alternative mechanism for ‘iminium-ion’ catalysis. J. Am. Chem. Soc. 140, 8396–8400 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Erkkilä, A., Majander, I. & Pihko, P. M. Iminium catalysis. Chem. Rev. 107, 5416–5470 (2007).

    Article  PubMed  CAS  Google Scholar 

  71. Lemay, M. & Ogilvie, W. W. Aqueous enantioselective organocatalytic Diels−Alder reactions employing hydrazide catalysts. A new scaffold for organic acceleration. Org. Lett. 7, 4141–4144 (2005).

    Article  CAS  PubMed  Google Scholar 

  72. Mao, Z., Jia, Y., Li, W. & Wang, R. Water-compatible iminium activation: highly enantioselective organocatalytic Michael addition of malonates to α,β-unsaturated enones. J. Org. Chem. 75, 7428–7430 (2010).

    Article  CAS  PubMed  Google Scholar 

  73. Resch, V., Seidler, C., Chen, B. S., Degeling, I. & Hanefeld, U. On the Michael addition of water to α,β-unsaturated ketones using amino acids. Eur. J. Org. Chem. 2013, 7697–7704 (2013). This work presents an exclusive example of iminium catalysis with amino acids purely performed in buffered media.

    Article  CAS  Google Scholar 

  74. Bender, M. L. Mechanisms of catalysis of nucleophilic reactions of carboxylic acid derivatives. Chem. Rev. 60, 53–113 (1960). This work is the early work by Bender, who defined nucleophilic catalysis.

    Article  CAS  Google Scholar 

  75. Bruice, T. C. & Schmir, G. L. Imidazole catalysis. I. The catalysis of the hydrolysis of phenyl acetates by imidazole. J. Am. Chem. Soc. 79, 1663–1667 (1957).

    Article  CAS  Google Scholar 

  76. Jencks, W. P. & Carriuolo, J. Imidazole catalysis III. General base catalysis and the reactions of acetyl imidazole with thiols and amines. J. Biol. Chem. 234, 1280–1285 (1959).

    CAS  PubMed  Google Scholar 

  77. Kirsch, J. F. & Jencks, W. P. Nonlinear structure–reactivity correlations. The imidazole-catalyzed hydrolysis of esters. J. Am. Chem. Soc. 86, 837–846 (1964).

    Article  CAS  Google Scholar 

  78. Gerstein, J. & Jencks, W. P. Equilibria and rates for acetyl transfer among substituted phenyl acetates, acetylimidazole, O-acylhydroxamic acids, and thiol esters. J. Am. Chem. Soc. 86, 4655–4663 (1964).

    Article  CAS  Google Scholar 

  79. Jencks, W. P. & Carriuolo, J. Imidazole catalysis II. Acyl transfer and the reactions of acetyl imidazole with water and oxygen anions. J. Biol. Chem. 243, 1272–1279 (1959).

    Google Scholar 

  80. Jencks, W. P. & Carriuolo, J. General base catalysis of ester hydrolysis. J. Am. Chem. Soc. 83, 1743–1750 (1961).

    Article  CAS  Google Scholar 

  81. Jencks, W. P., Oakenfull, D. G. & Salvesen, K. Reactions of acetylimidazole and acetylimidazolium ion with nucleophilic reagents. Mechanisms of catalysis. J. Am. Chem. Soc. 93, 188–194 (1971).

    Article  CAS  Google Scholar 

  82. Kirsch, J. F. & Jencks, W. P. Base catalysis of imidazole catalysis of ester hydrolysis. J. Am. Chem. Soc. 86, 833–837 (1964).

    Article  CAS  Google Scholar 

  83. Jencks, W. P. Catalysis in Chemistry and Enzymology (Dover Publications, 1987).

  84. Gold, V. (ed.) Advances in Physical Organic Chemistry APL Vol. 11 (Academic Press, 1975).

  85. Steitz, T. A. & Shulman, R. G. Crystallographic and NMR studies of the serine proteases. Annu. Rev. Biophys. Bioeng. 11, 419–444 (1982).

    Article  CAS  PubMed  Google Scholar 

  86. Carter, P. & Wells, J. A. Dissecting the catalytic triad of a serine protease. Nature 332, 564–568 (1988).

    Article  CAS  PubMed  Google Scholar 

  87. Faber, K. Biotransformations in Organic Chemistry Vol. 4 (Springer, 1992).

  88. Duncan, K. L. & Ulijn, R. V. Short peptides in minimalistic biocatalyst design. Biocatalysis 1, 67–81 (2015).

    Article  Google Scholar 

  89. Cordes, E. H. & Jencks, W. P. Nucleophilic catalysis of semicarbazone formation by anilines. J. Am. Chem. Soc. 84, 826–831 (1962). In this work, the criteria for nucleophilic catalysis are defined.

    Article  CAS  Google Scholar 

  90. Schneider, F. Histidine in enzyme active centers. Angew. Chem. Int. Ed. 17, 583–592 (1978).

    Article  CAS  Google Scholar 

  91. Nieri, P. et al. Cholinesterase-like organocatalysis by imidazole and imidazole-bearing molecules. Sci. Rep. 7, 45760 (2017).

    Article  PubMed Central  CAS  Google Scholar 

  92. Schoonen, L. et al. Alternative application of an affinity purification tag: hexahistidines in ester hydrolysis. Sci. Rep. 7, 14772 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Nothling, M. D. et al. Simple design of an enzyme-inspired supported catalyst based on a catalytic triad. Chem 2, 732–745 (2017).

    Article  CAS  Google Scholar 

  94. Bezer, S. et al. Identification and optimization of short helical peptides with novel reactive functionality as catalysts for acyl transfer by reactive tagging. Org. Biomol. Chem. 12, 1488–1494 (2014).

    Article  CAS  PubMed  Google Scholar 

  95. Chadha, G. & Zhao, Y. Histidine-functionalized water-soluble nanoparticles for biomimetic nucleophilic/general-base catalysis under acidic conditions. Org. Biomol. Chem. 11, 6849–6855 (2013).

    Article  CAS  PubMed  Google Scholar 

  96. Overberger, C. & Dixon, K. Hydrolysis of activated esters catalyzed by L-histidine graft copolymers. J. Polym. Sci. A Polym. Chem. 15, 1863–1868 (1977).

    Article  CAS  Google Scholar 

  97. Wanderlind, E. H. et al. Imidazole-functionalized pillar[5]arenes: highly reactive and selective supramolecular artificial enzymes. ACS Catal. 8, 3343–3347 (2018).

    Article  CAS  Google Scholar 

  98. Li, Y. et al. Dipeptide seryl–histidine and related oligopeptides cleave DNA, protein, and a carboxyl ester. Bioorg. Med. Chem. 8, 2675–2680 (2000).

    Article  CAS  PubMed  Google Scholar 

  99. MacDonald, M. J., Lavis, L. D., Hilvert, D. & Gellman, S. H. Evaluation of the Ser-His dipeptide, a putative catalyst of amide and ester hydrolysis. Org. Lett. 18, 3518–3521 (2016).

    Article  CAS  PubMed  Google Scholar 

  100. Maeda, Y., Makhlynets, O. V., Matsui, H. & Korendovych, I. V. Design of catalytic peptides and proteins through rational and combinatorial approaches. Annu. Rev. Biomed. Eng. 18, 311–328 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Maeda, Y. et al. Discovery of catalytic phages by biocatalytic self-assembly. J. Am. Chem. Soc. 136, 15893–15896 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Menger, F. & Ladika, M. Origin of rate accelerations in an enzyme model: the p-nitrophenyl ester syndrome. J. Am. Chem. Soc. 109, 3145–3146 (1987).

    Article  CAS  Google Scholar 

  103. Luo, S., Wang, P. G. & Cheng, J.-P. Remarkable rate acceleration of imidazole-promoted Baylis−Hillman reaction involving cyclic enones in basic water solution. J. Org. Chem. 69, 555–558 (2004).

    Article  CAS  PubMed  Google Scholar 

  104. Gomes, J. C., Rodrigues Jr, M. T., Moyano, A. & Coelho, F. Efficient catalysis of aqueous Morita–Baylis–Hillman reactions of cyclic enones by a bicyclic imidazolyl alcohol. Eur. J. Org. Chem. 2012, 6861–6866 (2012).

    Article  CAS  Google Scholar 

  105. Gomes, J. C., Sirvent, J., Moyano, A., Rodrigues Jr, M. T. & Coelho, F. Aqueous Morita–Baylis–Hillman reaction of unprotected isatins with cyclic enones. Org. Lett. 15, 5838–5841 (2013).

    Article  CAS  PubMed  Google Scholar 

  106. Raich, L. et al. Can an alcohol act as an acid/base catalyst in water solution? An experimental and theoretical study of imidazole catalysis of the aqueous Morita–Baylis–Hillman reaction. ACS Catal. 8, 1703–1714 (2018).

    Article  CAS  Google Scholar 

  107. Fersht, A. R. & Jencks, W. P. Acetylpyridinium ion intermediate in pyridine-catalyzed hydrolysis and acyl transfer reactions of acetic anhydride. Observation, kinetics, structure–reactivity correlations, and effects of concentrated salt solutions. J. Am. Chem. Soc. 92, 5432–5442 (1970).

    Article  CAS  Google Scholar 

  108. Butler, A. R. & Robertson, I. H. Nucleophilic and general base catalysis by pyridine and methylpyridines in the hydrolysis of aryl acetates. J. Chem. Soc. Perkin Trans. I 2, 660–663 (1975).

    Article  Google Scholar 

  109. Bender, M. L. & Turnquest, B. W. General basic catalysis of ester hydrolysis and its relationship to enzymatic hydrolysis. J. Am. Chem. Soc. 79, 1656–1662 (1957).

    Article  CAS  Google Scholar 

  110. Decker, D. Pyridine catalyzed polymerization of maleimide in water solution. Macromol. Chem. Phys. 168, 51–58 (1973).

    Article  CAS  Google Scholar 

  111. Azechi, M., Toyota, N., Yamabuki, K., Onimura, K. & Oishi, T. Anionic polymerization of N-substituted maleimide with achiral and chiral amines as an initiator. Polym. Bull. 67, 631–640 (2011).

    Article  CAS  Google Scholar 

  112. Chadha, G. & Zhao, Y. Environmental control of nucleophilic catalysis in water. Chem. Commun. 50, 2718–2720 (2014).

    Article  CAS  Google Scholar 

  113. Tamura, T. & Hamachi, I. in Site-Specific Protein Labeling (eds Gautier, A. & Hinner, M. J.) 229–242 (Springer, 2015).

  114. Amamoto, Y. et al. Synthetic posttranslational modifications: chemical catalyst-driven regioselective histone acylation of native chromatin. J. Am. Chem. Soc. 139, 7568–7576 (2017).

    Article  CAS  PubMed  Google Scholar 

  115. Ishiguro, T. et al. Synthetic chromatin acylation by an artificial catalyst system. Chem 2, 840–859 (2017).

    Article  CAS  Google Scholar 

  116. Li, P., Du, J., Xie, Y., Tao, M. & Zhang, W.-Q. Highly efficient polyacrylonitrile fiber catalysts functionalized by aminopyridines for the synthesis of 3-substituted 2-aminothiophenes in water. ACS Sustainable Chem. Eng. 4, 1139–1147 (2016).

    Article  CAS  Google Scholar 

  117. Aggarwal, V. K., Dean, D. K., Mereu, A. & Williams, R. Rate acceleration of the Baylis−Hillman reaction in polar solvents (water and formamide). Dominant role of hydrogen bonding, not hydrophobic effects, is implicated. J. Org. Chem. 67, 510–514 (2002).

    Article  CAS  PubMed  Google Scholar 

  118. Augé, J., Lubin, N. & Lubineau, A. Acceleration in water of the Baylis–Hillman reaction. Tetrahedron Lett. 35, 7947–7948 (1994).

    Article  Google Scholar 

  119. Yu, Y.-Q. & Wang, Z.-L. A simple, efficient and green procedure for Knoevenagel condensation in water or under solvent-free conditions. J. Chin. Chem. Soc. 60, 288–292 (2013).

    Article  CAS  Google Scholar 

  120. Abaee, M. S. & Cheraghi, S. Aqueous DABCO, an efficient medium for rapid organocatalyzed Knoevenagel condensation and the Gewald reaction. Turk. J. Chem. 38, 650–660 (2014).

    Article  CAS  Google Scholar 

  121. Dalessandro, E. V., Collin, H. P., Valle, M. S. & Pliego Jr, J. R. Mechanism and free energy profile of base-catalyzed Knoevenagel condensation reaction. RSC Adv. 6, 57803–57810 (2016).

    Article  CAS  Google Scholar 

  122. Bigi, F. & Quarantelli, C. The Knoevenagel condensation in water. Curr. Org. Synth. 9, 31–39 (2012).

    Article  CAS  Google Scholar 

  123. Otto, S. & Engberts, J. B. F. N. Hydrophobic interactions and chemical reactivity. Org. Biomol. Chem. 1, 2809–2820 (2003).

    Article  CAS  PubMed  Google Scholar 

  124. Gajewski, J. J. The Claisen rearrangement. Response to solvents and substituents: the case for both hydrophobic and hydrogen bond acceleration in water and for a variable transition state. Acc. Chem. Res. 30, 219–225 (1997).

    Article  CAS  Google Scholar 

  125. Seingeot, A., Charmasson, Y., Attolini, M. & Maffei, M. Organocatalyzed synthesis of functionalized vinylphosphonates in water. Heteroat. Chem. 28, e21352 (2017).

    Article  CAS  Google Scholar 

  126. Rajarathinam, B., Kumaravel, K. & Vasuki, G. ‘In water’: organocatalyzed diastereoselective multicomponent reactions toward 2-azapyrrolizidine alkaloid scaffolds. ACS Comb. Sci. 19, 455–463 (2017).

    Article  CAS  PubMed  Google Scholar 

  127. Rajarathinam, B. & Vasuki, G. Diastereoselective multicomponent reaction in water: synthesis of 2-azapyrrolizidine alkaloid analogues. Org. Lett. 14, 5204–5206 (2012).

    Article  CAS  PubMed  Google Scholar 

  128. Lv, J., Zhang, Q., Cai, M., Han, Y. & Luo, S. Aromatic aminocatalysis. Chem. Asian J. 13, 740–753 (2018).

    Article  CAS  PubMed  Google Scholar 

  129. Trausel, F. et al. Chemical signal activation of an organocatalyst enables control over soft material formation. Nat. Commun. 8, 879 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Kölmel, D. K. & Kool, E. T. Oximes and hydrazones in bioconjugation: mechanism and catalysis. Chem. Rev. 117, 10358–10376 (2017). This work presents a comprehensive review of organocatalysed hydrazone and oxime formations.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Jencks, W. P. Studies on the mechanism of oxime and semicarbazone formation. J. Am. Chem. Soc. 81, 475–481 (1959).

    Article  CAS  Google Scholar 

  132. Godoy-Alcántar, C., Yatsimirsky, A. K. & Lehn, J. M. Structure–stability correlations for imine formation in aqueous solution. J. Phys. Org. Chem. 18, 979–985 (2005).

    Article  CAS  Google Scholar 

  133. Crisalli, P. & Kool, E. T. Water-soluble organocatalysts for hydrazone and oxime formation. J. Org. Chem. 78, 1184–1189 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Crisalli, P. & Kool, E. T. Importance of ortho proton donors in catalysis of hydrazone formation. Org. Lett. 15, 1646–1649 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Larsen, D., Pittelkow, M., Karmakar, S. & Kool, E. T. New organocatalyst scaffolds with high activity in promoting hydrazone and oxime formation at neutral pH. Org. Lett. 17, 274–277 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Dirksen, A., Hackeng, T. M. & Dawson, P. E. Nucleophilic catalysis of oxime ligation. Angew. Chem. Int. Ed. 45, 7581–7584 (2006).

    Article  CAS  Google Scholar 

  137. Dilek, O., Sorrentino, A. M. & Bane, S. Intramolecular catalysis of hydrazone formation of aryl-aldehydes via ortho-phosphate proton exchange. Synlett 27, 1335–1338 (2016).

    Article  CAS  Google Scholar 

  138. Trausel, F., Fan, B., van Rossum, S. A. P., van Esch, J. H. & Eelkema, R. Aniline catalysed hydrazone formation reactions show a large variation in reaction rates and catalytic effects. Adv. Synth. Catal. 360, 2571–2576 (2018).

    Article  CAS  Google Scholar 

  139. Dirksen, A., Dirksen, S., Hackeng, T. M. & Dawson, P. E. Nucleophilic catalysis of hydrazone formation and transimination: implications for dynamic covalent chemistry. J. Am. Chem. Soc. 128, 15602–15603 (2006).

    Article  CAS  PubMed  Google Scholar 

  140. Blanden, A. R., Mukherjee, K., Dilek, O., Loew, M. & Bane, S. L. 4-Aminophenylalanine as a biocompatible nucleophilic catalyst for hydrazone ligations at low temperature and neutral pH. Bioconj. Chem. 22, 1954–1961 (2011).

    CAS  Google Scholar 

  141. Domaille, D. W. & Cha, J. N. Aniline-terminated DNA catalyzes rapid DNA–hydrazone formation at physiological pH. Chem. Commun. 50, 3831–3833 (2014).

    Article  CAS  Google Scholar 

  142. Drienovská, I., Mayer, C., Dulson, C. & Roelfes, G. A designer enzyme for hydrazone and oxime formation featuring an unnatural catalytic aniline residue. Nat. Chem. 10, 946–952 (2018).

    Article  PubMed  CAS  Google Scholar 

  143. Johnson, E. C. B. & Kent, S. B. H. Insights into the mechanism and catalysis of the native chemical ligation reaction. J. Am. Chem. Soc. 128, 6640–6646 (2006).

    Article  CAS  PubMed  Google Scholar 

  144. Dawson, P. E., Muir, T. W., Clark-Lewis, I. & Kent, S. B. Synthesis of proteins by native chemical ligation. Science 266, 776–779 (1994).

    Article  CAS  PubMed  Google Scholar 

  145. Dawson, P. E., Churchill, M. J., Ghadiri, M. R. & Kent, S. B. H. Modulation of reactivity in native chemical ligation through the use of thiol additives. J. Am. Chem. Soc. 119, 4325–4329 (1997).

    Article  CAS  Google Scholar 

  146. Muir, T. W. Semisynthesis of proteins by expressed protein ligation. Ann. Rev. Biochem. 72, 249–289 (2003).

    Article  CAS  PubMed  Google Scholar 

  147. Cowper, B. et al. Examination of mercaptobenzyl sulfonates as catalysts for native chemical ligation: application to the assembly of a glycosylated glucagon-like peptide 1 (GLP-1) analogue. Chem. Commun. 51, 3208–3210 (2015).

    Article  CAS  Google Scholar 

  148. Mandal, K. et al. Design, total chemical synthesis, and X-ray structure of a protein having a novel linear-loop polypeptide chain topology. Angew. Chem. Int. Ed. 51, 1481–1486 (2012).

    Article  CAS  Google Scholar 

  149. Cargoët, M. et al. Catalysis of thiol–thioester exchange by water soluble alkyldiselenols applied to the synthesis of peptide thioesters and SEA-mediated ligation. J. Org. Chem. 83, 12584–12594 (2018).

    Article  PubMed  CAS  Google Scholar 

  150. Enders, D., Niemeier, O. & Henseler, A. Organocatalysis by N-heterocyclic carbenes. Chem. Rev. 107, 5606–5655 (2007).

    Article  CAS  PubMed  Google Scholar 

  151. Breslow, R. On the mechanism of thiamine action. IV. Evidence from studies on model systems. J. Am. Chem. Soc. 80, 3719–3726 (1958).

    CAS  Google Scholar 

  152. Seebach, D. Methods of reactivity umpolung. Angew. Chem. Int. Ed. 18, 239–258 (1979).

    Article  Google Scholar 

  153. Lapworth, A. XCVI—reactions involving the addition of hydrogen cyanide to carbon compounds. J. Chem. Soc. Trans. 83, 995–1005 (1903).

    Article  CAS  Google Scholar 

  154. Breslow, R. Rapid deuterium exchange in thiazolium salts. J. Am. Chem. Soc. 79, 1762–1763 (1957).

    Article  CAS  Google Scholar 

  155. Hopkinson, M. N., Richter, C., Schedler, M. & Glorius, F. An overview of N-heterocyclic carbenes. Nature 510, 485–496 (2014).

    Article  CAS  PubMed  Google Scholar 

  156. Pohl, M., Sprenger, G. A. & Müller, M. A new perspective on thiamine catalysis. Curr. Opin. Biotechnol. 15, 335–342 (2004).

    Article  CAS  PubMed  Google Scholar 

  157. Jordan, F. Current mechanistic understanding of thiamin diphosphate-dependent enzymatic reactions. Nat. Prod. Rep. 20, 184–201 (2003).

    Article  CAS  PubMed  Google Scholar 

  158. Meyer, D., Neumann, P., Ficner, R. & Tittmann, K. Observation of a stable carbene at the active site of a thiamin enzyme. Nat. Chem. Biol. 9, 488–490 (2013).

    Article  CAS  PubMed  Google Scholar 

  159. Nilsson, U., Meshalkina, L., Lindqvist, Y. & Schneider, G. Examination of substrate binding in thiamin diphosphate-dependent transketolase by protein crystallography and site-directed mutagenesis. J. Biol. Chem. 272, 1864–1869 (1997).

    Article  CAS  PubMed  Google Scholar 

  160. Levin, E., Ivry, E., Diesendruck, C. E. & Lemcoff, N. G. Water in N-heterocyclic carbene-assisted catalysis. Chem. Rev. 115, 4607–4692 (2015).

    Article  CAS  PubMed  Google Scholar 

  161. Amyes, T. L., Diver, S. T., Richard, J. P., Rivas, F. M. & Toth, K. Formation and stability of N-heterocyclic carbenes in water: the carbon acid pK a of imidazolium cations in aqueous solution. J. Am. Chem. Soc. 126, 4366–4374 (2004).

    Article  CAS  PubMed  Google Scholar 

  162. Leong, W. W. Y., Chen, X. & Chi, Y. R. NHC-catalyzed reactions of enals with water as a solvent. Green Chem. 15, 1505–1508 (2013).

    Article  CAS  Google Scholar 

  163. Suresh, P., Thamotharan, S. & Ganesan, S. S. Driving NHC organocatalysis on water through hydrophobic hydration for the synthesis of diverse heterocycles and carbocycles. Catal. Commun. 111, 47–51 (2018).

    Article  CAS  Google Scholar 

  164. Iwamoto, K.-i. et al. Benzoin reaction in water as an aqueous medium catalyzed by benzimidazolium salt. Tetrahedron Lett. 47, 7175–7177 (2006).

    Article  CAS  Google Scholar 

  165. Yan, J. et al. N-Heterocyclic carbene-catalyzed asymmetric benzoin reaction in water. J. Org. Chem. 83, 7547–7552 (2018). This study is a remarkable work on the asymmetric benzoin condensation in water.

    Article  CAS  PubMed  Google Scholar 

  166. Knowles, R. R. & Jacobsen, E. N. Attractive noncovalent interactions in asymmetric catalysis: links between enzymes and small molecule catalysts. Proc. Natl Acad. Sci. USA 107, 20678–20685 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Wu, Y.-S., Cai, J., Hu, Z.-Y. & Lin, G.-X. A new class of metal-free catalysts for direct diastereo- and regioselective Mannich reactions in aqueous media. Tetrahedron Lett. 45, 8949–8952 (2004).

    Article  CAS  Google Scholar 

  168. Brahmachari, G., Nurjamal, K., Karmakar, I. & Mandal, M. Camphor-10-sulfonic acid (CSA): a water compatible organocatalyst in organic transformations. Curr. Organocatal. 5, 165–181 (2018).

    Article  CAS  Google Scholar 

  169. Le, W.-J., Lu, H.-F., Zhou, J.-T., Cheng, H.-L. & Gao, Y.-H. Synthesis of a new urea derivative: a dual-functional organocatalyst for Knoevenagel condensation in water. Tetrahedron Lett. 54, 5370–5373 (2013).

    Article  CAS  Google Scholar 

  170. Tsanakopoulou, M. & Sutherland, J. D. Cyanamide as a prebiotic phosphate activating agent—catalysis by simple 2-oxoacid salts. Chem. Commun. 53, 11893–11896 (2017).

    Article  CAS  Google Scholar 

  171. Cibulka, R. Artificial flavin systems for chemoselective and stereoselective oxidations. Eur. J. Org. Chem. 2015, 915–932 (2015).

    Article  CAS  Google Scholar 

  172. Imada, Y. & Naota, T. Flavins as organocatalysts for environmentally benign molecular transformations. Chem. Rec. 7, 354–361 (2007).

    Article  CAS  PubMed  Google Scholar 

  173. Iida, H., Imada, Y. & Murahashi, S.-I. Biomimetic flavin-catalysed reactions for organic synthesis. Org. Biomol. Chem. 13, 7599–7613 (2015).

    Article  CAS  PubMed  Google Scholar 

  174. van Berkel, W. J. H., Kamerbeek, N. M. & Fraaije, M. W. Flavoprotein monooxygenases, a diverse class of oxidative biocatalysts. J. Biotechnol. 124, 670–689 (2006).

    Article  PubMed  CAS  Google Scholar 

  175. Bruice, T. C. Mechanisms of flavin catalysis. Acc. Chem. Res. 13, 256–262 (1980). This study presents a summary of pioneering work on the catalytic mechanism of flavin catalysis (redox catalysis).

    Article  CAS  Google Scholar 

  176. Bruice, T. C., Noar, J. B., Ball, S. S. & Venkataram, U. Monooxygen donation potential of 4a-hydroperoxyflavins as compared with those of a percarboxylic acid and other hydroperoxides. Monooxygen donation to olefin, tertiary amine, alkyl sulfide, and iodide ion. J. Am. Chem. Soc. 105, 2452–2463 (1983).

    Article  CAS  Google Scholar 

  177. Mojr, V., Herzig, V., Bude˘s˘ínský, M., Cibulka, R. & Kraus, T. Flavin–cyclodextrin conjugates as catalysts of enantioselective sulfoxidations with hydrogen peroxide in aqueous media. Chem. Commun. 46, 7599–7601 (2010).

    Article  CAS  Google Scholar 

  178. Mojr, V. Bude˘s˘ínský, M., Cibulka, R. & Kraus, T. Alloxazine–cyclodextrin conjugates for organocatalytic enantioselective sulfoxidations. Org. Biomol. Chem. 9, 7318–7326 (2011).

    Article  CAS  PubMed  Google Scholar 

  179. Hartman, T. et al. Flavin–cyclodextrin conjugates: effect of the structure on the catalytic activity in enantioselective sulfoxidations. Tetrahedron Asymmetry 23, 1571–1583 (2012).

    Article  CAS  Google Scholar 

  180. Marsh, B. J., Heath, E. L. & Carbery, D. R. Organocatalytic diimide reduction of enamides in water. Chem. Commun. 47, 280–282 (2011).

    Article  CAS  Google Scholar 

  181. Lukesh III, J. C., VanVeller, B. & Raines, R. T. Thiols and selenols as electron-relay catalysts for disulfide-bond reduction. Angew. Chem. Int. Ed. 52, 12901–12904 (2013).

    Article  CAS  Google Scholar 

  182. Lou, J. et al. Dynamic hyaluronan hydrogels with temporally modulated high injectability and stability using a biocompatible catalyst. Adv. Mater. 30, 1705215 (2018).

    Article  CAS  Google Scholar 

  183. Machajewski, T. D. & Wong, C. H. The catalytic asymmetric aldol reaction. Angew. Chem. Int. Ed. 39, 1352–1375 (2000).

    Article  CAS  Google Scholar 

  184. The PyMOL Molecular Graphics System version 1.8 (Schrödinger, LLC, NY, USA).

  185. Tsukada, H. & Blow, D. Structure of α-chymotrypsin refined at 1.68 Å resolution. J. Mol. Biol. 184, 703–711 (1985).

    Article  CAS  PubMed  Google Scholar 

  186. Sundström, M., Lindqvist, Y., Schneider, G., Hellman, U. & Ronne, H. Yeast TKL1 gene encodes a transketolase that is required for efficient glycolysis and biosynthesis of aromatic amino acids. J. Biol. Chem. 268, 24346–24352 (1993).

    PubMed  Google Scholar 

  187. Malito, E., Alfieri, A., Fraaije, M. W. & Mattevi, A. Crystal structure of a Baeyer–Villiger monooxygenase. Proc. Natl Acad. Sci. USA 101, 13157–13162 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Surendra, K., Krishnaveni, N. S., Mahesh, A. & Rao, K. R. Supramolecular catalysis of Strecker reaction in water under neutral conditions in the presence of β-cyclodextrin. J. Org. Chem. 71, 2532–2534 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Generous funding by the European Research Council (ERC, consolidator grant 726381) is acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

M.P.v.d.H and B.K. researched data for the review and wrote the manuscript. R.E. revised the manuscript. All authors commented on the work and the manuscript. M.P.v.d.H and B.K. contributed equally.

Corresponding author

Correspondence to Rienk Eelkema.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van der Helm, M.P., Klemm, B. & Eelkema, R. Organocatalysis in aqueous media. Nat Rev Chem 3, 491–508 (2019). https://doi.org/10.1038/s41570-019-0116-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-019-0116-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing