Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The chemistry of senescence


Senescence is a state of permanent cell cycle arrest. Cellular senescence can promote tissue remodelling but can negatively affect regenerative capacities of tissues and contribute to inflammation and the progression of cancer and ageing-related diseases. This Review highlights the chemical characteristics of senescence and how we can target senescent cells with small molecules to induce senescence in hyperproliferative tissues. Alternatively, these small molecules can also be administered to inhibit senescence or eliminate senescent cells as the basis of a promising strategy to treat ageing-related diseases. We also describe advances in detecting senescence in in vitro and in vivo models, such that we can evaluate response to treatments intended to induce or eliminate senescent cells.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Different types of cellular senescence.
Fig. 2: The molecular pathways involved in senescence cell cycle arrest.
Fig. 3: There are many ways to induce senescence.
Fig. 4: Senescence biomarkers.
Fig. 5: Senescent cells can be imaged by using synthetic probes.


  1. 1.

    Hayflick, L. & Moorhead, P. S. The serial cultivation of human diploid cell strains. Exp. Cell Res. 25, 585–621 (1961).

    CAS  Google Scholar 

  2. 2.

    Bodnar, A. G. et al. Extension of life-span by introduction of telomerase into normal human cells. Science 279, 349–352 (1998).

    CAS  Google Scholar 

  3. 3.

    Harley, C. B., Futcher, A. B. & Greider, C. W. Telomeres shorten during ageing of human fibroblasts. Nature 345, 458–460 (1990).

    CAS  Google Scholar 

  4. 4.

    Olovnikov, A. M. Telomeres, telomerase, and aging: origin of the theory. Exp. Gerontol. 31, 443–448 (1996).

    CAS  Google Scholar 

  5. 5.

    Yu, G.-L., Bradley, J. D., Attardi, L. D. & Blackburn, E. H. In vivo alteration of telomere sequences and senescence caused by mutated Tetrahymena telomerase RNAs. Nature 344, 126–132 (1990).

    CAS  Google Scholar 

  6. 6.

    Bielak-Zmijewska, A., Mosieniak, G. & Sikora, E. Is DNA damage indispensable for stress-induced senescence? Mech. Ageing Dev. 170, 13–21 (2018).

    CAS  Google Scholar 

  7. 7.

    Bloom, J. & Cross, F. R. Multiple levels of cyclin specificity in cell-cycle control. Nat. Rev. Mol. Cell. Biol. 8, 149–160 (2007).

    CAS  Google Scholar 

  8. 8.

    Peeper, D. S. et al. A- and B-type cyclins differentially modulate substrate specificity of cyclin-cdk complexes. EMBO J. 12, 1947–1954 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Malumbres, M. & Barbacid, M. Cell cycle, CDKs and cancer: a changing paradigm. Nat. Rev. Cancer 9, 153–166 (2009).

    CAS  Google Scholar 

  10. 10.

    Orzáez, M., Gortat, A., Mondragón, L., Bachs, O. & Pérez-Payá, E. ATP-noncompetitive inhibitors of CDK–cyclin complexes. ChemMedChem 4, 19–24 (2009).

    Google Scholar 

  11. 11.

    Kong, X. et al. Interleukin-22 induces hepatic stellate cell senescence and restricts liver fibrosis in mice. Hepatology 56, 1150–1159 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Ritschka, B. et al. The senescence-associated secretory phenotype induces cellular plasticity and tissue regeneration. Genes Dev. 31, 172–183 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Mosteiro, L., Pantoja, C., de Martino, A. & Serrano, M. Senescence promotes in vivo reprogramming through p16INK4a and IL-6. Aging Cell 17, 12711–12722 (2018).

    Google Scholar 

  14. 14.

    Hernandez-Segura, A., Nehme, J. & Demaria, M. Hallmarks of cellular senescence. Trends Cell Biol. 28, 436–453 (2018).

    CAS  Google Scholar 

  15. 15.

    Sutherland, R. L. & Musgrove, E. A. CDK inhibitors as potential breast cancer therapeutics: new evidence for enhanced efficacy in ER+ disease. Breast Cancer Res. 11, 112–113 (2009).

    PubMed  PubMed Central  Google Scholar 

  16. 16.

    Finn, R. S. et al. PD 0332991, a selective cyclin D kinase 4/6 inhibitor, preferentially inhibits proliferation of luminal estrogen receptor-positive human breast cancer cell lines in vitro. Breast Cancer Res. 11, R77–R90 (2009).

    PubMed  PubMed Central  Google Scholar 

  17. 17.

    Kirkland, J. L., Tchkonia, T., Zhu, Y., Niedernhofer, L. J. & Robbins, P. D. The clinical potential of senolytic drugs. J. Am. Geriatr. Soc. 65, 2297–2301 (2017).

    PubMed  PubMed Central  Google Scholar 

  18. 18.

    Myrianthopoulos, V. The emerging field of senotherapeutic drugs. Future Med. Chem. 10, 2369–2372 (2018).

    CAS  Google Scholar 

  19. 19.

    Rodier, F. et al. Persistent DNA damage signalling triggers senescence-associated inflammatory cytokine secretion. Nat. Cell Biol. 11, 973–979 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Sagiv, A. et al. NKG2D ligands mediate immunosurveillance of senescent cells. Aging 8, 328–344 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Kang, T.-W. et al. Senescence surveillance of pre-malignant hepatocytes limits liver cancer development. Nature 479, 547–551 (2011).

    CAS  Google Scholar 

  22. 22.

    Muñoz-Espín, D. & Serrano, M. Cellular senescence: from physiology to pathology. Nat. Rev. Mol. Cell. Biol. 15, 482–496 (2014).

    Google Scholar 

  23. 23.

    Demaria, M. et al. An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. Dev. Cell 31, 722–733 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Li, C. et al. Programmed cell senescence in skeleton during late puberty. Nat. Commun. 8, 1312 (2017).

    PubMed  PubMed Central  Google Scholar 

  25. 25.

    Storer, M. et al. Senescence is a developmental mechanism that contributes to embryonic growth and patterning. Cell 155, 1119–1130 (2013).

    CAS  Google Scholar 

  26. 26.

    O’Brien, W., Stenman, G. & Sager, R. Suppression of tumor growth by senescence in virally transformed human fibroblasts. Proc. Natl Acad. Sci. USA 83, 8659–8663 (1986).

    Google Scholar 

  27. 27.

    Muñoz-Espín, D. et al. Programmed cell senescence during mammalian embryonic development. Cell 155, 1104–1118 (2013).

    Google Scholar 

  28. 28.

    Sultana, Z., Maiti, K., Dedman, L. & Smith, R. Is there a role for placental senescence in the genesis of obstetric complications and fetal growth restriction? Am. J. Obstet. Gynecol. 218, S762–S773 (2018).

    Google Scholar 

  29. 29.

    Schafer, M. J., Miller, J. D. & LeBrasseur, N. K. Cellular senescence: implications for metabolic disease. Mol. Cell. Endocrinol. 455, 93–102 (2017).

    CAS  Google Scholar 

  30. 30.

    Khosla, S., Farr, J. N. & Kirkland, J. L. Inhibiting cellular senescence: a new therapeutic paradigm for age-related osteoporosis. J. Clin. Endocrinol. Metab. 103, 1282–1290 (2018).

    PubMed  PubMed Central  Google Scholar 

  31. 31.

    Farr, J. N. et al. Targeting cellular senescence prevents age-related bone loss in mice. Nat. Med. 23, 1072–1079 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Schafer, M. J. et al. Cellular senescence mediates fibrotic pulmonary disease. Nat. Commun. 8, 14532 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Wandrer, F. et al. Senescence mirrors the extent of liver fibrosis in chronic hepatitis C virus infection. Aliment. Pharmacol. Ther. 48, 270–280 (2018).

    CAS  Google Scholar 

  34. 34.

    Sun, R. et al. Senescence as a novel mechanism involved in β-adrenergic receptor mediated cardiac hypertrophy. PLoS One 12, e0182668 (2017).

    PubMed  PubMed Central  Google Scholar 

  35. 35.

    Baker, D. J. & Petersen, R. C. Cellular senescence in brain aging and neurodegenerative diseases: evidence and perspectives. J. Clin. Invest. 128, 1208–1216 (2018).

    PubMed  PubMed Central  Google Scholar 

  36. 36.

    Yang, H. & Fogo, A. B. Cell senescence in the aging kidney. J. Am. Soc. Nephrol. 21, 1436–1439 (2010).

    Google Scholar 

  37. 37.

    Jimenez, R. et al. Replicative senescence in patients with chronic kidney failure. Kidney Int. 68, S11–S15 (2005).

    Google Scholar 

  38. 38.

    He, S. & Sharpless, N. E. Senescence in health and disease. Cell 169, 1000–1011 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Krizhanovsky, V. et al. Senescence of activated stellate cells limits liver fibrosis. Cell 134, 657–667 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Ogrodnik, M. et al. Cellular senescence drives age-dependent hepatic steatosis. Nat. Commun. 8, 15691 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Tavana, O. & Zhu, C. Too many breaks (brakes): pancreatic β-cell senescence leads to diabetes. Cell Cycle 10, 2471–2484 (2011).

    CAS  Google Scholar 

  42. 42.

    Krishnamurthy, J. et al. p16INK4a induces an age-dependent decline in islet regenerative potential. Nature 443, 453–457 (2006).

    CAS  Google Scholar 

  43. 43.

    Helman, A. et al. p16Ink4a-induced senescence of pancreatic beta cells enhances insulin secretion. Nat. Med. 22, 412–420 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Cindrova-Davies, T., Fogarty, N. M. E., Jones, C. J. P., Kingdom, J. & Burton, G. J. Evidence of oxidative stress-induced senescence in mature, post-mature and pathological human placentas. Placenta 68, 15–22 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Cox, L. S. & Redman, C. The role of cellular senescence in ageing of the placenta. Placenta 52, 139–145 (2017).

    CAS  Google Scholar 

  46. 46.

    Collado, M. et al. Senescence in premalignant tumours. Nature 436, 642 (2005).

    CAS  Google Scholar 

  47. 47.

    Chen, Z. et al. Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature 436, 725–730 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Michaloglou, C. et al. BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature 436, 720–724 (2005).

    CAS  Google Scholar 

  49. 49.

    Braig, M. et al. Oncogene-induced senescence as an initial barrier in lymphoma development. Nature 436, 660–665 (2005).

    CAS  Google Scholar 

  50. 50.

    Schosserer, M., Grillari, J. & Breitenbach, M. The dual role of cellular senescence in developing tumors and their response to cancer therapy. Front. Oncol. 7, 2781–2793 (2017).

    Google Scholar 

  51. 51.

    Wieland, E. et al. Endothelial Notch1 activity facilitates metastasis. Cancer Cell 31, 355–367 (2017).

    CAS  Google Scholar 

  52. 52.

    Milanovic, M. et al. Senescence-associated reprogramming promotes cancer stemness. Nature 553, 96–100 (2017).

    Google Scholar 

  53. 53.

    Parrinello, S., Coppe, J.-P., Krtolica, A. & Campisi, J. Stromal–epithelial interactions in aging and cancer: senescent fibroblasts alter epithelial cell differentiation. J. Cell Sci. 118, 485–496 (2005).

  54. 54.

    López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. The hallmarks of aging. Cell 153, 1194–1217 (2013).

    PubMed  PubMed Central  Google Scholar 

  55. 55.

    Baker, D. J. et al. Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature 479, 232–236 (2011). In this work, the authors developed an ingenious genetic procedure to kill cells with high levels of p16. These cells overlap to a large extent with senescent cells. The authors observed that elimination of p16-positive cells improved the healthspan and extended the longevity of mice.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Baker, D. J. et al. Naturally occurring p16Ink4a-positive cells shorten healthy lifespan. Nature 530, 184–189 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Hernandez-Segura, A. et al. Unmasking transcriptional heterogeneity in senescent cells. Curr. Biol. 27, 2652–2660 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Wiley, C. D. et al. Analysis of individual cells identifies cell-to-cell variability following induction of cellular senescence. Aging Cell 16, 1043–1050 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Petrova, N. V., Velichko, A. K., Razin, S. V. & Kantidze, O. L. Small molecule compounds that induce cellular senescence. Aging Cell 15, 999–1017 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Marusyk, A., Wheeler, L. J., Mathews, C. K. & DeGregori, J. p53 mediates senescence-like arrest induced by chronic replicational stress. Mol. Cell. Biol. 27, 5336–5351 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. 61.

    Yeo, E. J. et al. Senescence-like changes induced by hydroxyurea in human diploid fibroblasts. Exp. Gerontol. 35, 553–571 (2000).

    CAS  Google Scholar 

  62. 62.

    Sumikawa, E., Matsumoto, Y., Sakemura, R., Fujii, M. & Ayusawa, D. Prolonged unbalanced growth induces cellular senescence markers linked with mechano transduction in normal and tumor cells. Biochem. Biophys. Res. Commun. 335, 558–565 (2005).

    CAS  Google Scholar 

  63. 63.

    Michishita, E. et al. 5-Bromodeoxyuridine induces senescence-like phenomena in mammalian cells regardless of cell type or species. J. Biochem. 126, 1052–1059 (1999).

    CAS  Google Scholar 

  64. 64.

    Modrak, D. E., Leon, E., Goldenberg, D. M. & Gold, D. V. Ceramide regulates gemcitabine-induced senescence and apoptosis in human pancreatic cancer cell lines. Mol. Cancer Res. 7, 890–896 (2009).

    CAS  Google Scholar 

  65. 65.

    Huang, M., Whang, P., Lewicki, P. & Mitchell, B. S. Cyclopentenyl cytosine induces senescence in breast cancer cells through the nucleolar stress response and activation of p53. Mol. Pharmacol. 80, 40–48 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. 66.

    Chang, B. D. et al. A senescence-like phenotype distinguishes tumor cells that undergo terminal proliferation arrest after exposure to anticancer agents. Cancer Res. 59, 3761–3767 (1999).

    CAS  Google Scholar 

  67. 67.

    te Poele, R. H., Okorokov, A. L., Jardine, L., Cummings, J. & Joel, S. P. DNA damage is able to induce senescence in tumor cells in vitro and in vivo. Cancer Res. 62, 1876–1883 (2002).

    Google Scholar 

  68. 68.

    Mansilla, S., Piña, B. & Portugal, J. Daunorubicin-induced variations in gene transcription: commitment to proliferation arrest, senescence and apoptosis. Biochem. J. 372, 703–711 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69.

    Coppé, J.-P. et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol. 6, e301 (2008).

    PubMed  PubMed Central  Google Scholar 

  70. 70.

    Han, Z. et al. Role of p21 in apoptosis and senescence of human colon cancer cells treated with camptothecin. J. Biol. Chem. 277, 17154–17160 (2002).

    CAS  Google Scholar 

  71. 71.

    Wang, X. et al. Evidence of cisplatin-induced senescent-like growth arrest in nasopharyngeal carcinoma cells. Cancer Res. 58, 5019–5022 (1998).

    CAS  Google Scholar 

  72. 72.

    Robles, S. J. & Adami, G. R. Agents that cause DNA double strand breaks lead to p16INK4a enrichment and the premature senescence of normal fibroblasts. Oncogene 16, 1113–1123 (1998).

    CAS  Google Scholar 

  73. 73.

    Hirose, Y., Berger, M. S. & Pieper, R. O. p53 effects both the duration of G2/M arrest and the fate of temozolomide-treated human glioblastoma cells. Cancer Res. 61, 1957–1963 (2001).

    CAS  Google Scholar 

  74. 74.

    Zhou, J.-M. et al. Senescence and telomere shortening induced by novel potent G-quadruplex interactive agents, quindoline derivatives, in human cancer cell lines. Oncogene 25, 503–511 (2006).

    CAS  Google Scholar 

  75. 75.

    Huang, F.-C., Chang, C.-C., Wang, J.-M., Chang, T.-C. & Lin, J.-J. Induction of senescence in cancer cells by the G-quadruplex stabilizer, BMVC4, is independent of its telomerase inhibitory activity. Br. J. Pharmacol. 167, 393–406 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. 76.

    Müller, S. et al. Pyridostatin analogues promote telomere dysfunction and long-term growth inhibition in human cancer cells. Org. Biomol. Chem. 10, 6537–6546 (2012).

    PubMed  PubMed Central  Google Scholar 

  77. 77.

    Riou, J. F. et al. Cell senescence and telomere shortening induced by a new series of specific G-quadruplex DNA ligands. Proc. Natl Acad. Sci. USA 99, 2672–2677 (2002).

    CAS  Google Scholar 

  78. 78.

    Marconett, C. N. et al. Indole-3-carbinol downregulation of telomerase gene expression requires the inhibition of estrogen receptor-alpha and Sp1 transcription factor interactions within the hTERT promoter and mediates the G1 cell cycle arrest of human breast cancer cells. Carcinogenesis 32, 1315–1323 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. 79.

    Zhao, L. & Wink, M. The β-carboline alkaloid harmine inhibits telomerase activity of MCF-7 cells by down-regulating hTERT mRNA expression accompanied by an accelerated senescent phenotype. PeerJ 1, e174 (2013).

    PubMed  PubMed Central  Google Scholar 

  80. 80.

    Vogt, M., Haggblom, C., Yeargin, J., Christiansen-Weber, T. & Haas, M. Independent induction of senescence by p16 INK4a and p21 CIP1 in spontaneously immortalized human fibroblasts. Cell Growth Differ. 9, 139–146 (1998).

    CAS  Google Scholar 

  81. 81.

    Kastenhuber, E. R. & Lowe, S. W. Putting p53 in context. Cell 170, 1062–1078 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. 82.

    Efeyan, A. et al. Induction of p53-dependent senescence by the mdm2 antagonist nutlin-3a in mouse cells of fibroblast origin. Cancer Res. 67, 7350–7357 (2007).

    CAS  Google Scholar 

  83. 83.

    Ling, X. et al. FL118 Induces p53-dependent senescence in colorectal cancer cells by promoting degradation of MdmX. Cancer Res. 74, 7487–7497 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. 84.

    Leontieva, O. V. & Blagosklonny, M. V. CDK4/6-inhibiting drug substitutes for p21 and p16 in senescence: duration of cell cycle arrest and MTOR activity determine geroconversion. Cell Cycle 12, 3063–3069 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. 85.

    Park, J.-Y., Park, S.-H. & Weiss, R. H. Disparate effects of roscovitine on renal tubular epithelial cell apoptosis and senescence: implications for autosomal dominant polycystic kidney disease. Am. J. Nephrol. 29, 509–515 (2009).

    CAS  Google Scholar 

  86. 86.

    Ray, P. D., Huang, B.-W. & Tsuji, Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell. Signal. 24, 981–990 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. 87.

    Naylor, R. M., Baker, D. J. & van Deursen, J. M. Senescent cells: a novel therapeutic target for aging and age-related diseases. Clin. Pharmacol. Ther. 93, 105–116 (2013).

    CAS  Google Scholar 

  88. 88.

    Sikora, E., Mosieniak, G. & Sliwinska, M. A. Morphological and functional characteristic of senescent cancer cells. Curr. Drug Targets 17, 377–387 (2016).

    CAS  Google Scholar 

  89. 89.

    Funayama, R. & Ishikawa, F. Cellular senescence and chromatin structure. Chromosoma 116, 431–440 (2007).

    Google Scholar 

  90. 90.

    Zhang, R. & Adams, P. D. Heterochromatin and its relationship to cell senescence and cancer therapy. Cell Cycle 6, 784–789 (2007).

    CAS  Google Scholar 

  91. 91.

    Goldstein, S., Ballantyne, S. R., Robson, A. L. & Moerman, E. J. Energy metabolism in cultured human fibroblasts during aging in vitro. J. Cell. Physiol. 112, 419–424 (1982).

    CAS  Google Scholar 

  92. 92.

    Bittles, A. H. & Harper, N. Increased glycolysis in ageing cultured human diploid fibroblasts. Biosci. Rep. 4, 751–756 (1984).

    CAS  Google Scholar 

  93. 93.

    Muggleton-Harris, A. L. & Defuria, R. Age-dependent metabolic changes in cultured human fibroblasts. In Vitro Cell. Dev. Biol. 21, 271–276 (1985).

    CAS  Google Scholar 

  94. 94.

    Childs, B. G., Baker, D. J., Kirkland, J. L., Campisi, J. & van Deursen, J. M. Senescence and apoptosis: dueling or complementary cell fates? EMBO Rep. 15, 1139–1153 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. 95.

    Muñoz-Espín, D. et al. A versatile drug delivery system targeting senescent cells. EMBO Mol. Med. 10, e9355 (2018). This work reports a silica-based nanoscaffold that releases its cargo preferentially in senescent cells. It demonstrates a principle that could be applied to other nanoformulations.

    PubMed  PubMed Central  Google Scholar 

  96. 96.

    Takahashi, A., Ohtani, N. & Hara, E. Irreversibility of cellular senescence: dual roles of p16INK4a/Rb-pathway in cell cycle control. Cell Div. 2, 10–15 (2007).

    PubMed  PubMed Central  Google Scholar 

  97. 97.

    Haaf, T. High-resolution analysis of DNA replication in released chromatin fibers containing 5-bromodeoxyuridine. Biotechniques 21, 1050–1054 (1996).

    CAS  Google Scholar 

  98. 98.

    Gratzner, H. G. Monoclonal antibody to 5-bromo- and 5-iododeoxyuridine: a new reagent for detection of DNA replication. Science 218, 474–475 (1982).

    CAS  Google Scholar 

  99. 99.

    Davalos, A. R. et al. p53-dependent release of alarmin HMGB1 is a central mediator of senescent phenotypes. J. Cell Biol. 201, 613–629 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. 100.

    Mather, K. A., Jorm, A. F., Parslow, R. A. & Christensen, H. Is telomere length a biomarker of aging? A review. J. Gerontol. A 66, 202–213 (2011).

    Google Scholar 

  101. 101.

    Zietzer, A. & Hillmeister, P. Leucocyte telomere length as marker for cardiovascular ageing. Acta Physiol. 211, 251–256 (2014).

    CAS  Google Scholar 

  102. 102.

    Bekaert, S., De Meyer, T. & Van Oostveldt, P. Telomere attrition as ageing biomarker. Anticancer Res. 25, 3011–3021 (2005).

    CAS  Google Scholar 

  103. 103.

    Todaro, G. J. & Green, H. Quantitative studies of the growth of mouse embryo cells in culture and their development into established lines. J. Cell Biol. 17, 299–313 (1963).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. 104.

    Blasco, M. A. et al. Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell 91, 25–34 (1997).

    CAS  Google Scholar 

  105. 105.

    Blackburn, E. H. Structure and function of telomeres. Nature 350, 569–573 (1991).

    CAS  Google Scholar 

  106. 106.

    Jaskelioff, M. et al. Telomerase reactivation reverses tissue degeneration in aged telomerase-deficient mice. Nature 469, 102–106 (2011).

    CAS  Google Scholar 

  107. 107.

    Ourliac-Garnier, I. & Londoño-Vallejo, A. Telomere length analysis by quantitative fluorescent in situ hybridization (Q-FISH). Methods Mol. Biol. 735, 21–31 (2011).

    CAS  Google Scholar 

  108. 108.

    Baerlocher, G. M., Vulto, I., de Jong, G. & Lansdorp, P. M. Flow cytometry and FISH to measure the average length of telomeres (flow FISH). Nat. Protoc. 1, 2365–2376 (2006).

    CAS  Google Scholar 

  109. 109.

    Martens, U. M. et al. Measurement of telomere length in haematopoietic cells using in situ hybridization techniques. Biochem. Soc. Trans. 28, 245–250 (2000).

    CAS  Google Scholar 

  110. 110.

    Kelesidis, T. & Schmid, I. Assessment of telomere length, phenotype, and DNA content. Curr. Protoc. Cytom. 79, 1–23 (2017).

    Google Scholar 

  111. 111.

    Brugat, T., Nguyen-Khac, F., Grelier, A., Merle-Béral, H. & Delic, J. Telomere dysfunction-induced foci arise with the onset of telomeric deletions and complex chromosomal aberrations in resistant chronic lymphocytic leukemia cells. Blood 116, 239–249 (2010).

    CAS  Google Scholar 

  112. 112.

    Krtolica, A., Parrinello, S., Lockett, S., Desprez, P. Y. & Campisi, J. Senescent fibroblasts promote epithelial cell growth and tumorigenesis: a link between cancer and aging. Proc. Natl Acad. Sci. USA 98, 12072–12077 (2001). This paper was the first to report that senescent cells secrete soluble factors with biological activity on non-senescent neighbour cells. In this particular case, the authors found that the secretome of senescent cells stimulates the tumorigenic properties of cancer cells.

    CAS  Google Scholar 

  113. 113.

    Kuilman, T. et al. Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network. Cell 133, 1019–1031 (2008).

    CAS  Google Scholar 

  114. 114.

    Acosta, J. C. et al. Chemokine signaling via the CXCR2 receptor reinforces senescence. Cell 133, 1006–1018 (2008).

    CAS  Google Scholar 

  115. 115.

    Campisi, J., Andersen, J. K., Kapahi, P. & Melov, S. Cellular senescence: a link between cancer and age-related degenerative disease? Semin. Cancer Biol. 21, 354–359 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. 116.

    Acosta, J. C. et al. A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nat. Cell Biol. 15, 978–990 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. 117.

    Jung, T., Bader, N. & Grune, T. Lipofuscin: formation, distribution, and metabolic consequences. Ann. NY Acad. Sci. 1119, 97–111 (2007).

    CAS  Google Scholar 

  118. 118.

    Katz, M. L., Robinson, W. G., Herrmann, R. K., Groome, A. B. & Bieri, J. G. Lipofuscin accumulation resulting from senescence and vitamin E deficiency: spectral properties and tissue distribution. Mech. Ageing Dev. 25, 149–159 (1984).

    CAS  Google Scholar 

  119. 119.

    Georgakopoulou, E. et al. Specific lipofuscin staining as a novel biomarker to detect replicative and stress-induced senescence. A method applicable in cryo-preserved and archival tissues. Aging 5, 37–50 (2012).

    PubMed  PubMed Central  Google Scholar 

  120. 120.

    Gatenby, J. B. & Moussa, T. A. The sudan black B technique in cytology. J. Microsc. Soc. 69, 72–75 (1949).

    CAS  Google Scholar 

  121. 121.

    Rasmussen, G. L. A method of staining the statoacoustic nerve in bulk with Sudan black B. Anat. Rec. 139, 465–469 (1961).

    CAS  Google Scholar 

  122. 122.

    Jung, T., Höhn, A. & Grune, T. Lipofuscin: detection and quantification by microscope techniques. Methods Mol. Biol. 594, 173–193 (2010).

    CAS  Google Scholar 

  123. 123.

    Evangelou, K. et al. Robust, universal biomarker assay to detect senescent cells in biological specimens. Aging Cell 16, 192–197 (2017).

    CAS  Google Scholar 

  124. 124.

    Dimri, G. P. et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc. Natl Acad. Sci. USA 92, 9363–9367 (1995). This paper was the first to report a useful marker of senescence, namely, senescence-associated β-galactosidase (SA-β-Gal). Many current methods to detect senescence are based on their elevated SA-β-Gal.

    CAS  Google Scholar 

  125. 125.

    Biran, A. et al. Quantitative identification of senescent cells in aging and disease. Aging Cell 16, 661–671 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. 126.

    Rotman, B. Measurement of activity of single molecules of β-d-galactosidase. Proc. Natl Acad. Sci. USA 47, 1981–1991 (1961).

    CAS  Google Scholar 

  127. 127.

    Rotman, B., Zderic, J. A. & Edelstein, M. Fluorogenic substrates for β-d-galactosidases and phosphatases derived from flurescein (3,6-dihydroxyfluoran) and its monomethylether. Proc. Natl Acad. Sci. USA 50, 1–6 (1963).

    CAS  Google Scholar 

  128. 128.

    Strachan, R., Wood, J. & Hirschmann, R. Synthesis and properties of 4-methyl-2-oxo-1,2-benzopyran-7-yl β-d-galactoside (galactoside of 4-methylumbelliferone). J. Org. Chem. 27, 1074–1075 (1962).

    CAS  Google Scholar 

  129. 129.

    Zhang, J. et al. A novel near-infrared fluorescent probe for sensitive detection of β-galactosidase in living cells. Anal. Chim. Acta 968, 97–104 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. 130.

    Aizawa, K. Studien über Carbohydrasen, I. I. Die fermentative Hydrolyse des p-nitrophenol-β-galactoside. Enzymologia 6, 321–324 (1939).

    CAS  Google Scholar 

  131. 131.

    Horwitz, J. P. et al. Substrates for cytochemical demonstration of enzyme activity. I. Some substituted 3-indolyl-β-d-glycopyranosides. J. Med. Chem. 7, 574–575 (1964).

    CAS  Google Scholar 

  132. 132.

    Yang, N.-C. & Hu, M.-L. The limitations and validities of senescence-associated β-galactosidase activity as an aging marker for human foreskin fibroblast Hs68 cells. Exp. Gerontol. 40, 813–819 (2005).

    CAS  Google Scholar 

  133. 133.

    Calado, R. T. & Young, N. S. Telomere diseases. N. Engl. J. Med. 361, 2353–2365 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. 134.

    Chatterjee, S. K., Bhattacharya, M. & Barlow, J. J. Glycosyltransferase and glycosidase activities in ovarian cancer patients. Cancer Res. 39, 1943–1951 (1979).

    CAS  Google Scholar 

  135. 135.

    Knas, M. et al. The profile of lysosomal exoglycosidases in replicative and stress-induced senescence in early passage human fibroblasts. Folia Histochem. Cytobiol. 50, 220–227 (2012).

    CAS  Google Scholar 

  136. 136.

    Hildebrand, D. et al. α-Fucosidase as a novel convenient biomarker for cellular senescence. Cell Cycle 12, 1922–1927 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. 137.

    Esterly, J. R., Standen, A. C. & Pearson, B. The histochemical demonstration of intestinal β-d-fucosidase with 5-bromo-4-chloroindole-3-yl-β-d-fucopyranoside. J. Histochem. Cytochem. 15, 470–474 (1967).

    CAS  Google Scholar 

  138. 138.

    Rushton, A. R. & Dawson, G. Glycosphingolipid β-galactosidases of cultured mammalian cells: characterization of the enzymes from mouse cell line LMTK− and human lesch-nyhan fibroblasts. Biochim. Biophys. Acta 388, 92–105 (1975).

    CAS  Google Scholar 

  139. 139.

    Gey, C. & Seeger, K. Metabolic changes during cellular senescence investigated by proton NMR-spectroscopy. Mech. Ageing Dev. 134, 130–138 (2013).

    CAS  Google Scholar 

  140. 140.

    Campisi, J. Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell 120, 513–522 (2005).

    CAS  Google Scholar 

  141. 141.

    Campisi, J. & d’Adda di Fagagna, F. Cellular senescence: when bad things happen to good cells. Nat. Rev. Mol. Cell. Biol. 8, 729–740 (2007).

    CAS  Google Scholar 

  142. 142.

    Krishnamurthy, J. et al. Ink4a/Arf expression is a biomarker of aging. J. Clin. Invest. 114, 1299–1307 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. 143.

    Vandenberk, B., Brouwers, B., Hatse, S. & Wildiers, H. p16INK4a: a central player in cellular senescence and a promising aging biomarker in elderly cancer patients. J. Geriatr. Oncol. 2, 259–269 (2011).

    Google Scholar 

  144. 144.

    Serrano, M., Hannon, G. J. & Beach, D. A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature 366, 704–707 (1993).

    CAS  Google Scholar 

  145. 145.

    Serrano, M., Lin, A. W., McCurrach, M. E., Beach, D. & Lowe, S. W. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88, 593–602 (1997).

    CAS  Google Scholar 

  146. 146.

    Beauséjour, C. M. et al. Reversal of human cellular senescence: roles of the p53 and p16 pathways. EMBO J. 22, 4212–4222 (2003).

    PubMed  PubMed Central  Google Scholar 

  147. 147.

    Rheinwald, J. G. et al. A two-stage, p16INK4A- and p53-dependent keratinocyte senescence mechanism that limits replicative potential independent of telomere status. Mol. Cell. Biol. 22, 5157–5172 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. 148.

    Herbig, U., Jobling, W. A., Chen, B. P. C., Chen, D. J. & Sedivy, J. M. Telomere shortening triggers senescence of human cells through a pathway involving ATM, p53, and p21CIP1, but not p16INK4a. Mol. Cell 14, 501–513 (2004).

    CAS  Google Scholar 

  149. 149.

    Hall, B. M. et al. Aging of mice is associated with p16(Ink4a)- and β-galactosidase-positive macrophage accumulation that can be induced in young mice by senescent cells. Aging 8, 1294–1315 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. 150.

    Yamakoshi, K. et al. Real-time in vivo imaging of p16Ink4a reveals cross talk with p53. J. Cell Biol. 186, 393–407 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. 151.

    Lozano-Torres, B. et al. An OFF–ON two-photon fluorescent probe for tracking cell senescence in vivo. J. Am. Chem. Soc. 139, 8808–8811 (2017).

    CAS  Google Scholar 

  152. 152.

    Bonten, E. J., Annunziata, I. & d’Azzo, A. Lysosomal multienzyme complex: pros and cons of working together. Cell. Mol. Life Sci. 71, 2017–2032 (2014).

    CAS  Google Scholar 

  153. 153.

    Soto-Gamez, A. & Demaria, M. Therapeutic interventions for aging: the case of cellular senescence. Drug Discov. Today 22, 786–795 (2017).

    CAS  Google Scholar 

  154. 154.

    Jeon, O. H. et al. Local clearance of senescent cells attenuates the development of post-traumatic osteoarthritis and creates a pro-regenerative environment. Nat. Med. 23, 775–781 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. 155.

    Baker, D. J. et al. Opposing roles for p16Ink4a and p19Arf in senescence and ageing caused by BubR1 insufficiency. Nat. Cell Biol. 10, 825–836 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. 156.

    Childs, B. G. et al. Senescent intimal foam cells are deleterious at all stages of atherosclerosis. Science 354, 472–477 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. 157.

    Justice, J. N. et al. Senolytics in idiopathic pulmonary fibrosis: results from a first-in-human, open-label, pilot study. EBioMedicine 40, 554–563 (2019).

    PubMed  PubMed Central  Google Scholar 

  158. 158.

    US National Library of Medicine. (2019).

  159. 159.

    Zhu, Y. et al. The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell 14, 644–658 (2015). This was the first demonstration that senescent cells are hypersensitive to certain drugs, now known as senolytic drugs. In this pioneering work, the authors discovered that the combination of dasatinib and quercetin is senolytic.

    CAS  PubMed  PubMed Central  Google Scholar 

  160. 160.

    Fuhrmann-Stroissnigg, H. et al. Identification of HSP90 inhibitors as a novel class of senolytics. Nat. Commun. 8, 422 (2017).

    PubMed  PubMed Central  Google Scholar 

  161. 161.

    Kim, H.-N. et al. DNA damage and senescence in osteoprogenitors expressing Osx1 may cause their decrease with age. Aging Cell 16, 693–703 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. 162.

    Chang, J. et al. Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. Nat. Med. 22, 78–83 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. 163.

    Demaria, M. et al. Cellular senescence promotes adverse effects of chemotherapy and cancer relapse. Cancer Discov. 7, 165–176 (2017).

    CAS  Google Scholar 

  164. 164.

    Bussian, T. J. et al. Clearance of senescent glial cells prevents tau-dependent pathology and cognitive decline. Nature 562, 578–582 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. 165.

    Yosef, R. et al. Directed elimination of senescent cells by inhibition of BCL-W and BCL-XL. Nat. Commun. 7, 11190–11201 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. 166.

    Zhu, Y. et al. New agents that target senescent cells: the flavone, fisetin, and the BCL-XL inhibitors, A1331852 and A1155463. Aging 9, 1–9 (2017).

    Google Scholar 

  167. 167.

    Baar, M. P. et al. Targeted apoptosis of senescent cells restores tissue homeostasis in response to chemotoxicity and aging. Cell 169, 132–147 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. 168.

    Roos, C. M. et al. Chronic senolytic treatment alleviates established vasomotor dysfunction in aged or atherosclerotic mice. Aging Cell 15, 973–977 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. 169.

    Xu, M. et al. Senolytics improve physical function and increase lifespan in old age. Nat. Med. 24, 1246–1256 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. 170.

    Wang, Y. et al. Discovery of piperlongumine as a potential novel lead for the development of senolytic agents. Aging 8, 2915–2926 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. 171.

    Zhang, X. X. et al. Oxidation resistance 1 is a novel senolytic target. Aging Cell 17, 12780 (2018).

    Google Scholar 

  172. 172.

    Boskovic, Z. V., Hussain, M. M., Adams, D. J., Dai, M. & Schreiber, S. L. Synthesis of piperlogs and analysis of their effects on cells. Tetrahedron 69, 7559–7567 (2013).

    CAS  Google Scholar 

  173. 173.

    Liu, X. et al. Senolytic activity of piperlongumine analogues: synthesis and biological evaluation. Bioorg. Med. Chem. 26, 3925–3938 (2018).

    CAS  Google Scholar 

  174. 174.

    Adams, D. J. et al. Synthesis, cellular evaluation, and mechanism of action of piperlongumine analogs. Proc. Natl Acad. Sci. USA 109, 15115–15120 (2012).

    CAS  Google Scholar 

  175. 175.

    He, Y., Li, W., Hu, G., Sun, H. & Kong, Q. Bioactivities of EF24, a novel curcumin analog: a review. Front. Oncol. 8, 614–622 (2018).

    PubMed  PubMed Central  Google Scholar 

  176. 176.

    Li, W., He, Y., Zhang, R., Zheng, G. & Zhou, D. The curcumin analog EF24 is a novel senolytic agent. Aging 11, 771–782 (2019).

    PubMed  PubMed Central  Google Scholar 

  177. 177.

    Samaraweera, L., Adomako, A., Rodriguez-Gabin, A. & McDaid, H. M. A novel indication for panobinostat as a senolytic drug in NSCLC and HNSCC. Sci. Rep. 7, 1900 (2017).

    PubMed  PubMed Central  Google Scholar 

  178. 178.

    Ozsvari, B., Nuttall, J. R., Sotgia, F. & Lisanti, M. P. Azithromycin and roxithromycin define a new family of “senolytic” drugs that target senescent human fibroblasts. Aging 10, 3294–3307 (2018).

    PubMed  PubMed Central  Google Scholar 

  179. 179.

    Bernardos, A. et al. Enzyme-responsive controlled release using mesoporous silica supports capped with lactose. Angew. Chem. Int. Ed. 48, 5884–5887 (2009).

    CAS  Google Scholar 

  180. 180.

    Agostini, A. et al. Targeted cargo delivery in senescent cells using capped mesoporous silica nanoparticles. Angew. Chem. Int. Ed. 51, 10556–10560 (2012).

    CAS  Google Scholar 

  181. 181.

    Niedernhofer, L. J. & Robbins, P. D. Senotherapeutics for healthy ageing. Nat. Rev. Drug Discov. 17, 377 (2018).

    CAS  Google Scholar 

  182. 182.

    Harrison, D. E. et al. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 460, 392–395 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. 183.

    Herranz, N. et al. mTOR regulates MAPKAPK2 translation to control the senescence-associated secretory phenotype. Nat. Cell Biol. 17, 1205–1217 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. 184.

    Laberge, R.-M. et al. MTOR regulates the pro-tumorigenic senescence-associated secretory phenotype by promoting IL1A translation. Nat. Cell Biol. 17, 1049–1061 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. 185.

    Thapa, R. K. et al. Progressive slowdown/prevention of cellular senescence by CD9-targeted delivery of rapamycin using lactose-wrapped calcium carbonate nanoparticles. Sci. Rep. 7, 43299 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. 186.

    Laberge, R.-M. et al. Glucocorticoids suppress selected components of the senescence-associated secretory phenotype. Aging Cell 11, 569–578 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. 187.

    Kang, H. T. et al. Chemical screening identifies ATM as a target for alleviating senescence. Nat. Chem. Biol. 13, 616–623 (2017).

    CAS  Google Scholar 

  188. 188.

    Harrison, D. E. et al. Acarbose, 17-α-estradiol, and nordihydroguaiaretic acid extend mouse lifespan preferentially in males. Aging Cell 13, 273–282 (2014).

    CAS  Google Scholar 

  189. 189.

    Liu, S. et al. Simvastatin suppresses breast cancer cell proliferation induced by senescent cells. Sci. Rep. 5, 17895 (2016).

    Google Scholar 

  190. 190.

    Freund, A., Patil, C. K. & Campisi, J. p38MAPK is a novel DNA damage response-independent regulator of the senescence-associated secretory phenotype. EMBO J. 30, 1536–1548 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. 191.

    Xu, M. et al. JAK inhibition alleviates the cellular senescence-associated secretory phenotype and frailty in old age. Proc. Natl Acad. Sci. USA 112, 6301–6310 (2015).

    Google Scholar 

  192. 192.

    Katz, M. L. & Robison, W. G. What is lipofuscin? Defining characteristics and differentiation from other autofluorescent lysosomal storage bodies. Arch. Gerontol. Geriatr. 34, 169–184 (2002).

    CAS  Google Scholar 

  193. 193.

    Burd, C. E. et al. Monitoring tumorigenesis and senescence in vivo with a p16 INK4a-luciferase model. Cell 152, 340–351 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  194. 194.

    Lim, H., Park, H. & Kim, H. P. Effects of flavonoids on senescence-associated secretory phenotype formation from bleomycin-induced senescence in BJ fibroblasts. Biochem. Pharmacol. 96, 337–348 (2015).

    CAS  Google Scholar 

Download references


R.M. laboratory members thank the financial support from the Spanish Government (projects MAT2015-64139-C4-1-R, RTI2018-100910-B-C41 and AGL2015-70235-C2-2-R) and the Generalitat Valenciana (project PROMETEO 2018/024). B.L-T. and A.E. are grateful to the Spanish Ministry of Economy for their PhD grants (FPU15/02707 and FPU17/05454). M.R. was holder of a “la Caixa”-Severo Ochoa PhD scholarship. Work in the laboratory of M.S. was funded by IRB and by grants from the Spanish Ministry of Economy (MINECO, SAF), the European Research Council (ERC Advanced Grant) and by “la Caixa” Foundation. M.O. thanks the financial support from SAF2017-84689-R project and MINECO/AEI/FEDER, UE. The IRB Barcelona is the recipient of a Severo Ochoa Award of Excellence from the MINECO. The funders had no role in the design, data collection, decision to publish or preparation of the manuscript.

Author information




All authors contributed equally to the preparation of this manuscript.

Corresponding authors

Correspondence to Mar Orzáez or Manuel Serrano or Ramón Martínez-Máñez.

Ethics declarations

Competing interests

The laboratory of R.M. and the laboratory of M.S. have had a research contract with Pfizer, Inc. on research not mentioned in this work. R.M. and M.S. are founders and shareholders of Senolytic Therapeutics, Inc. (USA) and Senolytic Therapeutics, S.L. (Spain). The remaining authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.



Regions at the ends of chromosomes that comprise repetitive DNA sequences. These regions protect the chromosome from deterioration and from the undesirable fusion with other chromosomes.


Proto-oncogenes are genes that have various functions in cellular proliferation and differentiation. Activating mutations in these genes or an increased copy number give rise to what is known as oncogenes that stimulate uncontrolled cell proliferation contributing to cancer progression.

Tumour suppressor genes

Genes that inhibit uncontrolled cell division in normal cells. Mutations that inactivate or reduce the function of tumour suppressor genes increase the risk of cancer.

Spindle stress

The spindle apparatus is a cytoskeletal structure that separates the chromosomes into daughter cells during cell division. Oxidative stress, monopolar spindle 1 kinase inhibition or heat shock induce the deformation of spindles and trigger mitotic abnormalities.

Nucleolar stress

The nucleolus is a subnuclear compartment responsible for ribosome biogenesis. The nucleolus senses different stress signals and coordinates the activation of p53, a protein involved in cell cycle arrest, DNA repair and apoptosis

Natural killer cells

(NK cells). NK cells are lymphocytes of the innate immune system that kill cancer cells and cells infected by viruses.


These cells form part of the innate immune system. They are phagocytes that can detect, engulf and eliminate pathogens and apoptotic cells.


These are the first white blood cells recruited to sites of inflammation. They are responsible for the phagocytosis of pathogens and the release of antimicrobial factors stored in their cytoplasmic granules.

CD4+ T lymphocytes

These cells function in the immune response by stimulating other immune cells to fight against infection.

CD8+ T lymphocytes

These cells (also known as cytotoxic T lymphocytes, CTLs) neutralize tumour and infected cells by injecting them with toxic enzymes, such as perforin and granzyme. They are commonly called CD8+, due to the presence of the CD8 membrane receptor which recognizes peptides of major histocompatibility complex (MHC) class I protein on infected cells.

B lymphocytes

White blood cells of the adaptive immune system responsible for the secretion of antibodies that recognize antigenic molecules of pathogens. They are also responsible for the presentation of antigens to T lymphocytes, the negative regulation of inflammatory responses and the regulation of responses to autoantigens.

Immune clearance

Elimination of microorganisms or various types of cells, such as senescent, infected or tumour cells, by the immune system.


The accumulation of extra fat in the liver, producing the disease that is also known as ‘fatty liver’.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lozano-Torres, B., Estepa-Fernández, A., Rovira, M. et al. The chemistry of senescence. Nat Rev Chem 3, 426–441 (2019).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing