Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Dirhodium tetracarboxylates as catalysts for selective intermolecular C–H functionalization

Abstract

C–H functionalization has become widely recognized as an exciting new strategy for the synthesis of complex molecular targets. Instead of relying on functional groups as the controlling elements of how molecules are assembled, this strategy offers an altogether different logic for organic synthesis. For this type of strategy to be successful, reagents and catalysts need to be developed that generate intermediates that are sufficiently reactive to functionalize C–H bonds but are still capable of distinguishing between the many different C–H bonds and other functional groups present in a molecule. The most well-established approaches have tended to use substrates that inherently have a favoured site for C–H functionalization or rely on intramolecular reactions to control where the reaction will occur. A challenging but potentially more versatile approach would be to use catalysts to control the site selectivity without requiring the influence of any directing group. One example that is capable of achieving such transformations is the C–H insertion chemistry of transient metal carbenes. Dirhodium tetracarboxylates have been shown to be especially effective catalysts for these reactions. This Review highlights the development of these dirhodium catalysts and illustrates their effectiveness to control both site-selective and stereoselective C–H functionalization of a wide variety of substrates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Strategies for site-selective C–H functionalization.
Fig. 2: Carbene-induced C–H insertion with diazoacetates.
Fig. 3: Rhodium-catalysed C–H functionalization with donor/acceptor carbenes.
Fig. 4: C–H functionalization as a strategy in organic synthesis.
Fig. 5: Chiral dirhodium catalysts for intermolecular C–H functionalization.
Fig. 6: Catalyst-controlled site-selective C–H functionalization.
Fig. 7: Selective functionalization of unactivated C–H bonds.
Fig. 8: Desymmetrization of alkyl-substituted cycloalkanes.
Fig. 9: Streamlined synthesis by sequential C–H functionalization reactions.

Similar content being viewed by others

References

  1. Wencel-Delord, J. & Glorius, F. C–H bond activation enables the rapid construction and late-stage diversification of functional molecules. Nat. Chem. 5, 369–375 (2013).

    Article  CAS  PubMed  Google Scholar 

  2. Godula, K. & Sames, D. C–H bond functionalization in complex organic synthesis. Science 312, 67–72 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Noisier, A. F. & Brimble, M. A. C–H functionalization in the synthesis of amino acids and peptides. Chem. Rev. 114, 8775–8806 (2014).

    Article  CAS  PubMed  Google Scholar 

  4. Gutekunst, W. R. & Baran, P. S. C–H functionalization logic in total synthesis. Chem. Soc. Rev. 40, 1976–1991 (2011).

    Article  CAS  PubMed  Google Scholar 

  5. Yamaguchi, J., Yamaguchi, A. D. & Itami, K. C–H bond functionalization: emerging synthetic tools for natural products and pharmaceuticals. Angew. Chem. Int. Ed. 51, 8960–9009 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Davies, H. M. L. & Morton, D. Recent advances in C–H functionalization. J. Org. Chem. 81, 343–350 (2016).

    Article  CAS  PubMed  Google Scholar 

  7. Davies, H. M. L. Du Bois, J. & Yu, J. Q. C–H functionalization in organic synthesis. Chem. Soc. Rev. 40, 1855–1856 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. Ye, J. & Lautens, M. Palladium-catalysed norbornene-mediated C–H functionalization of arenes. Nat. Chem. 7, 863–870 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. Davies, H. M. L. & Manning, J. R. Catalytic C–H functionalization by metal carbenoid and nitrenoid insertion. Nature 451, 417–424 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Karkas, M. D. Electrochemical strategies for C–H functionalization and C-N bond formation. Chem. Soc. Rev. 47, 5786–5865 (2018).

    Article  PubMed  Google Scholar 

  11. Revathi, L., Ravindar, L., Fang, W.-Y., Rakesh, K. P. & Qin, H.-L. Visible light-induced C−H bond functionalization: a critical review. Adv. Synth. Catal. 360, 4652–4698 (2018).

    Article  CAS  Google Scholar 

  12. Wei, Y., Hu, P., Zhang, M. & Su, W. Metal-catalyzed decarboxylative C–H functionalization. Chem. Rev. 117, 8864–8907 (2017).

    Article  CAS  PubMed  Google Scholar 

  13. Hofmann, A. W. Ueber die einwirkung des broms in alkalischer lösung auf die amine [German]. Ber. Deut. Chem. Ges. 16, 558–560 (1883).

    Article  Google Scholar 

  14. Löffler, K. Über eine neue bildungsweiseN-alkylierter pyrrolidine [German]. Ber. Deut. Chem. Ges. 43, 2035–2048 (1910).

    Article  Google Scholar 

  15. Corey, E. J. & Hertler, W. R. The synthesis of dihydroconessine. A method for functionalizing steroids at C18. J. Am. Chem. Soc. 80, 2903–2904 (1958).

    Article  CAS  Google Scholar 

  16. Buchschacher, P., Kalvoda, J., Arigoni, D. & Jeger, O. Direct introduction of a nitrogen function at C-18 in a steroid1. J. Am. Chem. Soc. 80, 2905–2906 (1958).

    Article  CAS  Google Scholar 

  17. Barton, D. H. R., Beaton, J. M., Geller, L. E. & Pechet, M. M. A. A new photochemical reaction. J. Am. Chem. Soc. 82, 2640 (1960).

    Article  CAS  Google Scholar 

  18. Wolff, M. E. Cyclization of N-halogenated amines (the Hofmann-Löffler reaction). Chem. Rev. 63, 55–64 (1963).

    Article  CAS  Google Scholar 

  19. Barton, D. H. R., Hesse, R. H., Pechet, M. M. & Smith, L. C. The mechanism of the Barton reaction. J. Chem. Soc. Perkin Trans. I 1, 1159–1165 (1979).

    Article  Google Scholar 

  20. Stateman, L. M., Nakafuku, K. M. & Nagib, D. A. Remote C–H functionalization via selective hydrogen atom transfer. Synthesis 50, 1569–1586 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jin, J. & MacMillan, D. W. C. Alcohols as alkylating agents in heteroarene C–H functionalization. Nature 525, 87–90 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Davies, H. M. L., Hansen, T. & Churchill, M. R. Catalytic asymmetric C–H activation of alkanes and tetrahydrofuran. J. Am. Chem. Soc. 122, 3063–3070 (2000).

    Article  CAS  Google Scholar 

  23. Davies, H. M. L., Antoulinakis, E. G. & Hansen, T. Catalytic asymmetric synthesis of syn-aldol products from intermolecular C−H insertions between allyl silyl ethers and methyl aryldiazoacetates. Org. Lett. 1, 383–386 (1999).

    Article  CAS  Google Scholar 

  24. Davies, H. M. L. & Antoulinakis, E. G. Asymmetric catalytic C−H activation applied to the synthesis of syn-aldol products. Org. Lett. 2, 4153–4156 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Chan, K.-H., Guan, X., Lo, V. K.-Y. & Che, C.-M. Elevated catalytic activity of ruthenium(II)-porphyrin-catalyzed carbene/nitrene transfer and insertion reactions with N-heterocyclic carbene ligands. Angew. Chem. Int. Ed. 53, 2982–2987 (2014).

    Article  CAS  PubMed  Google Scholar 

  26. Li, Y., Huang, J.-S., Zhou, Z.-Y., Che, C.-M. & You, X.-Z. Remarkably stable iron porphyrins bearing nonheteroatom-stabilized carbene or (alkoxycarbonyl)carbenes: isolation, X-ray crystal structures, and carbon atom transfer reactions with hydrocarbons. J. Am. Chem. Soc. 124, 13185–13193 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Suematsu, H. & Katsuki, T. Iridium(III) catalyzed diastereo- and enantioselective C–H bond functionalization. J. Am. Chem. Soc. 131, 14218–14219 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. Axten, J. M., Ivy, R., Krim, L. & Winkler, J. D. Enantioselective synthesis of d-threo-methylphenidate. J. Am. Chem. Soc. 121, 6511–6512 (1999).

    Article  CAS  Google Scholar 

  29. Davies, H. M. L., Hansen, T., Hopper, D. W. & Panaro, S. A. Highly regio-, diastereo-, and enantioselective C−H insertions of methyl aryldiazoacetates into cyclic N-Boc-protected amines. Asymmetric synthesis of novel C2-symmetric amines and threo-methylphenidate. J. Am. Chem. Soc. 121, 6509–6510 (1999).

    Article  CAS  Google Scholar 

  30. Cuthbertson, J. D. & MacMillan, D. W. The direct arylation of allylic sp 3 C–H bonds via organic and photoredox catalysis. Nature 519, 74–77 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bruckl, T., Baxter, R. D., Ishihara, Y. & Baran, P. S. Innate and guided C–H functionalization logic. Acc. Chem. Res. 45, 826–839 (2012).

    Article  CAS  PubMed  Google Scholar 

  32. Newhouse, T. & Baran, P. S. If C–H bonds could talk: selective C–H bond oxidation. Angew. Chem. Int. Ed. 50, 3362–3374 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Diesel, J., Finogenova, A. M. & Cramer, N. Nickel-catalyzed enantioselective pyridone C–H functionalizations enabled by a bulky N-heterocyclic carbene ligand. J. Am. Chem. Soc. 140, 4489–4493 (2018).

    Article  CAS  PubMed  Google Scholar 

  34. Lewis, J. C., Coelho, P. S. & Arnold, F. H. Enzymatic functionalization of carbon–hydrogen bonds. Chem. Soc. Rev. 40, 2003–2021 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Lyons, T. W. & Sanford, M. S. Palladium-catalyzed ligand-directed C–H functionalization reactions. Chem. Rev. 110, 1147–1169 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hwang, S. J., Cho, S. H. & Chang, S. Synthesis of condensed pyrroloindoles via Pd-catalyzed intramolecular C–H bond functionalization of pyrroles. J. Am. Chem. Soc. 130, 16158–16159 (2008).

    Article  CAS  PubMed  Google Scholar 

  37. McQuaid, K. M. & Sames, D. C–H bond functionalization via hydride transfer: Lewis acid catalyzed alkylation reactions by direct intramolecular coupling of sp3 C–H bonds and reactive alkenyl oxocarbenium intermediates. J. Am. Chem. Soc. 131, 402–403 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. He, G., Zhao, Y., Zhang, S., Lu, C. & Chen, G. Highly efficient syntheses of azetidines, pyrrolidines, and indolines via palladium catalyzed intramolecular amination of C(sp3)–H and C(sp2)–H bonds at γ and δ positions. J. Am. Chem. Soc. 134, 3–6 (2012).

    Article  CAS  PubMed  Google Scholar 

  39. Dick, A. R., Hull, K. L. & Sanford, M. S. A highly selective catalytic method for the oxidative functionalization of C–H bonds. J. Am. Chem. Soc. 126, 2300–2301 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Desai, L. V., Malik, H. A. & Sanford, M. S. Oxone as an inexpensive, safe, and environmentally benign oxidant for C–H bond oxygenation. Org. Lett. 8, 1141–1144 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Kalyani, D. & Sanford, M. S. Regioselectivity in palladium-catalyzed C–H activation/oxygenation reactions. Org. Lett. 7, 4149–4152 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Liu, Y.-J. et al. Overcoming the limitations of directed C–H functionalizations of heterocycles. Nature 515, 389–393 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Simmons, E. M. & Hartwig, J. F. Catalytic functionalization of unactivated primary C–H bonds directed by an alcohol. Nature 483, 70–73 (2012).

    Article  CAS  PubMed  Google Scholar 

  44. Pesciaioli, F. et al. Enantioselective cobalt(III)-catalyzed C−H activation enabled by chiral carboxylic acid cooperation. Angew. Chem. Int. Ed. 57, 15425–15429 (2018).

    Article  CAS  PubMed  Google Scholar 

  45. Saint-Denis, T. G., Zhu, R. Y., Chen, G., Wu, Q. F. & Yu, J. Q. Enantioselective C(sp3)H bond activation by chiral transition metal catalysts. Science 359, eaao4798 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Shi, H., Herron, A. N., Shao, Y., Shao, Q. & Yu, J. Q. Enantioselective remote meta-C–H arylation and alkylation via a chiral transient mediator. Nature 558, 581–585 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Engle, K. M., Mei, T. S., Wasa, M. & Yu, J. Q. Weak coordination as a powerful means for developing broadly useful C–H functionalization reactions. Acc. Chem. Res. 45, 788–802 (2012).

    Article  CAS  PubMed  Google Scholar 

  48. Sigman, M. S. & Werner, E. W. Imparting catalyst control upon classical palladium-catalyzed alkenyl C–H bond functionalization reactions. Acc. Chem. Res. 45, 874–884 (2012).

    Article  CAS  PubMed  Google Scholar 

  49. Hickman, A. J. & Sanford, M. S. Catalyst control of site selectivity in the PdII/IV-catalyzed direct arylation of naphthalene. ACS Catal. 1, 170–174 (2011).

    Article  CAS  Google Scholar 

  50. Hartwig, J. F. Catalyst-controlled site-selective bond activation. Acc. Chem. Res. 50, 549–555 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Neufeldt, S. R. & Sanford, M. S. Controlling site selectivity in palladium-catalyzed C–H bond functionalization. Acc. Chem. Res. 45, 936–946 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Liao, K., Negretti, S., Musaev, D. G., Bacsa, J. & Davies, H. M. L. Site-selective and stereoselective functionalization of unactivated C–H bonds. Nature 533, 230–234 (2016).

    Article  CAS  PubMed  Google Scholar 

  53. Liao, K. et al. Site-selective and stereoselective functionalization of non-activated tertiary C–H bonds. Nature 551, 609–613 (2017).

    Article  CAS  PubMed  Google Scholar 

  54. Liao, K. et al. Site-selective carbene-induced C–H functionalization catalyzed by dirhodium tetrakis(triarylcyclopropanecarboxylate) complexes. ACS Catal. 8, 678–682 (2017).

    Article  CAS  Google Scholar 

  55. Ravelli, D., Fagnoni, M., Fukuyama, T., Nishikawa, T. & Ryu, I. Site-selective C–H functionalization by decatungstate anion photocatalysis: synergistic control by polar and steric effects expands the reaction scope. ACS Catal. 8, 701–703 (2018).

    Article  CAS  Google Scholar 

  56. Milan, M., Salamone, M., Costas, M. & Bietti, M. The quest for selectivity in hydrogen atom transfer based aliphatic C–H bond oxygenation. Acc. Chem. Res. 51, 1984–1995 (2018).

    Article  CAS  PubMed  Google Scholar 

  57. Ammann, S. E., Rice, G. T. & White, M. C. Terminal olefins to chromans, isochromans, and pyrans via allylic C–H oxidation. J. Am. Chem. Soc. 136, 10834–10837 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Cook, A. K., Schimler, S. D., Matzger, A. J. & Sanford, M. S. Catalyst-controlled selectivity in the C–H borylation of methane and ethane. Science 351, 1421–1424 (2016).

    Article  CAS  PubMed  Google Scholar 

  59. Roizen, J. L., Harvey, M. E. & Du Bois, J. Metal-catalyzed nitrogen-atom transfer methods for the oxidation of aliphatic C–H bonds. Acc. Chem. Res. 45, 911–922 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Qin, C. et al. D2-symmetric dirhodium catalyst derived from a 1,2,2-triarylcyclopropanecarboxylate ligand: design, synthesis and application. J. Am. Chem. Soc. 133, 19198–19204 (2011).

    Article  CAS  PubMed  Google Scholar 

  61. Qin, C. & Davies, H. M. L. Role of sterically demanding chiral dirhodium catalysts in site-selective C–H functionalization of activated primary C–H bonds. J. Am. Chem. Soc. 136, 9792–9796 (2014).

    Article  CAS  PubMed  Google Scholar 

  62. Guptill, D. M. & Davies, H. M. L. 2,2,2-Trichloroethyl aryldiazoacetates as robust reagents for the enantioselective C–H functionalization of methyl ethers. J. Am. Chem. Soc. 136, 17718–17721 (2014).

    Article  CAS  PubMed  Google Scholar 

  63. Fu, L., Guptill, D. M. & Davies, H. M. L. Rhodium(II)-catalyzed C–H functionalization of electron-deficient methyl groups. J. Am. Chem. Soc. 138, 5761–5764 (2016).

    Article  CAS  PubMed  Google Scholar 

  64. Fu, J., Ren, Z., Bacsa, J., Musaev, D. G. & Davies, H. M. L. Desymmetrization of cyclohexanes by site- and stereoselective C–H functionalization. Nature 564, 395–399 (2018).

    Article  CAS  PubMed  Google Scholar 

  65. Liu, W. et al. Catalyst-controlled selective functionalization of unactivated C–H bonds in the presence of electronically activated C–H bonds. J. Am. Chem. Soc. 140, 12247–12255 (2018).

    Article  CAS  PubMed  Google Scholar 

  66. Davies, H. M. L. & Morton, D. Guiding principles for site selective and stereoselective intermolecular C–H functionalization by donor/acceptor rhodium carbenes. Chem. Soc. Rev. 40, 1857–1869 (2011).

    Article  CAS  PubMed  Google Scholar 

  67. Davies, H. M. L. & Denton, J. R. Application of donor/acceptor-carbenoids to the synthesis of natural products. Chem. Soc. Rev. 38, 3061–3071 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Davies, H. M. L. & Beckwith, R. E. Catalytic enantioselective C–H activation by means of metal-carbenoid-induced C–H insertion. Chem. Rev. 103, 2861–2904 (2003).

    Article  CAS  PubMed  Google Scholar 

  69. Davies, H. M. L. Recent advances in catalytic enantioselective intermolecular C–H functionalization. Angew. Chem. Int. Ed. 45, 6422–6425 (2006).

    Article  CAS  PubMed  Google Scholar 

  70. Doyle, M. P., Duffy, R., Ratnikov, M. & Zhou, L. Catalytic carbene insertion into C–H bonds. Chem. Rev. 110, 704–724 (2010).

    Article  CAS  PubMed  Google Scholar 

  71. Scott, L. T. & DeCicco, G. J. Intermolecular carbon–hydrogen insertion of copper carbenoids. J. Am. Chem. Soc. 96, 322–323 (1974).

    Article  CAS  Google Scholar 

  72. Demonceau, A., Noels, A. F., Hubert, A. J. & Teyssié, P. Transition-metal-catalysed reactions of diazoesters. Insertion into C–H bonds of paraffins by carbenoids. J. Chem. Soc. Chem. Commun. 1981, 688–689 (1981).

    Article  Google Scholar 

  73. Caballero, A. et al. Silver-catalyzed C–C bond formation between methane and ethyl diazoacetate in supercritical CO2. Science 332, 835–838 (2011).

    Article  CAS  PubMed  Google Scholar 

  74. Callot, H. J. & Metz, F. Homologation of n-alkanes using diazoesters and rhodium(III)porphyrins. Enhanced attack on primary C–H bonds. Tetrahedron Lett. 23, 4321–4324 (1982).

    Article  CAS  Google Scholar 

  75. Callot, H. J. & Metz, F. Rhodium(II)2,4,6-triarylbenzoates: improved catalysts for the cyclopropanation of z-olefins. Tetrahedron 41, 4495–4501 (1985).

    Article  CAS  Google Scholar 

  76. Callot, H. J. & Schaeffer, E. Rhodium(III)porphyrins and diazoalkanes - alkylrhodium(III)porphyrins and carbene transfer. New J. Chem. 4, 311–314 (1980).

    CAS  Google Scholar 

  77. Caballero, A. et al. Highly regioselective functionalization of aliphatic carbon-hydrogen bonds with a perbromohomoscorpionate copper(I) catalyst. J. Am. Chem. Soc. 125, 1446–1447 (2003).

    Article  CAS  PubMed  Google Scholar 

  78. Weldy, N. M. et al. Iridium(III)-bis(imidazolinyl)phenyl catalysts for enantioselective C–H functionalization with ethyl diazoacetate. Chem. Sci. 7, 3142–3146 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Taber, D. F. & Ruckle, R. E. Cyclopentane construction by dirhodium tetraacetate-mediated intramolecular C–H insertion: steric and electronic effects. J. Am. Chem. Soc. 108, 7686–7693 (1986).

    Article  CAS  PubMed  Google Scholar 

  80. Doyle, M. P., Kalinin, A. V. & Ene, D. G. Chiral catalyst controlled diastereoselection and regioselection in intramolecular carbon−hydrogen insertion reactions of diazoacetates. J. Am. Chem. Soc. 118, 8837–8846 (1996).

    Article  CAS  Google Scholar 

  81. Taber, D. F. & Stiriba, S.-E. Synthesis of natural products by rhodium-mediated intramolecular C–H insertion. Chem. Eur. J. 4, 990–992 (1998).

    Article  CAS  Google Scholar 

  82. Breslow, R. & Gellman, S. H. Intramolecular nitrene carbon–hydrogen insertions mediated by transition-metal complexes as nitrogen analogs of cytochrome P-450 reactions. J. Am. Chem. Soc. 105, 6728–6729 (1983).

    Article  CAS  Google Scholar 

  83. Espino, C. G., Wehn, P. M., Chow, J. & Du Bois, J. Synthesis of 1,3-difunctionalized amine derivatives through selective C−H bond oxidation. J. Am. Chem. Soc. 123, 6935–6936 (2001).

    Article  CAS  Google Scholar 

  84. Hashimoto, S.-i, Watanabe, N., Sato, T., Shiro, M. & Ikegami, S. Enhancement of enantioselectivity in intramolecular C–H insertion reactions of α-diazo β-keto esters catalyzed by chiral dirhodium(II) carboxylates. Tetrahedron Lett. 34, 5109–5112 (1993).

    Article  CAS  Google Scholar 

  85. Doyle, M. P. et al. Diastereocontrol for highly enantioselective carbon–hydrogen insertion reactions of cycloalkyl diazoacetates. J. Am. Chem. Soc. 116, 4507–4508 (1994).

    Article  CAS  Google Scholar 

  86. Bode, J. W., Doyle, M. P., Protopopova, M. N. & Zhou, Q.-L. Intramolecular regioselective insertion into unactivated prochiral carbon−hydrogen bonds with diazoacetates of primary alcohols catalyzed by chiral dirhodium(II) carboxamidates. Highly enantioselective total synthesis of natural lignan lactones. J. Org. Chem. 61, 9146–9155 (1996).

    Article  CAS  Google Scholar 

  87. Caballero, A. et al. Catalytic functionalization of low reactive C(sp3)–H and C(sp2)–H bonds of alkanes and arenes by carbene transfer from diazo compounds. Dalton Trans. 44, 20295–20307 (2015).

    Article  CAS  PubMed  Google Scholar 

  88. Davies, H. M. L., Smith, H. D. & Korkor, O. Tandem cyclopropanation/Cope rearrangement sequence. Stereospecific [3 + 4] cycloaddition reaction of vinylcarbenoids with cyclopentadiene. Tetrahedron Lett. 28, 1853–1856 (1987).

    Article  CAS  Google Scholar 

  89. Davies, H. M. L. & Doan, B. D. Asymmetric synthesis of the tremulane skeleton by a tandem cyclopropanation/Cope rearrangement. Tetrahedron Lett. 37, 3967–3970 (1996).

    Article  CAS  Google Scholar 

  90. Davies, H. M. L., Bruzinski, P. R. & Fall, M. J. Effect of diazoalkane structure on the stereoselectivity of rhodium(II) (S)-N-(arylsulfonyl)prolinate catalyzed cyclopropanations. Tetrahedron Lett. 37, 4133–4136 (1996).

    Article  CAS  Google Scholar 

  91. Lamb, K. N. et al. Synthesis of benzodihydrofurans by asymmetric C–H insertion reactions of donor/donor rhodium carbenes. Chem. Eur. J. 23, 11843–11855 (2017).

    Article  CAS  PubMed  Google Scholar 

  92. Soldi, C. et al. Enantioselective intramolecular C–H insertion reactions of donor-donor metal carbenoids. J. Am. Chem. Soc. 136, 15142–15145 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Zhu, D. et al. Highly chemo- and stereoselective catalyst-controlled allylic C–H insertion and cyclopropanation using donor/donor carbenes. Angew. Chem. Int. Ed. 57, 12405–12409 (2018).

    Article  CAS  PubMed  Google Scholar 

  94. Zhu, D. et al. Enantioselective intramolecular C–H insertion of donor and donor/donor carbenes by a nondiazo approach. Angew. Chem. Int. Ed. 55, 8452–8456 (2016).

    Article  CAS  PubMed  Google Scholar 

  95. Hansen, J., Autschbach, J. & Davies, H. M. L. Computational study on the selectivity of donor/acceptor-substituted rhodium carbenoids. J. Org. Chem. 74, 6555–6563 (2009).

    Article  CAS  PubMed  Google Scholar 

  96. Davies, H. M. L., Venkataramani, C., Hansen, T. & Hopper, D. W. New strategic reactions for organic synthesis: catalytic asymmetric C–H activation alpha to nitrogen as a surrogate for the mannich reaction. J. Am. Chem. Soc. 125, 6462–6468 (2003).

    Article  CAS  PubMed  Google Scholar 

  97. Davies, H. M. L., Ren, P. & Jin, Q. Catalytic asymmetric allylic C−H activation as a surrogate of the asymmetric Claisen rearrangement. Org. Lett. 3, 3587–3590 (2001).

    Article  CAS  PubMed  Google Scholar 

  98. Davies, H. M. L. & Ren, P. Catalytic asymmetric C−H activation of silyl enol ethers as an equivalent of an asymmetric Michael reaction. J. Am. Chem. Soc. 123, 2070–2071 (2001).

    Article  CAS  PubMed  Google Scholar 

  99. Davies, H. M. L., Yang, J. & Nikolai, J. Asymmetric C–H insertion of Rh(II) stabilized carbenoids into acetals: A C–H activation protocol as a Claisen condensation equivalent. J. Organomet. Chem. 690, 6111–6124 (2005).

    Article  CAS  Google Scholar 

  100. Hansen, J. H. et al. On the mechanism and selectivity of the combined C–H activation/Cope rearrangement. J. Am. Chem. Soc. 133, 5076–5085 (2011).

    Article  CAS  PubMed  Google Scholar 

  101. Davies, H. M. L. & Lian, Y. The combined C–H functionalization/Cope rearrangement: discovery and applications in organic synthesis. Acc. Chem. Res. 45, 923–935 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Davies, H. M. L. & Jin, Q. Highly diastereoselective and enantioselective C–H functionalization of 1,2-dihydronaphthalenes: a combined C–H activation/Cope rearrangement followed by a retro-Cope rearrangement. J. Am. Chem. Soc. 126, 10862–10863 (2004).

    Article  CAS  PubMed  Google Scholar 

  103. Lian, Y. & Davies, H. M. L. Combined C–H functionalization/Cope rearrangement with vinyl ethers as a surrogate for the vinylogous Mukaiyama aldol reaction. J. Am. Chem. Soc. 133, 11940–11943 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Davies, H. M. L., Dai, X. & Long, M. S. Combined C–H activation/cope rearrangement as a strategic reaction in organic synthesis: total synthesis of (-)-colombiasin a and (-)-elisapterosin B. J. Am. Chem. Soc. 128, 2485–2490 (2006).

    Article  CAS  PubMed  Google Scholar 

  105. Davies, H. M. L. D., X. & Long, M. S. Combined C–H activation/cope rearrangement as a strategic reaction in organic synthesis: total synthesis of (-)-colombiasin a and (-)-elisapterosin B. J. Am. Chem. Soc. 128, 2485–2490 (2006).

    Article  CAS  PubMed  Google Scholar 

  106. Thu, H.-Y. et al. Highly selective metal catalysts for intermolecular carbenoid insertion into primary C–H bonds and enantioselective C–C bond formation. Angew. Chem. Int. Ed. 47, 9747–9751 (2008).

    Article  CAS  PubMed  Google Scholar 

  107. Hansen, J. & Davies, H. M. L. High symmetry dirhodium(II) paddlewheel complexes as chiral catalysts. Coord. Chem. Rev. 252, 545–555 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Watanabe, N., Ogawa, T., Ohtake, Y., Ikegami, S. & Hashimoto, S. Dirhodium(II) tetrakis[N-phthaloyl-(S)-tert-leucinate]: a notable catalyst for enantiotopically selective aromatic substitution reactions of α-diazocarbonyl compounds. Synlett 1996, 85–86 (1996).

    Article  Google Scholar 

  109. Yamawaki, M., Tsutsui, H., Kitagaki, S., Anada, M. & Hashimoto, S. Dirhodium(II) tetrakis[N-tetrachlorophthaloyl-(S)-tert-leucinate]: a new chiral Rh(II) catalyst for enantioselective amidation of C–H bonds. Tetrahedron Lett. 43, 9561–9564 (2002).

    Article  CAS  Google Scholar 

  110. Reddy, R. P. & Davies, H. M. L. Dirhodium tetracarboxylates derived from adamantylglycine as chiral catalysts for enantioselective C–H aminations. Org. Lett. 8, 5013–5016 (2006).

    Article  CAS  PubMed  Google Scholar 

  111. Lindsay, V. N., Lin, W. & Charette, A. B. Experimental evidence for the all-up reactive conformation of chiral rhodium(II) carboxylate catalysts: enantioselective synthesis of cis-cyclopropane alpha-amino acids. J. Am. Chem. Soc. 131, 16383–16385 (2009).

    Article  CAS  PubMed  Google Scholar 

  112. Lindsay, V. N. G. & Charette, A. B. Design and synthesis of chiral heteroleptic rhodium(II) carboxylate catalysts: experimental investigation of halogen bond rigidification effects in asymmetric cyclopropanation. ACS Catal. 2, 1221–1225 (2012).

    Article  CAS  Google Scholar 

  113. DeAngelis, A., Dmitrenko, O., Yap, G. P. & Fox, J. M. Chiral crown conformation of Rh(2)(S-PTTL)(4): enantioselective cyclopropanation with alpha-alkyl-alpha-diazoesters. J. Am. Chem. Soc. 131, 7230–7231 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. DeAngelis, A. et al. The chiral crown conformation in paddlewheel complexes. Chem. Commun. 46, 4541–4543 (2010).

    Article  CAS  Google Scholar 

  115. Liao, K. et al. Design of catalysts for site-selective and enantioselective functionalization of non-activated primary C–H bonds. Nat. Chem. 10, 1048–1055 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Banerjee, A., Sarkar, S. & Patel, B. K. C–H functionalisation of cycloalkanes. Org. Biomol. Chem. 15, 505–530 (2017).

    Article  CAS  PubMed  Google Scholar 

  117. Salamone, M., Ortega, V. B. & Bietti, M. Enhanced reactivity in hydrogen atom transfer from tertiary sites of cyclohexanes and decalins via strain release: equatorial C–H activation versus axial C–H deactivation. J. Org. Chem. 80, 4710–4715 (2015).

    Article  CAS  PubMed  Google Scholar 

  118. Milan, M., Bietti, M. & Costas, M. Highly enantioselective oxidation of nonactivated aliphatic C–H bonds with hydrogen peroxide catalyzed by manganese complexes. ACS Cent. Sci. 3, 196–204 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Dantignana, V. et al. Chemoselective aliphatic C-H bond oxidation enabled by polarity reversal. ACS Cent. Sci. 3, 1350–1358 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Wang, H., Li, G., Engle, K. M., Yu, J. Q. & Davies, H. M. L. Sequential C–H functionalization reactions for the enantioselective synthesis of highly functionalized 2,3-dihydrobenzofurans. J. Am. Chem. Soc. 135, 6774–6777 (2013).

    Article  CAS  PubMed  Google Scholar 

  121. Bedell, T. A. et al. Rapid construction of a benzo-fused indoxamycin core enabled by site-selective C–H functionalizations. Angew. Chem. Int. Ed. 55, 8270–8274 (2016).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Financial support was provided by the US National Science Foundation under the Center for Chemical Innovation, Center for Selective C–H Functionalization (CHE-1700982). Catalyst 55 was initially developed with financial support provided by the US National Institutes of Health (GM-099142).

Reviewer information

Nature Reviews Chemistry thanks E. Alexanian and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

K.L. and H.M.L.D. both contributed to all steps of manuscript preparation and writing.

Corresponding author

Correspondence to Huw M. L. Davies.

Ethics declarations

Competing interests

H.M.L.D. is a named inventor on a patent entitled Dirhodium Catalyst Compositions and Synthetic Processes Related Thereto (US 8,974,428, issued 10 March 2015). K.L. has no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davies, H.M.L., Liao, K. Dirhodium tetracarboxylates as catalysts for selective intermolecular C–H functionalization. Nat Rev Chem 3, 347–360 (2019). https://doi.org/10.1038/s41570-019-0099-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-019-0099-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing