Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Surface premelting of water ice

Abstract

Frozen water has a quasi-liquid layer at its surface that exists even well below the bulk melting temperature; the formation of this layer is termed premelting. The nature of the premelted surface layer, its structure, thickness and how the layer changes with temperature have been debated for over 160 years, since Faraday first postulated the idea of a quasi-liquid layer on ice. Here, we briefly review current opinions and evidence on premelting at ice surfaces, gathering data from experiments and computer simulations. In particular, spectroscopy, microscopy and simulation have recently made important contributions to our understanding of this field. The identification of premelting inhomogeneities, in which portions of the surface are quasi-liquid-like and other parts of the surface are decorated with liquid droplets, is an intriguing recent development. Untangling the interplay of surface structure, supersaturation and surface defects is currently a major challenge. Similarly, understanding the coupling of surface structure with reactivity at the surface and crystal growth is a pressing problem in understanding the behaviour and formation of ice on Earth.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Crystal and surface structures of ice.
Fig. 2: The varied morphologies of hexagonal ice (Ih).
Fig. 3: A selective overview of estimates of approximate QLL thickness obtained from physical measurement.
Fig. 4: Timeline of some of the key developments in unravelling the nature of the QLL of ice, as selected by the authors.
Fig. 5: Inhomogeneity in the outer two bilayers of ice.
Fig. 6: The emergence of two distinct and immiscible QLLs over an ice surface.
Fig. 7: Heterogeneity in the QLL obtained through grand canonical molecular dynamics.

Similar content being viewed by others

References

  1. Dash, J. G., Fu, H. & Wettlaufer, J. S. The premelting of ice and its environmental consequences. Rep. Prog. Phys. 58, 115–167 (1995).

    Article  CAS  Google Scholar 

  2. Faraday, M. On certain conditions of freezing water. Athenaeum 1181, 640–641 (1850).

    Google Scholar 

  3. Pruppacher, H. & Klett, J. Microphysics of Clouds and Precipitation Vol. 18 (Springer Netherlands, 2010).

  4. Bailey, M. & Hallett, J. Growth rates and habits of ice crystals between -20C and -70C. J. Atmos. Sci. 61, 514–544 (2004).

    Article  Google Scholar 

  5. Nakaya, U. Snow crystals and aerosols. J. Fac. Sci. Hokkaido Univ. 2 Phys. 4, 341–354 (1955).

    CAS  Google Scholar 

  6. Hammonds, K. et al. Correction for Brumberg et al., Single-crystal Ih ice surfaces unveil connection between macroscopic and molecular structure. Proc. Natl Acad. Sci. USA 114, E5276 (2017).

    Article  CAS  Google Scholar 

  7. Elbaum, M., Lipson, S. G. & Wettlaufer, J. S. Evaporation preempts complete wetting. Europhys. Lett. 29, 457–462 (1995).

    Article  CAS  Google Scholar 

  8. Bonn, D. & Ross, D. Wetting transitions. Rep. Prog. Phys. 64, 1085–1163 (2001).

    Article  CAS  Google Scholar 

  9. Bonn, D., Eggers, J., Indekeu, J. & Meunier, J. Wetting and spreading. Rev. Mod. Phys. 81, 739–805 (2009).

    Article  CAS  Google Scholar 

  10. Stranski, I. N. Uber den Schmelzvorgang bei nichtpolaren Kristallen [German]. Naturwissenschaften 28, 425–433 (1942).

    Article  Google Scholar 

  11. Wettlaufer, J. S. Ice surfaces: macroscopic effects of microscopic structure. Philos. Trans. R. Soc. Lond. A 357, 3403–3425 (1999).

    Article  CAS  Google Scholar 

  12. Frenken, J. Kinetic Theory of Liquids (Oxford Univ. Press, 1946).

  13. Golecki, I. & Jaccard, C. Intrinsic surface disorder in ice near the melting point. J. Phys. C Solid State Phys. 11, 4229–4237 (1978).

    Article  CAS  Google Scholar 

  14. Mizuno, Y. & Hanafusa, N. Studies of surface properties of ice using nuclear magnetic resonance. J. Phys. Colloques 48, C1-511–C1-517 (1987).

    Article  Google Scholar 

  15. Dosch, H., Lied, A. & Bilgram, J. H. Glancing-angle X-ray scattering studies of the premelting of ice surfaces. Surf. Sci. 327, 145–164 (1995).

    Article  CAS  Google Scholar 

  16. Sánchez, M. A. et al. Experimental and theoretical evidence for bilayer-by-bilayer surface melting of crystalline ice. Proc. Natl Acad. Sci. USA 114, 227–232 (2017).

    Article  PubMed  CAS  Google Scholar 

  17. Wei, X., Miranda, P. B. & Shen, Y. R. Surface vibrational spectroscopic study of surface melting of ice. Phys. Rev. Lett. 86, 1554–1557 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Conde, M. M., Vega, C. & Patrykiejew, A. The thickness of a liquid layer on the free surface of ice as obtained from computer simulation. J. Chem. Phys. 129, 014702 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Beaglehole, D. & Nason, D. Transition layer on the surface on ice. Surf. Sci. 96, 357–363 (1980).

    Article  CAS  Google Scholar 

  20. Bluhm, H., Ogletree, D. F., Fadley, C. S., Hussain, Z. & Salmeron, M. The premelting of ice studied with photoelectron spectroscopy. J. Phys. Condens. Matter 14, L227–L233 (2002).

    Article  CAS  Google Scholar 

  21. Petrenko, V. F. The Surface of Ice: Special Report 94-22 (US Army Corps of Engineers, Cold Regions Research & Engineering Laboratory, 1994).

  22. Petrenko, V. F. & Whitworth, R. W. Physics Of Ice (Oxford Univ. Press, 1999).

  23. Shultz, M. J. Ice surfaces. Annu. Rev. Phys. Chem. 68, 285–304 (2017).

    Article  CAS  PubMed  Google Scholar 

  24. Bartels-Rausch, T. et al. A review of air-ice chemical and physical interactions (AICI): liquids, quasi-liquids, and solids in snow. Atmos. Chem. Phys. 14, 1587–1633 (2014).

    Article  CAS  Google Scholar 

  25. Li, Y. & Somorjai, G. A. Surface premelting of ice. J. Phys. Chem. C 111, 9631–9637 (2007).

    Article  CAS  Google Scholar 

  26. Limmer, D. T. Closer look at the surface of ice. Proc. Natl Acad. Sci. USA 113, 12347–12349 (2016).

    Article  CAS  PubMed  Google Scholar 

  27. Maeno, N. Z. U. & Nishimura, H. The electrical properties of ice surfaces. J. Glaciol. 21, 193–205 (1978).

    Article  CAS  Google Scholar 

  28. Kouchi, A., Furukawa, Y. & Kuroda, T. X-ray diffraction pattern of quasi-liquid layer on ice crystal surface. J. Phys. Colloques 48, C1-675–C1-677 (1987).

    Google Scholar 

  29. Dosch, H., Lied, A. & Bilgram, J. H. Disruption of the hydrogen-bonding network at the surface of Ihice near surface premelting. Surf. Sci. 366, 43–50 (1996).

    Article  CAS  Google Scholar 

  30. Furukawa, Y., Yamamoto, M. & Kuroda, T. Ellipsometric study of the transition layer on the surface of an ice crystal. J. Cryst. Growth 82, 665–677 (1987).

    Article  CAS  Google Scholar 

  31. Furukawa, Y. & Nada, H. Anisotropic surface melting of an ice crystal and its relationship to growth forms. J. Phys. Chem. B 101, 6167–6170 (1997).

    Article  CAS  Google Scholar 

  32. Elbaum, M., Lipson, S. G. & Dash, J. G. Optical study of surface melting on ice. J. Cryst. Growth 129, 491–505 (1993).

    Article  CAS  Google Scholar 

  33. Sazaki, G., Zepeda, S., Nakatsubo, S., Yokoyama, E. & Furukawa, Y. Elementary steps at the surface of ice crystals visualized by advanced optical microscopy. Proc. Natl Acad. Sci. USA 107, 19702–19707 (2010).

    Article  CAS  PubMed  Google Scholar 

  34. Murata, K., Asakawa, H., Nagashima, K., Furukawa, Y. & Sazaki, G. Thermodynamic origin of surface melting on ice crystals. Proc. Natl Acad. Sci. USA 113, E6741–E6748 (2016).

    Article  CAS  PubMed  Google Scholar 

  35. Döppenschmidt, A. & Butt, H. J. Measuring the thickness of the liquid-like layer on ice surfaces with atomic force microscopy. Langmuir 16, 6709–6714 (2000).

    Article  CAS  Google Scholar 

  36. Mazzega, E., Del Pennino, U., Loria, A. & Mantovani, S. Volta effect and liquid-like layer at the ice surface. J. Chem. Phys. 64, 1028–1031 (1976).

    Article  CAS  Google Scholar 

  37. Weyl, W. Surface structure of water and some of its physical and chemical manifestations. J. Colloid Sci. 6, 389–405 (1951).

    Article  CAS  Google Scholar 

  38. Fletcher, N. H. Surface structure of water and ice. Phil. Mag. 7, 255–269 (1962).

    Article  CAS  Google Scholar 

  39. Fletcher, N. H. Surface structure of water and ice. II. A revised model. Phil. Mag. 18, 1287–1300 (1968).

    Article  CAS  Google Scholar 

  40. Fletcher, N. H. Reconstruction of ice crystal surfaces at low temperatures. Phil. Mag. 66, 109–115 (1992).

    Article  CAS  Google Scholar 

  41. Buch, V., Groenzin, H., Li, I., Shultz, M. J. & Tosatti, E. Proton order in the ice crystal surface. Proc. Natl Acad. Sci. USA 105, 5969–5974 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Pan, D. et al. Surface energy and surface proton order of the ice Ih basal and prism surfaces. J. Phys. Condens. Matter 22, 074209 (2010).

    Article  PubMed  CAS  Google Scholar 

  43. Pan, D. et al. Surface energy and surface proton order of ice Ih. Phys. Rev. Lett. 101, 155703 (2008).

    Article  PubMed  CAS  Google Scholar 

  44. Bishop, C. L. et al. On thin ice: surface order and disorder during pre-melting. Faraday Discuss. 141, 277–292 (2008).

    Article  Google Scholar 

  45. Elbaum, M. & Schick, M. Application of the theory of dispersion forces to the surface melting of ice. Phys. Rev. Lett. 66, 1713–1716 (1991).

    Article  CAS  PubMed  Google Scholar 

  46. Elbaum, M. & Schick, M. On the failure of water to freeze from its surface. J. Phys. I 1, 1665–1668 (1991).

    CAS  Google Scholar 

  47. Dzyaloshinskii, I. E., Lifshitz, E. M. & Pitaevskii, L. P. The general theory of van der Waals forces. Adv. Phys. 10, 165–209 (1961).

    Article  Google Scholar 

  48. Löwen, H. & Lipowsky, R. Surface melting away from equilibrium. Phys. Rev. B 43, 3507–3513 (1991).

    Article  Google Scholar 

  49. Somorjai, G. A. Introduction to Surface Chemistry and Catalysis (John Wiley & Sons, 1994).

  50. Materer, N. et al. Molecular surface structure of a low-temperature ice Ih(0001) crystal. J. Phys. Chem. 99, 6267–6269 (1995).

    Article  CAS  Google Scholar 

  51. Materer, N. et al. Molecular surface structure of ice(0001): dynamical low-energy electron diffraction, total-energy calculations and molecular dynamics simulations. Surf. Sci. 381, 190–210 (1997).

    Article  CAS  Google Scholar 

  52. Kroes, G. J. Surface melting of the (0001) face of TIP4P ice. Surf. Sci. 275, 365–382 (1992).

    Article  CAS  Google Scholar 

  53. Weber, T. A. & Stillinger, F. H. Molecular dynamics study of ice crystallite melting. J. Phys. Chem. 87, 4277–4281 (1983).

    Article  CAS  Google Scholar 

  54. Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. & Klein, M. L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926–935 (1983).

    Article  CAS  Google Scholar 

  55. Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F. & Hermans, J. in Intermolecular Forces (ed. Pullman, B.) 331–342 (D. Reidel Publishing Company, 1981).

  56. Hayward, J. A. & Reimers, J. R. Unit cells for the simulation of hexagonal ice. J. Chem. Phys. 106, 1518–1529 (1997).

    Article  CAS  Google Scholar 

  57. Gillan, M. J., Alfè, D. & Michaelides, A. Perspective: how good is DFT for water? J. Chem. Phys. 144, 130901 (2016).

    Article  PubMed  CAS  Google Scholar 

  58. Cisneros, G. A. et al. Modeling molecular interactions in water: from pairwise to many-body potential energy functions. Chem. Rev. 116, 7501–7528 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Nada, H. & Furukawa, Y. Anisotropic properties of ice / water interface: a molecular dynamics study. Jpn J. Appl. Phys. 34, 583–588 (1995).

    Article  CAS  Google Scholar 

  60. Fernández, R. G., Abascal, J. L. F. & Vega, C. The melting point of ice Ih for common water models calculated from direct coexistence of the solid-liquid interface. J. Chem. Phys. 124, 144506 (2006).

    Article  PubMed  CAS  Google Scholar 

  61. Bolton, K. & Pettersson, J. B. C. A. Molecular dynamics study of the long-time ice ih surface dynamics. J. Phys. Chem. B 104, 1590–1595 (2000).

    Article  CAS  Google Scholar 

  62. Smit, W. J., Versluis, J., Backus, E. H. G., Bonn, M. & Bakker, H. J. Reduced near-resonant vibrational coupling at the surfaces of liquid water and ice. J. Phys. Chem. Lett. 9, 1290–1294 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Glebov, A., Graham, A. P., Menzel, A., Toennies, J. P. & Senet, P. A helium atom scattering study of the structure and phonon dynamics of the ice surface. J. Chem. Phys. 112, 11011–11022 (2000).

    Article  CAS  Google Scholar 

  64. Avidor, N. & Allison, W. Helium diffraction as a probe of structure and proton order on model ice surfaces. J. Phys. Chem. Lett. 7, 4520–4523 (2016).

    Article  CAS  PubMed  Google Scholar 

  65. Abascal, J. L. F., Sanz, E., Fernández, R. G. & Vega, C. A potential model for the study of ices and amorphous water: TIP4P/ice. J. Chem. Phys. 122, 234511 (2005).

    Article  CAS  PubMed  Google Scholar 

  66. Groenzin, H., Li, I., Buch, V. & Shultz, M. J. The single-crystal, basal face of ice Ihinvestigated with sum frequency generation. J. Chem. Phys. 127, 214502 (2007).

    Article  PubMed  CAS  Google Scholar 

  67. Sun, Z., Pan, D., Xu, L. & Wang, E. Role of proton ordering in adsorption preference of polar molecule on ice surface. Proc. Natl Acad. Sci. USA 109, 13177–13181 (2012).

    Article  CAS  PubMed  Google Scholar 

  68. Tribello, G. A., Slater, B. & Salzmann, C. G. A blind structure prediction of ice XIV. J. Am. Chem. Soc. 128, 12594–12595 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. Tribello, G. A. & Slater, B. Proton ordering energetics in ice phases. Chem. Phys. Lett. 425, 246–250 (2006).

    Article  CAS  Google Scholar 

  70. Kuo, J.-L., Coe, J. V., Singer, S. J., Band, Y. B. & Ojamäe, L. On the use of graph invariants for efficiently generating hydrogen bond topologies and predicting physical properties of water clusters and ice. J. Chem. Phys. 114, 2527 (2001).

    Article  CAS  Google Scholar 

  71. Singer, S. J. et al. Hydrogen-bond topology and the ice VII/VIII and Ice Ih/XI proton-ordering phase transitions. Phys. Rev. Lett. 94, 135701 (2005).

    Article  PubMed  CAS  Google Scholar 

  72. Knight, C. & Singer, S. J. Prediction of a phase transition to a hydrogen bond ordered form of ice VI. J. Phys. Chem. B 109, 21040–21046 (2005).

    Article  CAS  PubMed  Google Scholar 

  73. Fan, X., Bing, D., Zhang, J., Shen, Z. & Kuo, J.-L. Predicting the hydrogen bond ordered structures of ice Ih, II, III, VI and ice VII: DFT methods with localized based set. Comput. Mater. Sci. 49, S170–S175 (2010).

    Article  Google Scholar 

  74. Del Ben, M., VandeVondele, J. & Slater, B. Periodic MP2, RPA, and boundary condition assessment of hydrogen ordering in ice XV. J. Phys. Chem. Lett. 5, 4122–4128 (2014).

    Article  PubMed  CAS  Google Scholar 

  75. Engel, E. A., Monserrat, B. & Needs, R. J. Anharmonic nuclear motion and the relative stability of hexagonal and cubic ice. Phys. Rev. X 5, 021033 (2015).

    Google Scholar 

  76. Engel, E. A., Monserrat, B. & Needs, R. J. Vibrational effects on surface energies and band gaps in hexagonal and cubic ice. J. Chem. Phys. 145, 044703 (2016).

    Article  PubMed  CAS  Google Scholar 

  77. Abascal, J. L. F. & Vega, C. A general purpose model for the condensed phases of water: TIP4P/2005. J. Chem. Phys. 123, 234505 (2005).

    Article  CAS  PubMed  Google Scholar 

  78. Suter, M. T., Andersson, P. U. & Pettersson, J. B. C. Surface properties of water ice at 150–191K studied by elastic helium scattering. J. Chem. Phys. 125, 174704 (2006).

    Article  PubMed  CAS  Google Scholar 

  79. Tammann, G. Zur Überhitzung von Kristallen [German]. Z. Phys. Chem. 68, 257 (1909).

    Google Scholar 

  80. Carignano, M. A., Shepson, P. B. & Szleifer, I. Molecular dynamics simulations of ice growth from supercooled water. Mol. Phys. 103, 2957–2967 (2005).

    Article  CAS  Google Scholar 

  81. Nada, H. & Van Der Eerden, J. P. J. M. An intermolecular potential model for the simulation of ice and water near the melting point: a six-site model of H2O. J. Chem. Phys. 118, 7401–7413 (2003).

    Article  CAS  Google Scholar 

  82. Abascal, J. L. F., Fernández, R. G., Vega, C. & Carignano, M. A. The melting temperature of the six site potential model of water. J. Chem. Phys. 125, 166101 (2006).

    Article  PubMed  CAS  Google Scholar 

  83. Ambler, M., Vorselaars, B., Allen, M. P. & Quigley, D. Solid-liquid interfacial free energy of ice Ih, ice Ic, and ice 0 within a mono-atomic model of water via the capillary wave method. J. Chem. Phys. 146, 074701 (2017).

    Article  PubMed  CAS  Google Scholar 

  84. Espinosa, J. R., Vega, C. & Sanz, E. Ice-water interfacial free energy for the TIP4P, TIP4P/2005, TIP4P/ice, and mW models as obtained from the mold integration technique. J. Phys. Chem. C 120, 8068–8075 (2016).

    Article  CAS  Google Scholar 

  85. McBride, C., Vega, C., Sanz, E., MacDowell, L. G. & Abascal, J. L. F. The range of meta stability of ice-water melting for two simple models of water. Mol. Phys. 103, 1–5 (2005).

    Article  CAS  Google Scholar 

  86. Vega, C., Martin-Conde, M. & Patrykiejew, A. Absence of superheating for ice Ih with a free surface: a new method of determining the melting point of different water models. Mol. Phys. 104, 3583–3592 (2006).

    Article  CAS  Google Scholar 

  87. Limmer, D. T. & Chandler, D. Premelting, fluctuations, and coarse-graining of water-ice interfaces. J. Chem. Phys. 141, 18505C (2014).

    Article  CAS  Google Scholar 

  88. Malkin, T. L. et al. Stacking disorder in ice I. Phys. Chem. Chem. Phys. 17, 60–76 (2015).

    Article  CAS  PubMed  Google Scholar 

  89. Moore, E. B. & Molinero, V. Structural transformation in supercooled water controls the crystallization rate of ice. Nature 479, 506–508 (2011).

    Article  CAS  PubMed  Google Scholar 

  90. Moore, E. B. & Molinero, V. Ice crystallization in water’s ‘no-man’s land’. J. Chem. Phys. 132, 244504 (2010).

    Article  PubMed  CAS  Google Scholar 

  91. Hudait, A. & Molinero, V. What determines the ice polymorph in clouds? J. Am. Chem. Soc. 138, 8958–8967 (2016).

    Article  CAS  PubMed  Google Scholar 

  92. Moore, E. B. & Molinero, V. Is it cubic? Ice crystallization from deeply supercooled water. Phys. Chem. Chem. Phys. 13, 20008 (2011).

    Article  CAS  PubMed  Google Scholar 

  93. Li, T., Donadio, D., Russo, G. & Galli, G. Homogeneous ice nucleation from supercooled water. Phys. Chem. Chem. Phys. 13, 19807 (2011).

    Article  CAS  PubMed  Google Scholar 

  94. Pedevilla, P., Cox, S. J., Slater, B. & Michaelides, A. Can ice-like structures form on non-ice-like substrates? The example of the K-feldspar microcline. J. Phys. Chem. C Nanomater. Interfaces 120, 6704–6713 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Cox, S. J., Kathmann, S. M., Slater, B. & Michaelides, A. Molecular simulations of heterogeneous ice nucleation. I. Controlling ice nucleation through surface hydrophilicity. J. Chem. Phys. 142, 184704 (2015).

    Article  PubMed  CAS  Google Scholar 

  96. Cox, S. J., Kathmann, S. M., Slater, B. & Michaelides, A. Molecular simulations of heterogeneous ice nucleation. II. Peeling back the layers. J. Chem. Phys. 142, 184705 (2015).

    Article  PubMed  CAS  Google Scholar 

  97. Lupi, L., Hudait, A. & Molinero, V. Heterogeneous nucleation of ice on carbon surfaces. J. Am. Chem. Soc. 136, 3156–3164 (2014).

    Article  CAS  PubMed  Google Scholar 

  98. Hudait, A., Allen, M. T. & Molinero, V. Sink or swim: ions and organics at the ice–air interface. J. Am. Chem. Soc. 139, 10095–10103 (2017).

    Article  CAS  PubMed  Google Scholar 

  99. Qiu, Y. & Molinero, V. Why is it so difficult to identify the onset of ice premelting? J. Phys. Chem. Lett. 9, 5179–5182 (2018).

    Article  CAS  PubMed  Google Scholar 

  100. Shepherd, T. D., Koc, M. A. & Molinero, V. The quasi-liquid layer of ice under conditions of methane clathrate formation. J. Phys. Chem. C 116, 12172–12180 (2012).

  101. Pickering, I., Paleico, M., Sirkin, Y. A. P., Scherlis, D. A. & Factorovich, M. H. Grand canonical investigation of the quasi liquid layer of ice: is it liquid? J. Phys. Chem. B 122, 4880–4890 (2018).

    Article  CAS  PubMed  Google Scholar 

  102. Watkins, M. et al. Large variation of vacancy formation energies in the surface of crystalline ice. Nat. Mater. 10, 794–798 (2011).

    Article  CAS  PubMed  Google Scholar 

  103. Mantovani, S., Valeri, S., Loria, A. & Del Pennino, U. Viscosity of the ice surface layer. J. Chem. Phys. 72, 1077–1083 (1980).

    Article  CAS  Google Scholar 

  104. Pinheiro Moreira, P. A. F. & De Koning, M. Trapping of hydrochloric and hydrofluoric acid at vacancies on and underneath the ice Ih basal-plane surface. J. Phys. Chem. A 117, 11066–11071 (2013).

    Article  PubMed  CAS  Google Scholar 

  105. Smit, W. J. & Bakker, H. J. The surface of ice is like supercooled liquid water. Angew. Chem. Int. Ed. Engl. 56, 15540–15544 (2017).

    Article  CAS  PubMed  Google Scholar 

  106. Michaelides, A. & Slater, B. Melting the ice one layer at a time. Proc. Natl Acad. Sci. USA 114, 195–197 (2017).

    Article  CAS  PubMed  Google Scholar 

  107. Sadtchenko, V. & Ewing, G. E. A new approach to the study of interfacial melting of ice: infrared spectroscopy. Can. J. Phys. 81, 333–341 (2003).

    Article  CAS  Google Scholar 

  108. Sadtchenko, V. & Ewing, G. E. Interfacial melting of thin ice films: an infrared study. J. Chem. Phys. 116, 4686–4697 (2002).

    Article  CAS  Google Scholar 

  109. Asakawa, H., Sazaki, G., Nagashima, K., Nakatsubo, S. & Furukawa, Y. Two types of quasi-liquid layers on ice crystals are formed kinetically. Proc. Natl Acad. Sci. USA 113, 1749–1753 (2016).

    Article  CAS  PubMed  Google Scholar 

  110. Inomata, M. et al. Temperature dependence of the growth kinetics of elementary spiral steps on ice basal faces grown from water vapor. Cryst. Growth Des. 18, 786–793 (2018).

    Article  CAS  Google Scholar 

  111. Asakawa, H., Sazaki, G., Nagashima, K., Nakatsubo, S. & Furukawa, Y. Prism and other high-index faces of ice crystals exhibit two types of quasi-liquid layers. Cryst. Growth Des. 15, 3339–3344 (2015).

    Article  CAS  Google Scholar 

  112. Sazaki, G., Zepeda, S., Nakatsubo, S., Yokomine, M. & Furukawa, Y. Quasi-liquid layers on ice crystal surfaces are made up of two different phases. Proc. Natl Acad. Sci. USA 109, 1052–1055 (2012).

    Google Scholar 

  113. Sazaki, G., Asakawa, H., Nagashima, K., Nakatsubo, S. & Furukawa, Y. How do quasi-liquid layers emerge from ice crystal surfaces? Cryst. Growth Des. 13, 1761–1766 (2013).

    Article  CAS  Google Scholar 

  114. Sazaki, G., Asakawa, H., Nagashima, K., Nakatsubo, S. & Furukawa, Y. Double spiral steps on Ih ice crystal surfaces grown from water vapor just below the melting point. Cryst. Growth Des. 14, 2133–2137 (2014).

    Article  CAS  Google Scholar 

  115. Thürmer, K. & Nie, S. Formation of hexagonal and cubic ice during low-temperature growth. Proc. Natl Acad. Sci. USA 110, 11757–11762 (2013).

    Article  PubMed  Google Scholar 

  116. Murata, K. I., Asakawa, H., Nagashima, K., Furukawa, Y. & Sazaki, G. In situ determination of surface tension-to-shear viscosity ratio for quasiliquid layers on ice crystal surfaces. Phys. Rev. Lett. 115, 256103 (2015).

    Article  CAS  Google Scholar 

  117. Bar-Ziv, R. & Safran, S. A. Surface melting of ice induced by hydrocarbon films. Langmuir 9, 2786–2788 (1993).

    Article  CAS  Google Scholar 

  118. Liu, J. et al. Distinct ice patterns on solid surfaces with various wettabilities. Proc. Natl Acad. Sci. USA 114, 11285-11290 (2017).

    Google Scholar 

  119. Molinero, V. & Moore, E. B. Water modeled as an intermediate element between carbon and silicon. J. Phys. Chem. B 113, 4008–4016 (2009).

    Article  CAS  PubMed  Google Scholar 

  120. Benet, J., Llombart, P., Sanz, E. & MacDowell, L. G. Premelting-induced smoothening of the ice-vapor interface. Phys. Rev. Lett. 117, 096101 (2016).

    Article  PubMed  CAS  Google Scholar 

  121. Lohmann, U., Broekhuizen, K., Leaitch, R., Shantz, N. & Abbatt, J. How efficient is cloud droplet formation of organic aerosols? Geophys. Res. Lett. 31, L05108 (2004).

    Article  CAS  Google Scholar 

  122. Kang, H. Chemistry of ice surfaces. Elementary reaction steps on ice studied by reactive ion scattering. Acc. Chem. Res. 38, 893–900 (2005).

    Article  CAS  PubMed  Google Scholar 

  123. Stubenrauch, C. J. et al. Assessment of global cloud datasets from satellites: project and database initiated by the GEWEX radiation panel. Bull. Am. Meteorol. Soc. 94, 1031–1049 (2013).

    Article  Google Scholar 

  124. Shilling, J. E. et al. Measurements of the vapor pressure of cubic ice and their implications for atmospheric ice clouds. Geophys. Res. Lett. 33, L17801 (2006).

    Article  Google Scholar 

  125. Nachbar, M., Duft, D. & Leisner, T. The vapor pressure over nano-crystalline ice. Atmos. Chem. Phys. 18, 3419–3431 (2018).

    Article  CAS  Google Scholar 

  126. Murray, B. J., Malkin, T. L. & Salzmann, C. G. The crystal structure of ice under mesospheric conditions. J. Atmos. Sol. Terr. Phys. 127, 78–82 (2015).

    Article  Google Scholar 

  127. Kanji, Z. A. et al. Overview of ice nucleating particles. Meteorol. Monogr. 58, 1.1–1.33 (2017).

    Article  Google Scholar 

  128. Whale, T. F., Holden, M. A., Wilson, T. W., O’Sullivan, D. & Murray, B. J. The enhancement and suppression of immersion mode heterogeneous ice-nucleation by solutes. Chem. Sci. 9, 4142–4151 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Wren, S. N. & Donaldson, D. J. Laboratory study of pH at the air–ice interface. J. Phys. Chem. C 116, 10171–10180 (2012).

    Article  CAS  Google Scholar 

  130. Buch, V., Milet, A., Vacha, R., Jungwirth, P. & Devlin, J. P. Water surface is acidic. Proc. Natl Acad. Sci. USA 104, 7342–7347 (2007).

    Article  CAS  PubMed  Google Scholar 

  131. Watkins, M., VandeVondele, J. & Slater, B. Point defects at the ice (0001) surface. Proc. Natl Acad. Sci. USA 107, 12429–12434 (2010).

    Article  CAS  PubMed  Google Scholar 

  132. Kim, S., Park, E. & Kang, H. Segregation of hydroxide ions to an ice surface. J. Chem. Phys. 135, 074703 (2011).

    Article  PubMed  CAS  Google Scholar 

  133. Orem, M. W. & Adamson, A. W. Physical adsorption of vapor on ice. J. Colloid Interface Sci. 31, 278–286 (1969).

    Article  CAS  Google Scholar 

  134. Kahan, T. F. & Donaldson, D. J. Photolysis of polycyclic aromatic hydrocarbons on water and ice surfaces. J. Phys. Chem. A 111, 1277–1285 (2007).

    Article  CAS  PubMed  Google Scholar 

  135. Ardura, D., Kahan, T. F. & Donaldson, D. J. Self-association of naphthalene at the air−ice interface. J. Phys. Chem. A 113, 7353–7359 (2009).

    Article  CAS  PubMed  Google Scholar 

  136. Gunz, D. & Hoffmann, M. Field investigations on the snow chemistry in central and southern California 1. Inorganic ions and hydrogen peroxide. Atmos. Environ. 24A, 1661–1671 (1990).

    Article  Google Scholar 

  137. Conklin, M. H. & Bales, R. C. SO2 uptake on ice spheres: liquid nature of the ice-air interface. J. Geophys. Res. Atmos. 98, 16851–16855 (1993).

    Article  CAS  Google Scholar 

  138. Conklin, M. H. & Bales, R. C. Correction to “SO2 uptake on ice spheres: liquid nature of the ice-air interface”. J. Geophys. Res. Atmos. 99, 8351 (1994).

    Article  Google Scholar 

  139. Ervens, B. Modeling the processing of aerosol and trace gases in clouds and fogs. Chem. Rev. 115, 4157–4198 (2015).

    Article  CAS  PubMed  Google Scholar 

  140. Ocampo, J. & Klinger, J. Adsorption of N2 and CO2 on ice. J. Colloid Interface Sci. 86, 377–383 (1982).

    Article  CAS  Google Scholar 

  141. Bolton, K. & Pettersson, J. B. C. Ice-catalyzed ionization of hydrochloric acid. J. Am. Chem. Soc. 123, 7360–7363 (2001).

    Article  CAS  PubMed  Google Scholar 

  142. Fu, T. M. et al. Global budgets of atmospheric glyoxal and methylglyoxal, and implications for formation of secondary organic aerosols. J. Geophys. Res. Atmos. 113, D15303 (2008).

    Article  CAS  Google Scholar 

  143. Fukuta, N. Activation of atmospheric particles as ice nuclei in cold and dry air. J. Atmos. Sci. 23, 741–750 (1966).

    Article  CAS  Google Scholar 

  144. Campbell, J. M., Meldrum, F. C. & Christenson, H. K. Observing the formation of ice and organic crystals in active sites. Proc. Natl Acad. Sci. USA 114, 810–815 (2017).

    Article  CAS  PubMed  Google Scholar 

  145. Kuhs, W. F., Sippel, C., Falenty, A. & Hansen, T. C. Extent and relevance of stacking disorder in ‘ice Ic’. Proc. Natl Acad. Sci. USA 109, 21259–21264 (2012).

    Article  CAS  PubMed  Google Scholar 

  146. Zhang, D. et al. Atomic-resolution transmission electron microscopy of electron beam–sensitive crystalline materials. Science 359, 675–679 (2018).

    Article  CAS  PubMed  Google Scholar 

  147. Reddy, S. K. et al. On the accuracy of the MB-pol many-body potential for water: interaction energies, vibrational frequencies, and classical thermodynamic and dynamical properties from clusters to liquid water and ice. J. Chem. Phys. 145, 194504 (2016).

    Article  PubMed  CAS  Google Scholar 

  148. Bartók, A. P., Gillan, M. J., Manby, F. R. & Csányi, G. Machine-learning approach for one- and two-body corrections to density functional theory: applications to molecular and condensed water. Phys. Rev. B 88, 054104 (2013).

    Article  CAS  Google Scholar 

  149. Morawietz, T., Singraber, A., Dellago, C. & Behler, J. How van der Waals interactions determine the unique properties of water. Proc. Natl Acad. Sci. USA 113, 8368–8373 (2016).

    Article  CAS  PubMed  Google Scholar 

  150. Laury, M. L., Wang, L. P., Pande, V. S., Head-Gordon, T. & Ponder, J. W. Revised parameters for the AMOEBA polarizable atomic multipole water model. J. Phys. Chem. B 119, 9423–9437 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Xantheas, S. S., Burnham, C. J. & Harrison, R. J. Development of transferable interaction models for water. II. Accurate energetics of the first few water clusters from first principles. J. Chem. Phys. 116, 1493–1499 (2002).

    Article  CAS  Google Scholar 

  152. Ceriotti, M. et al. Nuclear quantum effects in water and aqueous systems: experiment, theory, and current challenges. Chem. Rev. 116, 7529–7550 (2016).

    Article  CAS  PubMed  Google Scholar 

  153. Paesani, F. & Voth, G. A. Quantum effects strongly influence the surface premelting of ice. J. Phys. Chem. C 112, 324–327 (2008).

    Article  CAS  Google Scholar 

  154. Fitzner, M., Sosso, G. C., Cox, S. J. & Michaelides, A. Ice is born in low-mobility regions of supercooled liquid water. Proc. Natl Acad. Sci. USA 116 2009–2014 (2019).

  155. Pedersen, A., Wikfeldt, K. T., Karssemeijer, L., Cuppen, H. & Jónsson, H. Molecular reordering processes on ice (0001) surfaces from long timescale simulations. J. Chem. Phys. 141, 234706 (2014).

    Article  PubMed  CAS  Google Scholar 

  156. Bockstedte, M., Michl, A., Kolb, M., Mehlhorn, M. & Morgenstern, K. Incomplete bilayer termination of the ice (0001) surface. J. Phys. Chem. C 120, 1097–1109 (2016).

    Article  CAS  Google Scholar 

  157. Silva Junior, D. L. & De Koning, M. Structure and energetics of extended defects in ice Ih. Phys. Rev. B Condens. Matter Mater. Phys. 85, 024119 (2012).

    Article  CAS  Google Scholar 

  158. Walker, A. M., Gale, J. D., Slater, B. & Wright, K. Atomic scale modelling of the cores of dislocations in complex materials part 2: applications. Phys. Chem. Chem. Phys. 7, 3235–3242 (2005).

    Article  CAS  PubMed  Google Scholar 

  159. Walker, A. M., Gale, J. D., Slater, B. & Wright, K. Atomic scale modelling of the cores of dislocations in complex materials part 1: methodology. Phys. Chem. Chem. Phys. 7, 3227–3234 (2005).

    Article  CAS  PubMed  Google Scholar 

  160. Wettlaufer, J. S. Impurity effects in the premelting of ice. Phys. Rev. Lett. 82, 2516–2519 (1999).

    Article  CAS  Google Scholar 

  161. Frenken, J. W. M. & Van Der Veen, J. F. Observation of surface melting. Phys. Rev. Lett. 54, 134–137 (1985).

    Article  CAS  PubMed  Google Scholar 

  162. Köster, A., Mausbach, P. & Vrabec, J. Premelting, solid-fluid equilibria, and thermodynamic properties in the high density region based on the Lennard-Jones potential. J. Chem. Phys. 147 144502 (2017).

  163. Del Cerro, C. & Jameson, G. J. The behavior of pentane, hexane, and heptane on water. J. Colloid Interface Sci. 78, 362–375 (1980).

    Article  Google Scholar 

  164. Nguyen, T. T. et al. Comparison of permutationally invariant polynomials, neural networks, and Gaussian approximation potentials in representing water interactions through many-body expansions. J. Chem. Phys. 148, 241725 (2018).

    Article  PubMed  CAS  Google Scholar 

  165. VandeVondele, J., Borštnik, U. & Hutter, J. Linear scaling self-consistent field calculations with millions of atoms in the condensed phase. J. Chem. Theory Comput. 8, 3565–3573 (2012).

    Article  CAS  PubMed  Google Scholar 

  166. Skylaris, C-K., Haynes, P. D., Mostofi, A. A. & Payne, M. C. Introducing ONETEP: linear-scaling density functional simulations on parallel computers. J. Chem. Phys. 122, 084119 (2005).

    Google Scholar 

  167. Slater, B., Michaelides, A., Salzmann, C. G. & Lohmann, U. A. Blue-sky approach to understanding cloud formation. Bull. Am. Meteorol. Soc. 97, 1797–1802 (2016).

    Article  Google Scholar 

  168. Weber, B. et al. Molecular insight into the slipperiness of ice. J. Phys. Chem. Lett. 9 2838–2842 (2018).

  169. Clegg, M. & Abbatt, D. Uptake of gas-phase SO2 and H2O2 by ice surfaces: dependence on partial pressure, temperature, and surface acidity. J. Phys. Chem. A 105, 6630–6636 (2001).

    Article  CAS  Google Scholar 

  170. Huthwelker, T., Ammann, M. & Peter, T. The uptake of acidic gases on ice. Chem. Rev. 106, 1375–1444 (2006).

    Article  CAS  PubMed  Google Scholar 

  171. Langenberg, S. & Schurath, U. Gas chromatography using ice-coated fused silica columns: study of adsorption of sulfur dioxide on water ice. Atmos. Chem. Phys. 18, 7527–7537 (2018).

    Article  CAS  Google Scholar 

  172. Owston, P. G. & Lonsdale, K. The crystalline structure of ice. J. Glaciol. 1, 118–123 (1948).

    Article  CAS  Google Scholar 

  173. Lonsdale, K. The structure of ice. Proc. R. Soc. Lond. A. Math. Phys. Sci. 247, 424–434 (1958).

    CAS  Google Scholar 

  174. Peterson, S. W. & Levy, H. A. A single-crystal neutron diffraction study of heavy ice. Acta Crystallogr. 10, 70–76 (1957).

    Article  CAS  Google Scholar 

  175. Wollan, E. O., Davidson, W. L. & Shull, C. G. Neutron diffraction study of the structure of ice. Phys. Rev. 75, 1348–1352 (1949).

    Article  CAS  Google Scholar 

  176. Bernal, J. D. & Fowler, R. H. A. Theory of water and ionic solution, with particular reference to hydrogen and hydroxyl ions. J. Chem. Phys. 1, 515–548 (1933).

    Article  CAS  Google Scholar 

  177. Tajima, Y., Matsuo, T. & Suga, H. Phase transition in KOH-doped hexagonal ice. Nature 299, 810–812 (1982).

    Article  CAS  Google Scholar 

  178. Kawada, S. Dielectric dispersion and phase transition of KOH doped ice. J. Physical Soc. Japan 32, 1442 (1972).

    Article  CAS  Google Scholar 

  179. Howe, R. & Whitworth, R. W. A determination of the crystal structure of ice XI. J. Chem. Phys. 90, 4450–4453 (1989).

    Article  CAS  Google Scholar 

  180. Leadbetter, A. J. et al. The equilibrium low-temperature structure of ice. J. Chem. Phys. 82, 424–428 (1985).

    Article  CAS  Google Scholar 

  181. Bjerrum, N. Structure and properties of ice. Science 115, 385–390 (1952).

    Article  CAS  PubMed  Google Scholar 

  182. Itoh, H., Kawamura, K., Hondoh, T. & Mae, S. Molecular dynamics studies of self-interstitials in ice Ih. J. Chem. Phys. 105, 2408–2413 (1996).

    Article  CAS  Google Scholar 

  183. König, H. Eine kubische eismodifikation [German]. Z. Kristallogr. Cryst. Mater. 105, 279–286 (1943).

    Article  Google Scholar 

  184. Shallcross, F. V. & Carpenter, G. B. X-Ray diffraction study of the cubic phase of ice. J. Chem. Phys. 26, 782–784 (1957).

    Article  CAS  Google Scholar 

  185. Whalley, E. Cubic ice in nature. J. Phys. Chem. 87, 4174–4179 (1983).

    Article  CAS  Google Scholar 

  186. Malkin, T. L. et al. Structure of ice crystallized from supercooled water. Proc. Natl Acad. Sci. USA 109, 1041–1045 (2012).

    Article  CAS  PubMed  Google Scholar 

  187. Handa, Y. P., Klug, D. D. & Whalley, E. Difference in energy between cubic and hexagonal ice. J. Chem. Phys. 84, 7009–7010 (1986).

    Article  CAS  Google Scholar 

  188. Lupi, L. et al. Role of stacking disorder in ice nucleation. Nature 551, 218–222 (2017).

    Article  CAS  PubMed  Google Scholar 

  189. Pauling, L. The structure and entropy of ice and of other crystals with some randomness of atomic arrangement. J. Am. Chem. Soc. 57, 2680–2684 (1935).

    Article  CAS  Google Scholar 

  190. Nakamura, H. & Cartwright, J. H. E. De nive sexangula - a history of ice and snow - part 1. Weather 71, 291–294 (2016).

    Article  Google Scholar 

  191. Magnus, O. Historia de Gentibus Septentrionalibus (Rome, 1555).

  192. Thomson, D. On Growth and Form (Canto, 1961).

  193. Libbrecht, K. G. The formation of snow crystals. Am. Sci. 95, 52–59 (2007).

    Article  Google Scholar 

  194. Shultz, M. J. Crystal growth in ice and snow. Phys. Today 71, 35–39 (2018).

    Article  Google Scholar 

  195. Fletcher, N. H. The Chemical Physics of Ice (Cambridge Univ. Press, 1970).

Download references

Acknowledgements

The authors thank J. Abbatt, T. Bartels-Rausch and E. Wolff for helpful information in compiling this Review. B.S. and A.M. thank C. Vega, M. Fitzner, C. Salzmann, E. Wang and, in particular, L. Macdowell for helpful comments on this Review. The constructive reviews from referees are also acknowledged. The work of A.M. is supported by the European Research Council (ERC) under the European Union’s Seventh Framework Programme: Grant Agreement number 616121 (HeteroIce).

Reviewers information

Nature Reviews Chemistry thanks V. Molinero and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Ben Slater or Angelos Michaelides.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Slater, B., Michaelides, A. Surface premelting of water ice. Nat Rev Chem 3, 172–188 (2019). https://doi.org/10.1038/s41570-019-0080-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-019-0080-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing