Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Chiral molecules and the electron spin

Abstract

The electron’s spin is essential to the stability of matter, and control over the spin opens up avenues for manipulating the properties of molecules and materials. The Pauli exclusion principle requires that two electrons in a single spatial eigenstate have opposite spins, and this fact dictates basic features of atomic states and chemical bond formation. The energy associated with interacting electron clouds changes with their relative spin orientation, and by manipulating the spin directions, one can guide chemical transformations. However, controlling the relative spin orientation of electrons located on two reactants (atoms, molecules or surfaces) has proved challenging. Recent developments based on the chiral-induced spin selectivity (CISS) effect show that the spin orientation is linked to molecular symmetry and can be controlled in ways not previously imagined. For example, the combination of chiral molecules and electron spin opens up a new approach to (enantio)selective chemistry. This Review describes the theoretical concepts underlying the CISS effect and illustrates its importance by discussing some of its manifestations in chemistry, biology and physics. Specifically, we discuss how the CISS effect allows for efficient long-range electron transfer in chiral molecules and how it affects biorecognition processes. Several applications of the effect are presented, and the importance of controlling relative spin orientations in multi-electron processes, such as electrochemical water splitting, is emphasized. We describe the enantiospecific interaction between ferromagnetic substrates and chiral molecules and how it enables the separation of enantiomers with ferromagnets. Lastly, we discuss the relevance of CISS effects to biological electron transfer, enantioselectivity and CISS-based spintronics applications.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Chiral-induced spin selectivity.
Fig. 2: The effect of chirality on electron transfer.
Fig. 3: CISS-based spintronic logic devices.
Fig. 4: Chiral-induced spin selectivity for photoelectrochemical water splitting.
Fig. 5: Chiral-induced spin selectivity effect and ferromagnetic substrates.
Fig. 6: Selective adsorption of dye-labelled dsDNA and cysteine.
Fig. 7: Chiral-induced spin selectivity for enantioseparation.

References

  1. 1.

    Lieb, E. H. The stability of matter: from atoms to stars. Bull. Am. Math. Soc. 22, 1–49 (1990).

    Google Scholar 

  2. 2.

    Jenks, W. S. & Turro, N. J. Electron spin polarization transfer between radicals. J. Am. Chem. Soc. 112, 9009–9011 (1990).

    CAS  Google Scholar 

  3. 3.

    Turro, N. J. & Khudyakov, I. V. Single-phase primary electron spin polarization transfer in spin-trapping reactions. Chem. Phys. Lett. 193, 546–552 (1992).

    CAS  Google Scholar 

  4. 4.

    Shaik, S., Chen, H. & Janardanan, D. Exchange-Enhanced reactivity in bond activation by metal-oxo enzymes and synthetic reagents. Nat. Chem. 3, 19–27 (2011).

    CAS  PubMed  Google Scholar 

  5. 5.

    Naaman, R. & Waldeck, D. H. Chiral-induced spin selectivity effect. J. Phys. Chem. Lett. 3, 2178–2187 (2012).

    CAS  PubMed  Google Scholar 

  6. 6.

    Naaman, R. & Waldeck, D. H. Spintronics and chirality: spin selectivity in electron transport through chiral molecules. Ann. Rev. Phys. Chem. 66, 263–281 (2015).

    CAS  Google Scholar 

  7. 7.

    Xie, Z. et al. Spin specific electron conduction through DNA oligomers. Nano Lett. 11, 4652–4655 (2011).

    CAS  PubMed  Google Scholar 

  8. 8.

    Carmeli, I., Skakalova, V., Naaman, R. & Vager, Z. Magnetization of chiral monolayers of polypeptide: a possible source of magnetism in some biological membranes. Angew. Chem. Int. Ed. 41, 761–764 (2002).

    CAS  Google Scholar 

  9. 9.

    Kettner, M. et al. Spin filtering in electron transport through chiral oligopeptides. J. Phys. Chem. C 119, 14542–14547 (2015).

    CAS  Google Scholar 

  10. 10.

    Zwang, T. J., Hürlimann, S., Hill, M. G. & Barton, J. K. Helix-dependent spin filtering through the DNA duplex. J. Am. Chem. Soc. 138, 15551–15554 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Kettner, M. et al. Chirality-dependent electron spin filtering by molecular monolayers of helicenes. J. Phys. Chem. Lett. 9, 2025–2030 (2018).

    CAS  PubMed  Google Scholar 

  12. 12.

    Eckshtain-Levi, M. et al. Cold denaturation induces inversion of dipole and spin transfer in chiral peptide monolayers. Nat. Commun. 7, 10744 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Abendroth, J. M. et al. Analyzing spin selectivity in DNA-mediated charge transfer via fluorescence microscopy. ACS Nano 11, 7516–7526 (2017).

    CAS  PubMed  Google Scholar 

  14. 14.

    Dor, O. B., Yochelis, S., Ohldag, H. & Paltiel, Y. Optical chiral induced spin selectivity XMCD study. Chimia 72, 379–383 (2018).

    CAS  PubMed  Google Scholar 

  15. 15.

    Ravi, S., Sowmiya, P. & Karthikeyan, A. Magnetoresistance and spin-filtering efficiency of DNA-sandwiched ferromagnetic nanostructures. SPIN 3, 1350003 (2013).

    Google Scholar 

  16. 16.

    He, X., Zhou, Y., Wen, X., Shpilman, A. A. & Ren, Q. Effect of spin polarization on the exclusion zone of water. J. Phys. Chem. B 122, 8493–8502 (2018).

    CAS  PubMed  Google Scholar 

  17. 17.

    Banerjee-Ghosh, K. et al. Separation of enantiomers by their enantiospecific interaction with achiral magnetic substrates. Science 360, 1331–1334 (2018).

    CAS  PubMed  Google Scholar 

  18. 18.

    Dor, O. B. et al. Magnetization switching in ferromagnets by adsorbed chiral molecules without current or external magnetic field. Nat. Commun. 8, 14567 (2017).

    PubMed  PubMed Central  Google Scholar 

  19. 19.

    Huertas-Hernando, D., Guinea, F. & Brataas, A. Spin-orbit coupling in curved graphene, fullerenes, nanotubes, and nanotube caps. Phys. Rev. B 74, 155426 (2006).

    Google Scholar 

  20. 20.

    Min, H. et al. Intrinsic and rashba spin-orbit interactions in graphene sheets. Phys. Rev. B 74, 165310 (2006).

    Google Scholar 

  21. 21.

    Kuemmeth, F., Ilani, S., Ralph, D. & McEuen, P. Coupling of spin and orbital motion of electrons in carbon nanotubes. Nature 452, 448–452 (2008).

    CAS  PubMed  Google Scholar 

  22. 22.

    Steele, G. A. et al. Large spin-orbit coupling in carbon nanotubes. Nat. Commun. 4, 1573 (2013).

    CAS  PubMed  Google Scholar 

  23. 23.

    Berche, B., Mireles, F. & Medina, E. Rashba spin-orbit interaction enhanced by graphene in-plane deformations. Condens. Matter Phys. 20, 13702 (2017).

    Google Scholar 

  24. 24.

    Michaeli, K. & Naaman, R. Origin of spin dependent tunneling through chiral molecules. Preprint at arXiv https://arxiv.org/abs/1512.03435v2 (2016).

  25. 25.

    Medina, E., González-Arraga, L. A., Finkelstein-Shapiro, D., Berche, B. & Mujica, V. Continuum model for chiral induced spin selectivity in helical molecules. J. Chem. Phys. 142, 194308 (2015).

    PubMed  Google Scholar 

  26. 26.

    Koretsune, T., Arita, R. & Aoki, H. Magneto-orbital effect without spin-orbit interactions in a noncentrosymmetric zeolite-templated carbon structure. Phys. Rev. B 86, 125207 (2012).

    Google Scholar 

  27. 27.

    Yeganeh, S., Ratner, M. A., Medina, E. & Mujica, V. Chiral electron transport: scattering through helical potentials. J. Chem. Phys. 131, 014707 (2009).

    PubMed  Google Scholar 

  28. 28.

    Medina, E., Lopez, F., Ratner, M. A. & Mujica, V. Chiral molecular films as electron polarizers and polarization modulators. Europhys. Lett. 99, 17006 (2012).

    Google Scholar 

  29. 29.

    Gutierrez, R., Díaz, E., Naaman, R. & Cuniberti, G. Spin selective transport through helical molecular systems. Phys. Rev. B 85, 081404 (2012).

    Google Scholar 

  30. 30.

    Gutierrez, R. et al. Modeling spin transport in helical fields: derivation of an effective low-dimensional Hamiltonian. J. Phys. Chem. C 117, 22276–22284 (2013).

    CAS  Google Scholar 

  31. 31.

    Guo, A. M. & Sun, Q. F. Spin-selective transport of electrons in DNA double helix. Phys. Rev. Lett. 108, 218102 (2012).

    PubMed  Google Scholar 

  32. 32.

    Guo, A. M. & Sun, Q. F. Spin-dependent electron transport in protein-like single-helical molecules. Proc. Natl Acad. Sci. USA 111, 11658–11662 (2014).

    CAS  PubMed  Google Scholar 

  33. 33.

    Eremko, A. A. & Loktev, V. M. Spin sensitive electron transmission through helical potentials Phys. Rev. B 88, 165409 (2013).

    Google Scholar 

  34. 34.

    Rai, D. & Galperin, M. Electrically driven spin currents in DNA. J. Phys. Chem. C 117, 13730–13737 (2013).

    CAS  Google Scholar 

  35. 35.

    Gersten, J., Kaasbjerg, K. & Nitzan, A. Induced spin filtering in electron transmission through chiral molecular layers adsorbed on metals with strong spin-orbit coupling. J. Chem. Phys. 139, 114111 (2013).

    PubMed  Google Scholar 

  36. 36.

    Kuzmin, S. L. & Duley, W. W. Properties of specific electron helical states leads to spin filtering effect in dsDNA molecules. Phys. Lett. A 378, 1674–1650 (2014).

    Google Scholar 

  37. 37.

    Matityahu, S., Utsumi, Y., Aharony, A., Entin-Wohlman, O. & Balseiro, C. A. Spin-dependent transport through a chiral molecule in the presence of spin-orbit interaction and nonunitary effects. Phys. Rev. B 93, 075407 (2016).

    Google Scholar 

  38. 38.

    Maslyuk, V. V., Gutierrez, R., Dianat, A., Mujica, V. & Cuniberti, G. Enhanced magnetoresistance in chiral molecular junctions. J. Phys. Chem. Lett. 9, 5453–5459 (2018).

    CAS  PubMed  Google Scholar 

  39. 39.

    Michaeli, K., Varade, V., Naaman, R. & Waldeck, D. A new approach towards spintronics- spintronics with no magnets. J. Phys. Condens. Matter 29, 103002 (2017).

    PubMed  Google Scholar 

  40. 40.

    Aragonès, A. C. et al. Measuring the spin-polarization power of a single chiral molecule. Small 13, 1602519 (2017).

    Google Scholar 

  41. 41.

    Michaeli, K., Beratan, D. N., Waldeck, D. H. & Naaman, R. Voltage-induced long-range coherent electron transfer through organic molecules. Proc. Natl Acad. Sci. USA, in the press (2019).

  42. 42.

    Kumar, A. et al. Chirality-induced spin polarization places symmetry constraints on biomolecular interactions. Proc. Natl Acad. Sci. USA 114, 2474–2478 (2017).

    CAS  PubMed  Google Scholar 

  43. 43.

    Roushan, P. et al. Topological surface states protected from backscattering by chiral spin texture. Nature 460, 1106–1109 (2009).

    CAS  PubMed  Google Scholar 

  44. 44.

    Hasan, M. Z. & Kane, C. L. Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

    CAS  Google Scholar 

  45. 45.

    Carmeli, I., Kumar, K. S., Heifler, O., Carmeli, C. & Naaman, R. Spin selectivity in electron transfer in Photosystem I. Angew. Chemie 53, 8953–8958 (2014).

    CAS  Google Scholar 

  46. 46.

    Michaeli, K., Kantor-Uriel, N., Naaman, R. & Waldeck, D. H. The electron’s spin and molecular chirality: how are they related and how do they affect life processes? Chem. Soc. Rev. 45, 6478–6487 (2016).

    CAS  PubMed  Google Scholar 

  47. 47.

    Tassinari, F. et al. Chirality dependent charge transfer rate in oligopeptides. Adv. Mat. 30, 1706423 (2018).

    Google Scholar 

  48. 48.

    Nonnenmacher, M., O’Boyle, M. P. & Wickramasinghe, H. K. Kelvin probe force microscopy. Appl. Phys. Lett. 58, 2921–2923 (1991).

    Google Scholar 

  49. 49.

    Kai, M., Takeda, K., Morita, T. & Kimura, S. Distance dependence of long-range electron transfer through helical peptides. J. Pept. Sci. 14, 192–202 (2008).

    CAS  PubMed  Google Scholar 

  50. 50.

    Sek, S., Tolak, A., Misicka, A., Palys, B. & Bilewicz, R. Asymmetry of electron transmission through monolayers of helical polyalanine adsorbed on gold surfaces. J. Phys. Chem. B 109, 18433–18438 (2005).

    CAS  PubMed  Google Scholar 

  51. 51.

    Dekker, J. P. & Van Grondelle, R. Primary charge separation in Photosystem II. Photosynth. Res. 63, 195–208 (2000).

    CAS  PubMed  Google Scholar 

  52. 52.

    Duan, H.-G. et al. Primary charge separation in the Photosystem II reaction center revealed by a global analysis of the two-dimensional electronic spectra. Sci. Rep. 7, 12347 (2017).

    PubMed  PubMed Central  Google Scholar 

  53. 53.

    Peer, N., Dujovne, I., Yochelis, S. & Paltiel, Y. Nanoscale charge separation using chiral molecules. ACS Photonics 2, 1476–1481 (2015).

    CAS  Google Scholar 

  54. 54.

    Christensen, A. S., Kubar, T., Cui, Q. & Elstner, M. Semiempirical quantum mechanical methods for noncovalent interactions for chemical and biochemical applications. Chem. Rev. 116, 5301–5337 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Wagner, J. R. et al. Emerging computational methods for the rational discovery of allosteric drugs. Chem. Rev. 116, 6370–6390 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Stone, A. J. The Theory of Intermolecular Forces (Oxford Univ. Press, 2013).

  57. 57.

    Szalewicz, K. Symmetry-adapted perturbation theory of intermolecular forces. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2, 187–374 (2012).

    Google Scholar 

  58. 58.

    White, R. M. Quantum Theory of Magnetism: Magnetic Properties of Materials 3rd edn Ch. 2.2.7 (Springer, 2007).

  59. 59.

    Bechtold, T., Rudnyi, E. V. & Korvink, J. G. Dynamic electro-thermal simulation of microsystems — a review. J. Micromech. Microeng. 15, R17–R31 (2005).

    CAS  Google Scholar 

  60. 60.

    Joshi, V. K. Spintronics: a contemporary review of emerging electronics devices. Eng. Sci. Technol. 19, 1503–1513 (2016).

    Google Scholar 

  61. 61.

    Felser, C., Fecher, G. H. (eds) Spintronics From Materials to Devices (Springer, 2013).

  62. 62.

    Bandyopadhyay, S. & Cahay, M. Electron spin for classical information processing: a brief survey of spin-based logic devices, gates and circuits. Nanotechnology 20, 412001 (2009).

    PubMed  Google Scholar 

  63. 63.

    Datta, S. & Das, B. Electronic analog of the electro-optic modulator. Appl. Phys. Lett. 56, 665 (1990).

    CAS  Google Scholar 

  64. 64.

    Dery, H. & Sham, L. J. Spin extraction theory and its relevance to spintronics. Phys. Rev. Lett. 98, 046602 (2007).

    CAS  PubMed  Google Scholar 

  65. 65.

    [No authors listed.] Memory with a spin [editorial]. Nat. Nanotechnol. 10, 185 (2015).

  66. 66.

    Hickey, M. C. et al. Spin-transfer torque efficiency measured using a Permalloy nanobridge. Appl. Phys. Lett. 97, 202505 (2010).

    Google Scholar 

  67. 67.

    Sanvito, S. Molecular spintronics: the rise of spinterface science. Nat. Phys. 6, 562–564 (2010).

    CAS  Google Scholar 

  68. 68.

    Chua, L. Memristor: the missing circuit element. IEEE Trans. Circuit Theory 18, 507–519 (1971).

    Google Scholar 

  69. 69.

    Lequeux, S. et al. A magnetic synapse: multilevel spin-torque memristor with perpendicular anisotropy. Sci. Rep. 6, 31510 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. 70.

    Hirohata, A. & Takanashi, K. Future perspectives for spintronic devices. J. Phys. D 47, 193001 (2014).

    Google Scholar 

  71. 71.

    Dor, O. B., Yochelis, S., Mathew, S. P., Naaman, R. & Paltiel, Y. A chiral-based magnetic memory device without a permanent magnet. Nat. Commun. 4, 2256 (2013).

    PubMed  PubMed Central  Google Scholar 

  72. 72.

    Mathew, S. P., Mondal, P. C., Moshe, H., Mastai, Y. & Naaman, R. Non-magnetic organic/inorganic spin injector at room temperature. Appl. Phys. Lett. 105, 242408 (2014).

    Google Scholar 

  73. 73.

    Koplvitz, G. et al. Single nanoparticle magnetic spin memristor. Adv. Mat. 29, 1606748 (2017).

    Google Scholar 

  74. 74.

    Dor, O. B., Morali, N., Yochelis, S., Baczewski, L. T. & Paltiel, Y. Local light-induced magnetization using nanodots and chiral molecules. Nano Lett. 14, 6042 (2014).

    PubMed  Google Scholar 

  75. 75.

    Al Bustami, H. et al. Single nanoparticle magnetic spin memristor. Small 14, 1801249 (2018).

    Google Scholar 

  76. 76.

    Lisjak, D. & Drofenik, M. Chemical substitution—an alternative strategy for controlling the particle size of barium ferrite. Cryst. Growth Des. 12, 5174–5179 (2012).

    CAS  Google Scholar 

  77. 77.

    Carmeli, I., Leitus, G., Naaman, R., Reich, S. & Vager, Z. Magnetism induced by the organization of self-assembled monolayers. J. Chem. Phys. 118, 10372 (2003).

    CAS  Google Scholar 

  78. 78.

    Hernando, A., Crespo, P. & García, M. A. Origin of orbital ferromagnetism and giant magnetic anisotropy at the nanoscale. Phys. Rev. Lett. 96, 057206 (2006).

    CAS  PubMed  Google Scholar 

  79. 79.

    Crespo, P. et al. Permanent magnetism, magnetic anisotropy, and hysteresis of thiol-capped gold nanoparticles. Phys. Rev. Lett. 93, 087204 (2004).

    CAS  PubMed  Google Scholar 

  80. 80.

    Yamamoto, Y. et al. Direct observation of ferromagnetic spin polarization in gold nanoparticles. Phys. Rev. Lett. 93, 116801 (2004).

    CAS  PubMed  Google Scholar 

  81. 81.

    Buchachenko, A. L. & Berdinsky, V. L. Electron spin catalysis. Chem. Rev. 102, 603–612 (2002).

    CAS  PubMed  Google Scholar 

  82. 82.

    Sikorsky, T., Meir, Z., Ben-Shlomi, R., Akerman, N. & Ozeri, R. Spin-controlled atom–ion chemistry. Nat. Commun. 9, 920 (2018).

    PubMed  PubMed Central  Google Scholar 

  83. 83.

    Wolff, H.-J., Burher, D. & Steiner, U. E. Spin-orbit coupling controlled spin chemistry of Ru(bpy)3 2+ photooxidation: detection of strong viscosity dependence of in-cage backward electron transfer rate. Pure Appl. Chem. 67, 167–174 (1995).

    CAS  Google Scholar 

  84. 84.

    Chrétien, S. & Metiu, H. O2 evolution on a clean partially reduced rutile TiO2(110) surface and on the same surface precovered with Au1 and Au2: The importance of spin conservation. J. Chem. Phys. 129, 74705 (2008).

    Google Scholar 

  85. 85.

    Torun, E., Fang, C. M., de Wijs, G. A. & de Groot, R. A. Role of magnetism in catalysis: RuO2 (110) surface. J. Phys. Chem. C 117, 6353–6357 (2013).

    CAS  Google Scholar 

  86. 86.

    Mtangi, W., Kiran, V., Fontanesi, C. & Naaman, R. The role of the electron spin polarization in water splitting. J. Phys. Chem. Lett. 6, 4916–4922 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. 87.

    Mtangi, W. et al. Control of electrons’ spin eliminates hydrogen peroxide formation during water splitting. J. Am. Chem. Soc. 139, 2794–2798 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. 88.

    Tassinari, F. et al. Enhanced hydrogen production with chiral conductive polymer-based electrodes. J. Phys. Chem. C 121, 15777–15783 (2017).

    CAS  Google Scholar 

  89. 89.

    Ghosh, K. B. et al. Controlling chemical selectivity in electrocatalysis with chiral CuO coated electrodes. J. Phys. Chem. C 123, 3024–3031 (2019).

    CAS  Google Scholar 

  90. 90.

    Arakawa, H. Photocatalysis: Science and Technology Ch. 14 (eds Kaneko, M., Okura, I.) 235 (Springer, 2002).

  91. 91.

    Shi, X. et. al. Understanding activity trends in electrochemical water oxidation to form hydrogen peroxide. Nat. Commun. 8, 701 (2017).

    PubMed  PubMed Central  Google Scholar 

  92. 92.

    Zhang, W., Banerjee-Ghosh, K., Tassinari, F. & Naaman, R. Enhanced electrochemical water splitting with chiral molecule-coated Fe3O4 nano-particles. ACS Energy Lett. 3, 2308–2313 (2018).

    CAS  Google Scholar 

  93. 93.

    Ralph, D. C. & Stiles, M. D. Spin transfer torques. J. Magn. Magn. Mater. 320, 1190–1216 (2008).

    CAS  Google Scholar 

  94. 94.

    Yoda, H. et al. High efficient spin transfer torque writing on perpendicular magnetic tunnel junctions for high density MRAMs. Curr. Appl. Phys. 10, e87–e89 (2010).

    Google Scholar 

  95. 95.

    Linder, J. & Robinson, J. W. A. Superconducting spintronics. Nat. Phys. 11, 307–315 (2015).

    CAS  Google Scholar 

  96. 96.

    Keizer, R. S. et al. A spin triplet supercurrent through the half-metallic ferromagnet CrO2. Nature 439, 825–827 (2006).

    CAS  PubMed  Google Scholar 

  97. 97.

    Anwar, M. S., Czeschka, F., Hesselberth, M., Porcu, M. & Aarts, J. Long-range supercurrents through half-metallic ferromagnetic CrO2. Phys. Rev. B 82, 100501 (2011).

    Google Scholar 

  98. 98.

    Khaire, T. S., Khasawneh, M. A., Pratt, W. P. Jr & Birge, N. O. Observation of spin-triplet superconductivity in Co-Based Josephson junctions. Phys. Rev. Lett. 104, 137002 (2010).

    PubMed  Google Scholar 

  99. 99.

    Robinson, J. W. A., Witt, J. D. S. & Blamire, M. G. Controlled injection of spin-triplet supercurrent into a strong ferromagnet. Science 329, 59–61 (2010).

    CAS  PubMed  Google Scholar 

  100. 100.

    Almog, B., Hacohen-Gourgy, S., Tsukernik, A. & Deutscher, G. Long-range odd triplet order parameter with equal spin pairing in diffusive Co/In contacts. Phys. Rev. B 80, 220512 (2009).

    Google Scholar 

  101. 101.

    Kalcheim, Y., Kirzhner, T., Koren, G. & Millo, O. Long range proximity effect in La2/3Ca1/3MnO3 /(100)YBa2Cu3O7−δ ferromagnet/superconductor bilayers: evidence for induced triplet superconductivity in the ferromagnet. Phys. Rev. B 83, 064510 (2011).

    Google Scholar 

  102. 102.

    Kalcheim, Y., Robinson, J., Eglimez, M., Blamire, M. G. & Millo, O. Evidence for anisotropic triplet superconductor order parameter induced in L2/3C1/3MnO3 ferromagnet in proximity to Pr1.85Ce0.15CuO4 superconductor. Phys. Rev. B 85, 104504 (2012).

    Google Scholar 

  103. 103.

    Kalcheim, Y. et al. Magnetic field dependence of the proximity induced triplet-superconductivity at ferromagnet/superconductor junctions. Phys. Rev. B 89, 180506 (2014).

    Google Scholar 

  104. 104.

    Kalcheim, Y., Millo, O., Di Bernardo, A., Pal, A. & Robinson, J. W. A. Inverse proximity effect at NbN-La2/3Ca1/3MnO3 superconductor-ferromagnet interface: Evidence for triplet pairing in the superconductor. Phys. Rev. B 92, 060501 (2015).

    Google Scholar 

  105. 105.

    Di Bernardo, A. et al. p-wave triggered superconductivity in single-layer graphene on an electron-doped oxide superconductor. Nat. Commun. 8, 14024 (2017).

    PubMed  PubMed Central  Google Scholar 

  106. 106.

    Di Bernardo, A. et al. Signature of magnetic-dependent gapless odd frequency states at superconductor/ferromagnet interfaces. Nat. Commun. 6, 8053 (2015).

    PubMed  PubMed Central  Google Scholar 

  107. 107.

    Gu, Y., Halász, G. B., Robinson, J. W. A. & Blamire, M. G. Large superconducting spin valve effect and ultrasmall exchange splitting in epitaxial rare-earth-niobium trilayers. Phys. Rev. Lett. 115, 06720 (2015).

    Google Scholar 

  108. 108.

    Gu, Y. et al. Magnetic state controllable critical temperature in epitaxial Ho/Nb bilayers. APL Mater. 2, 046103 (2014).

    Google Scholar 

  109. 109.

    Alpern, H. et al. Unconventional superconductivity in Nb films by adsorbed chiral molecules. New J. Phys. 18, 113048 (2016).

    Google Scholar 

  110. 110.

    Sukenik, N. et al. Proximity effect through chiral molecules in Nb-graphene-based devices. Adv. Mater. Technol. 3, 1700300 (2018).

    Google Scholar 

  111. 111.

    Bloom, B. P., Graff, B. M., Ghosh, S., Beratan, D. N. & Waldeck, D. H. Chirality control of electron transfer in quantum dot assemblies. J. Am. Chem. Soc. 139, 9038–9043 (2017).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

R.N. and D.H.W. acknowledge support by the US Department of Energy (DOE), grant DE-SC0010662/ER46952. R.N., Y.P. and D.H.W. acknowledge support from the Templeton Foundation. R.N. and Y.P. acknowledge support from the Volkswagen Foundation. The authors thank H. Vega for the graphical work.

Reviewer information

Nature Reviews Chemistry thanks J. Robinson and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Ron Naaman.

Ethics declarations

Competing interests

Kiralis Technology Ltd. was recently established and received a licence from The Hebrew University and the Weizmann Institute to commercialize the enantioseparation technology.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Naaman, R., Paltiel, Y. & Waldeck, D.H. Chiral molecules and the electron spin. Nat Rev Chem 3, 250–260 (2019). https://doi.org/10.1038/s41570-019-0087-1

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing