Review Article | Published:

Surface premelting of water ice

Nature Reviews Chemistryvolume 3pages172188 (2019) | Download Citation

Abstract

Frozen water has a quasi-liquid layer at its surface that exists even well below the bulk melting temperature; the formation of this layer is termed premelting. The nature of the premelted surface layer, its structure, thickness and how the layer changes with temperature have been debated for over 160 years, since Faraday first postulated the idea of a quasi-liquid layer on ice. Here, we briefly review current opinions and evidence on premelting at ice surfaces, gathering data from experiments and computer simulations. In particular, spectroscopy, microscopy and simulation have recently made important contributions to our understanding of this field. The identification of premelting inhomogeneities, in which portions of the surface are quasi-liquid-like and other parts of the surface are decorated with liquid droplets, is an intriguing recent development. Untangling the interplay of surface structure, supersaturation and surface defects is currently a major challenge. Similarly, understanding the coupling of surface structure with reactivity at the surface and crystal growth is a pressing problem in understanding the behaviour and formation of ice on Earth.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Additional information

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Dash, J. G., Fu, H. & Wettlaufer, J. S. The premelting of ice and its environmental consequences. Rep. Prog. Phys. 58, 115–167 (1995).

  2. 2.

    Faraday, M. On certain conditions of freezing water. Athenaeum 1181, 640–641 (1850).

  3. 3.

    Pruppacher, H. & Klett, J. Microphysics of Clouds and Precipitation Vol. 18 (Springer Netherlands, 2010).

  4. 4.

    Bailey, M. & Hallett, J. Growth rates and habits of ice crystals between -20C and -70C. J. Atmos. Sci. 61, 514–544 (2004).

  5. 5.

    Nakaya, U. Snow crystals and aerosols. J. Fac. Sci. Hokkaido Univ. 2 Phys. 4, 341–354 (1955).

  6. 6.

    Hammonds, K. et al. Correction for Brumberg et al., Single-crystal Ih ice surfaces unveil connection between macroscopic and molecular structure. Proc. Natl Acad. Sci. USA 114, E5276 (2017).

  7. 7.

    Elbaum, M., Lipson, S. G. & Wettlaufer, J. S. Evaporation preempts complete wetting. Europhys. Lett. 29, 457–462 (1995).

  8. 8.

    Bonn, D. & Ross, D. Wetting transitions. Rep. Prog. Phys. 64, 1085–1163 (2001).

  9. 9.

    Bonn, D., Eggers, J., Indekeu, J. & Meunier, J. Wetting and spreading. Rev. Mod. Phys. 81, 739–805 (2009).

  10. 10.

    Stranski, I. N. Uber den Schmelzvorgang bei nichtpolaren Kristallen [German]. Naturwissenschaften 28, 425–433 (1942).

  11. 11.

    Wettlaufer, J. S. Ice surfaces: macroscopic effects of microscopic structure. Philos. Trans. R. Soc. Lond. A 357, 3403–3425 (1999).

  12. 12.

    Frenken, J. Kinetic Theory of Liquids (Oxford Univ. Press, 1946).

  13. 13.

    Golecki, I. & Jaccard, C. Intrinsic surface disorder in ice near the melting point. J. Phys. C Solid State Phys. 11, 4229–4237 (1978).

  14. 14.

    Mizuno, Y. & Hanafusa, N. Studies of surface properties of ice using nuclear magnetic resonance. J. Phys. Colloques 48, C1-511–C1-517 (1987).

  15. 15.

    Dosch, H., Lied, A. & Bilgram, J. H. Glancing-angle X-ray scattering studies of the premelting of ice surfaces. Surf. Sci. 327, 145–164 (1995).

  16. 16.

    Sánchez, M. A. et al. Experimental and theoretical evidence for bilayer-by-bilayer surface melting of crystalline ice. Proc. Natl Acad. Sci. USA 114, 227–232 (2017).

  17. 17.

    Wei, X., Miranda, P. B. & Shen, Y. R. Surface vibrational spectroscopic study of surface melting of ice. Phys. Rev. Lett. 86, 1554–1557 (2001).

  18. 18.

    Conde, M. M., Vega, C. & Patrykiejew, A. The thickness of a liquid layer on the free surface of ice as obtained from computer simulation. J. Chem. Phys. 129, 014702 (2008).

  19. 19.

    Beaglehole, D. & Nason, D. Transition layer on the surface on ice. Surf. Sci. 96, 357–363 (1980).

  20. 20.

    Bluhm, H., Ogletree, D. F., Fadley, C. S., Hussain, Z. & Salmeron, M. The premelting of ice studied with photoelectron spectroscopy. J. Phys. Condens. Matter 14, L227–L233 (2002).

  21. 21.

    Petrenko, V. F. The Surface of Ice: Special Report 94-22 (US Army Corps of Engineers, Cold Regions Research & Engineering Laboratory, 1994).

  22. 22.

    Petrenko, V. F. & Whitworth, R. W. Physics Of Ice (Oxford Univ. Press, 1999).

  23. 23.

    Shultz, M. J. Ice surfaces. Annu. Rev. Phys. Chem. 68, 285–304 (2017).

  24. 24.

    Bartels-Rausch, T. et al. A review of air-ice chemical and physical interactions (AICI): liquids, quasi-liquids, and solids in snow. Atmos. Chem. Phys. 14, 1587–1633 (2014).

  25. 25.

    Li, Y. & Somorjai, G. A. Surface premelting of ice. J. Phys. Chem. C 111, 9631–9637 (2007).

  26. 26.

    Limmer, D. T. Closer look at the surface of ice. Proc. Natl Acad. Sci. USA 113, 12347–12349 (2016).

  27. 27.

    Maeno, N. Z. U. & Nishimura, H. The electrical properties of ice surfaces. J. Glaciol. 21, 193–205 (1978).

  28. 28.

    Kouchi, A., Furukawa, Y. & Kuroda, T. X-ray diffraction pattern of quasi-liquid layer on ice crystal surface. J. Phys. Colloques 48, C1-675–C1-677 (1987).

  29. 29.

    Dosch, H., Lied, A. & Bilgram, J. H. Disruption of the hydrogen-bonding network at the surface of Ihice near surface premelting. Surf. Sci. 366, 43–50 (1996).

  30. 30.

    Furukawa, Y., Yamamoto, M. & Kuroda, T. Ellipsometric study of the transition layer on the surface of an ice crystal. J. Cryst. Growth 82, 665–677 (1987).

  31. 31.

    Furukawa, Y. & Nada, H. Anisotropic surface melting of an ice crystal and its relationship to growth forms. J. Phys. Chem. B 101, 6167–6170 (1997).

  32. 32.

    Elbaum, M., Lipson, S. G. & Dash, J. G. Optical study of surface melting on ice. J. Cryst. Growth 129, 491–505 (1993).

  33. 33.

    Sazaki, G., Zepeda, S., Nakatsubo, S., Yokoyama, E. & Furukawa, Y. Elementary steps at the surface of ice crystals visualized by advanced optical microscopy. Proc. Natl Acad. Sci. USA 107, 19702–19707 (2010).

  34. 34.

    Murata, K., Asakawa, H., Nagashima, K., Furukawa, Y. & Sazaki, G. Thermodynamic origin of surface melting on ice crystals. Proc. Natl Acad. Sci. USA 113, E6741–E6748 (2016).

  35. 35.

    Döppenschmidt, A. & Butt, H. J. Measuring the thickness of the liquid-like layer on ice surfaces with atomic force microscopy. Langmuir 16, 6709–6714 (2000).

  36. 36.

    Mazzega, E., Del Pennino, U., Loria, A. & Mantovani, S. Volta effect and liquid-like layer at the ice surface. J. Chem. Phys. 64, 1028–1031 (1976).

  37. 37.

    Weyl, W. Surface structure of water and some of its physical and chemical manifestations. J. Colloid Sci. 6, 389–405 (1951).

  38. 38.

    Fletcher, N. H. Surface structure of water and ice. Phil. Mag. 7, 255–269 (1962).

  39. 39.

    Fletcher, N. H. Surface structure of water and ice. II. A revised model. Phil. Mag. 18, 1287–1300 (1968).

  40. 40.

    Fletcher, N. H. Reconstruction of ice crystal surfaces at low temperatures. Phil. Mag. 66, 109–115 (1992).

  41. 41.

    Buch, V., Groenzin, H., Li, I., Shultz, M. J. & Tosatti, E. Proton order in the ice crystal surface. Proc. Natl Acad. Sci. USA 105, 5969–5974 (2008).

  42. 42.

    Pan, D. et al. Surface energy and surface proton order of the ice Ih basal and prism surfaces. J. Phys. Condens. Matter 22, 074209 (2010).

  43. 43.

    Pan, D. et al. Surface energy and surface proton order of ice Ih. Phys. Rev. Lett. 101, 155703 (2008).

  44. 44.

    Bishop, C. L. et al. On thin ice: surface order and disorder during pre-melting. Faraday Discuss. 141, 277–292 (2008).

  45. 45.

    Elbaum, M. & Schick, M. Application of the theory of dispersion forces to the surface melting of ice. Phys. Rev. Lett. 66, 1713–1716 (1991).

  46. 46.

    Elbaum, M. & Schick, M. On the failure of water to freeze from its surface. J. Phys. I 1, 1665–1668 (1991).

  47. 47.

    Dzyaloshinskii, I. E., Lifshitz, E. M. & Pitaevskii, L. P. The general theory of van der Waals forces. Adv. Phys. 10, 165–209 (1961).

  48. 48.

    Löwen, H. & Lipowsky, R. Surface melting away from equilibrium. Phys. Rev. B 43, 3507–3513 (1991).

  49. 49.

    Somorjai, G. A. Introduction to Surface Chemistry and Catalysis (John Wiley & Sons, 1994).

  50. 50.

    Materer, N. et al. Molecular surface structure of a low-temperature ice Ih(0001) crystal. J. Phys. Chem. 99, 6267–6269 (1995).

  51. 51.

    Materer, N. et al. Molecular surface structure of ice(0001): dynamical low-energy electron diffraction, total-energy calculations and molecular dynamics simulations. Surf. Sci. 381, 190–210 (1997).

  52. 52.

    Kroes, G. J. Surface melting of the (0001) face of TIP4P ice. Surf. Sci. 275, 365–382 (1992).

  53. 53.

    Weber, T. A. & Stillinger, F. H. Molecular dynamics study of ice crystallite melting. J. Phys. Chem. 87, 4277–4281 (1983).

  54. 54.

    Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. & Klein, M. L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926–935 (1983).

  55. 55.

    Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F. & Hermans, J. in Intermolecular Forces (ed. Pullman, B.) 331–342 (D. Reidel Publishing Company, 1981).

  56. 56.

    Hayward, J. A. & Reimers, J. R. Unit cells for the simulation of hexagonal ice. J. Chem. Phys. 106, 1518–1529 (1997).

  57. 57.

    Gillan, M. J., Alfè, D. & Michaelides, A. Perspective: how good is DFT for water? J. Chem. Phys. 144, 130901 (2016).

  58. 58.

    Cisneros, G. A. et al. Modeling molecular interactions in water: from pairwise to many-body potential energy functions. Chem. Rev. 116, 7501–7528 (2016).

  59. 59.

    Nada, H. & Furukawa, Y. Anisotropic properties of ice / water interface: a molecular dynamics study. Jpn J. Appl. Phys. 34, 583–588 (1995).

  60. 60.

    Fernández, R. G., Abascal, J. L. F. & Vega, C. The melting point of ice Ih for common water models calculated from direct coexistence of the solid-liquid interface. J. Chem. Phys. 124, 144506 (2006).

  61. 61.

    Bolton, K. & Pettersson, J. B. C. A. Molecular dynamics study of the long-time ice ih surface dynamics. J. Phys. Chem. B 104, 1590–1595 (2000).

  62. 62.

    Smit, W. J., Versluis, J., Backus, E. H. G., Bonn, M. & Bakker, H. J. Reduced near-resonant vibrational coupling at the surfaces of liquid water and ice. J. Phys. Chem. Lett. 9, 1290–1294 (2018).

  63. 63.

    Glebov, A., Graham, A. P., Menzel, A., Toennies, J. P. & Senet, P. A helium atom scattering study of the structure and phonon dynamics of the ice surface. J. Chem. Phys. 112, 11011–11022 (2000).

  64. 64.

    Avidor, N. & Allison, W. Helium diffraction as a probe of structure and proton order on model ice surfaces. J. Phys. Chem. Lett. 7, 4520–4523 (2016).

  65. 65.

    Abascal, J. L. F., Sanz, E., Fernández, R. G. & Vega, C. A potential model for the study of ices and amorphous water: TIP4P/ice. J. Chem. Phys. 122, 234511 (2005).

  66. 66.

    Groenzin, H., Li, I., Buch, V. & Shultz, M. J. The single-crystal, basal face of ice Ihinvestigated with sum frequency generation. J. Chem. Phys. 127, 214502 (2007).

  67. 67.

    Sun, Z., Pan, D., Xu, L. & Wang, E. Role of proton ordering in adsorption preference of polar molecule on ice surface. Proc. Natl Acad. Sci. USA 109, 13177–13181 (2012).

  68. 68.

    Tribello, G. A., Slater, B. & Salzmann, C. G. A blind structure prediction of ice XIV. J. Am. Chem. Soc. 128, 12594–12595 (2006).

  69. 69.

    Tribello, G. A. & Slater, B. Proton ordering energetics in ice phases. Chem. Phys. Lett. 425, 246–250 (2006).

  70. 70.

    Kuo, J.-L., Coe, J. V., Singer, S. J., Band, Y. B. & Ojamäe, L. On the use of graph invariants for efficiently generating hydrogen bond topologies and predicting physical properties of water clusters and ice. J. Chem. Phys. 114, 2527 (2001).

  71. 71.

    Singer, S. J. et al. Hydrogen-bond topology and the ice VII/VIII and Ice Ih/XI proton-ordering phase transitions. Phys. Rev. Lett. 94, 135701 (2005).

  72. 72.

    Knight, C. & Singer, S. J. Prediction of a phase transition to a hydrogen bond ordered form of ice VI. J. Phys. Chem. B 109, 21040–21046 (2005).

  73. 73.

    Fan, X., Bing, D., Zhang, J., Shen, Z. & Kuo, J.-L. Predicting the hydrogen bond ordered structures of ice Ih, II, III, VI and ice VII: DFT methods with localized based set. Comput. Mater. Sci. 49, S170–S175 (2010).

  74. 74.

    Del Ben, M., VandeVondele, J. & Slater, B. Periodic MP2, RPA, and boundary condition assessment of hydrogen ordering in ice XV. J. Phys. Chem. Lett. 5, 4122–4128 (2014).

  75. 75.

    Engel, E. A., Monserrat, B. & Needs, R. J. Anharmonic nuclear motion and the relative stability of hexagonal and cubic ice. Phys. Rev. X 5, 021033 (2015).

  76. 76.

    Engel, E. A., Monserrat, B. & Needs, R. J. Vibrational effects on surface energies and band gaps in hexagonal and cubic ice. J. Chem. Phys. 145, 044703 (2016).

  77. 77.

    Abascal, J. L. F. & Vega, C. A general purpose model for the condensed phases of water: TIP4P/2005. J. Chem. Phys. 123, 234505 (2005).

  78. 78.

    Suter, M. T., Andersson, P. U. & Pettersson, J. B. C. Surface properties of water ice at 150–191K studied by elastic helium scattering. J. Chem. Phys. 125, 174704 (2006).

  79. 79.

    Tammann, G. Zur Überhitzung von Kristallen [German]. Z. Phys. Chem. 68, 257 (1909).

  80. 80.

    Carignano, M. A., Shepson, P. B. & Szleifer, I. Molecular dynamics simulations of ice growth from supercooled water. Mol. Phys. 103, 2957–2967 (2005).

  81. 81.

    Nada, H. & Van Der Eerden, J. P. J. M. An intermolecular potential model for the simulation of ice and water near the melting point: a six-site model of H2O. J. Chem. Phys. 118, 7401–7413 (2003).

  82. 82.

    Abascal, J. L. F., Fernández, R. G., Vega, C. & Carignano, M. A. The melting temperature of the six site potential model of water. J. Chem. Phys. 125, 166101 (2006).

  83. 83.

    Ambler, M., Vorselaars, B., Allen, M. P. & Quigley, D. Solid-liquid interfacial free energy of ice Ih, ice Ic, and ice 0 within a mono-atomic model of water via the capillary wave method. J. Chem. Phys. 146, 074701 (2017).

  84. 84.

    Espinosa, J. R., Vega, C. & Sanz, E. Ice-water interfacial free energy for the TIP4P, TIP4P/2005, TIP4P/ice, and mW models as obtained from the mold integration technique. J. Phys. Chem. C 120, 8068–8075 (2016).

  85. 85.

    McBride, C., Vega, C., Sanz, E., MacDowell, L. G. & Abascal, J. L. F. The range of meta stability of ice-water melting for two simple models of water. Mol. Phys. 103, 1–5 (2005).

  86. 86.

    Vega, C., Martin-Conde, M. & Patrykiejew, A. Absence of superheating for ice Ih with a free surface: a new method of determining the melting point of different water models. Mol. Phys. 104, 3583–3592 (2006).

  87. 87.

    Limmer, D. T. & Chandler, D. Premelting, fluctuations, and coarse-graining of water-ice interfaces. J. Chem. Phys. 141, 18505C (2014).

  88. 88.

    Malkin, T. L. et al. Stacking disorder in ice I. Phys. Chem. Chem. Phys. 17, 60–76 (2015).

  89. 89.

    Moore, E. B. & Molinero, V. Structural transformation in supercooled water controls the crystallization rate of ice. Nature 479, 506–508 (2011).

  90. 90.

    Moore, E. B. & Molinero, V. Ice crystallization in water’s ‘no-man’s land’. J. Chem. Phys. 132, 244504 (2010).

  91. 91.

    Hudait, A. & Molinero, V. What determines the ice polymorph in clouds? J. Am. Chem. Soc. 138, 8958–8967 (2016).

  92. 92.

    Moore, E. B. & Molinero, V. Is it cubic? Ice crystallization from deeply supercooled water. Phys. Chem. Chem. Phys. 13, 20008 (2011).

  93. 93.

    Li, T., Donadio, D., Russo, G. & Galli, G. Homogeneous ice nucleation from supercooled water. Phys. Chem. Chem. Phys. 13, 19807 (2011).

  94. 94.

    Pedevilla, P., Cox, S. J., Slater, B. & Michaelides, A. Can ice-like structures form on non-ice-like substrates? The example of the K-feldspar microcline. J. Phys. Chem. C Nanomater. Interfaces 120, 6704–6713 (2016).

  95. 95.

    Cox, S. J., Kathmann, S. M., Slater, B. & Michaelides, A. Molecular simulations of heterogeneous ice nucleation. I. Controlling ice nucleation through surface hydrophilicity. J. Chem. Phys. 142, 184704 (2015).

  96. 96.

    Cox, S. J., Kathmann, S. M., Slater, B. & Michaelides, A. Molecular simulations of heterogeneous ice nucleation. II. Peeling back the layers. J. Chem. Phys. 142, 184705 (2015).

  97. 97.

    Lupi, L., Hudait, A. & Molinero, V. Heterogeneous nucleation of ice on carbon surfaces. J. Am. Chem. Soc. 136, 3156–3164 (2014).

  98. 98.

    Hudait, A., Allen, M. T. & Molinero, V. Sink or swim: ions and organics at the ice–air interface. J. Am. Chem. Soc. 139, 10095–10103 (2017).

  99. 99.

    Qiu, Y. & Molinero, V. Why is it so difficult to identify the onset of ice premelting? J. Phys. Chem. Lett. 9, 5179–5182 (2018).

  100. 100.

    Shepherd, T. D., Koc, M. A. & Molinero, V. The quasi-liquid layer of ice under conditions of methane clathrate formation. J. Phys. Chem. C 116, 12172–12180 (2012).

  101. 101.

    Pickering, I., Paleico, M., Sirkin, Y. A. P., Scherlis, D. A. & Factorovich, M. H. Grand canonical investigation of the quasi liquid layer of ice: is it liquid? J. Phys. Chem. B 122, 4880–4890 (2018).

  102. 102.

    Watkins, M. et al. Large variation of vacancy formation energies in the surface of crystalline ice. Nat. Mater. 10, 794–798 (2011).

  103. 103.

    Mantovani, S., Valeri, S., Loria, A. & Del Pennino, U. Viscosity of the ice surface layer. J. Chem. Phys. 72, 1077–1083 (1980).

  104. 104.

    Pinheiro Moreira, P. A. F. & De Koning, M. Trapping of hydrochloric and hydrofluoric acid at vacancies on and underneath the ice Ih basal-plane surface. J. Phys. Chem. A 117, 11066–11071 (2013).

  105. 105.

    Smit, W. J. & Bakker, H. J. The surface of ice is like supercooled liquid water. Angew. Chem. Int. Ed. Engl. 56, 15540–15544 (2017).

  106. 106.

    Michaelides, A. & Slater, B. Melting the ice one layer at a time. Proc. Natl Acad. Sci. USA 114, 195–197 (2017).

  107. 107.

    Sadtchenko, V. & Ewing, G. E. A new approach to the study of interfacial melting of ice: infrared spectroscopy. Can. J. Phys. 81, 333–341 (2003).

  108. 108.

    Sadtchenko, V. & Ewing, G. E. Interfacial melting of thin ice films: an infrared study. J. Chem. Phys. 116, 4686–4697 (2002).

  109. 109.

    Asakawa, H., Sazaki, G., Nagashima, K., Nakatsubo, S. & Furukawa, Y. Two types of quasi-liquid layers on ice crystals are formed kinetically. Proc. Natl Acad. Sci. USA 113, 1749–1753 (2016).

  110. 110.

    Inomata, M. et al. Temperature dependence of the growth kinetics of elementary spiral steps on ice basal faces grown from water vapor. Cryst. Growth Des. 18, 786–793 (2018).

  111. 111.

    Asakawa, H., Sazaki, G., Nagashima, K., Nakatsubo, S. & Furukawa, Y. Prism and other high-index faces of ice crystals exhibit two types of quasi-liquid layers. Cryst. Growth Des. 15, 3339–3344 (2015).

  112. 112.

    Sazaki, G., Zepeda, S., Nakatsubo, S., Yokomine, M. & Furukawa, Y. Quasi-liquid layers on ice crystal surfaces are made up of two different phases. Proc. Natl Acad. Sci. USA 109, 1052–1055 (2012).

  113. 113.

    Sazaki, G., Asakawa, H., Nagashima, K., Nakatsubo, S. & Furukawa, Y. How do quasi-liquid layers emerge from ice crystal surfaces? Cryst. Growth Des. 13, 1761–1766 (2013).

  114. 114.

    Sazaki, G., Asakawa, H., Nagashima, K., Nakatsubo, S. & Furukawa, Y. Double spiral steps on Ih ice crystal surfaces grown from water vapor just below the melting point. Cryst. Growth Des. 14, 2133–2137 (2014).

  115. 115.

    Thürmer, K. & Nie, S. Formation of hexagonal and cubic ice during low-temperature growth. Proc. Natl Acad. Sci. USA 110, 11757–11762 (2013).

  116. 116.

    Murata, K. I., Asakawa, H., Nagashima, K., Furukawa, Y. & Sazaki, G. In situ determination of surface tension-to-shear viscosity ratio for quasiliquid layers on ice crystal surfaces. Phys. Rev. Lett. 115, 256103 (2015).

  117. 117.

    Bar-Ziv, R. & Safran, S. A. Surface melting of ice induced by hydrocarbon films. Langmuir 9, 2786–2788 (1993).

  118. 118.

    Liu, J. et al. Distinct ice patterns on solid surfaces with various wettabilities. Proc. Natl Acad. Sci. USA 114, 11285-11290 (2017).

  119. 119.

    Molinero, V. & Moore, E. B. Water modeled as an intermediate element between carbon and silicon. J. Phys. Chem. B 113, 4008–4016 (2009).

  120. 120.

    Benet, J., Llombart, P., Sanz, E. & MacDowell, L. G. Premelting-induced smoothening of the ice-vapor interface. Phys. Rev. Lett. 117, 096101 (2016).

  121. 121.

    Lohmann, U., Broekhuizen, K., Leaitch, R., Shantz, N. & Abbatt, J. How efficient is cloud droplet formation of organic aerosols? Geophys. Res. Lett. 31, L05108 (2004).

  122. 122.

    Kang, H. Chemistry of ice surfaces. Elementary reaction steps on ice studied by reactive ion scattering. Acc. Chem. Res. 38, 893–900 (2005).

  123. 123.

    Stubenrauch, C. J. et al. Assessment of global cloud datasets from satellites: project and database initiated by the GEWEX radiation panel. Bull. Am. Meteorol. Soc. 94, 1031–1049 (2013).

  124. 124.

    Shilling, J. E. et al. Measurements of the vapor pressure of cubic ice and their implications for atmospheric ice clouds. Geophys. Res. Lett. 33, L17801 (2006).

  125. 125.

    Nachbar, M., Duft, D. & Leisner, T. The vapor pressure over nano-crystalline ice. Atmos. Chem. Phys. 18, 3419–3431 (2018).

  126. 126.

    Murray, B. J., Malkin, T. L. & Salzmann, C. G. The crystal structure of ice under mesospheric conditions. J. Atmos. Sol. Terr. Phys. 127, 78–82 (2015).

  127. 127.

    Kanji, Z. A. et al. Overview of ice nucleating particles. Meteorol. Monogr. 58, 1.1–1.33 (2017).

  128. 128.

    Whale, T. F., Holden, M. A., Wilson, T. W., O’Sullivan, D. & Murray, B. J. The enhancement and suppression of immersion mode heterogeneous ice-nucleation by solutes. Chem. Sci. 9, 4142–4151 (2018).

  129. 129.

    Wren, S. N. & Donaldson, D. J. Laboratory study of pH at the air–ice interface. J. Phys. Chem. C 116, 10171–10180 (2012).

  130. 130.

    Buch, V., Milet, A., Vacha, R., Jungwirth, P. & Devlin, J. P. Water surface is acidic. Proc. Natl Acad. Sci. USA 104, 7342–7347 (2007).

  131. 131.

    Watkins, M., VandeVondele, J. & Slater, B. Point defects at the ice (0001) surface. Proc. Natl Acad. Sci. USA 107, 12429–12434 (2010).

  132. 132.

    Kim, S., Park, E. & Kang, H. Segregation of hydroxide ions to an ice surface. J. Chem. Phys. 135, 074703 (2011).

  133. 133.

    Orem, M. W. & Adamson, A. W. Physical adsorption of vapor on ice. J. Colloid Interface Sci. 31, 278–286 (1969).

  134. 134.

    Kahan, T. F. & Donaldson, D. J. Photolysis of polycyclic aromatic hydrocarbons on water and ice surfaces. J. Phys. Chem. A 111, 1277–1285 (2007).

  135. 135.

    Ardura, D., Kahan, T. F. & Donaldson, D. J. Self-association of naphthalene at the air−ice interface. J. Phys. Chem. A 113, 7353–7359 (2009).

  136. 136.

    Gunz, D. & Hoffmann, M. Field investigations on the snow chemistry in central and southern California 1. Inorganic ions and hydrogen peroxide. Atmos. Environ. 24A, 1661–1671 (1990).

  137. 137.

    Conklin, M. H. & Bales, R. C. SO2 uptake on ice spheres: liquid nature of the ice-air interface. J. Geophys. Res. Atmos. 98, 16851–16855 (1993).

  138. 138.

    Conklin, M. H. & Bales, R. C. Correction to “SO2 uptake on ice spheres: liquid nature of the ice-air interface”. J. Geophys. Res. Atmos. 99, 8351 (1994).

  139. 139.

    Ervens, B. Modeling the processing of aerosol and trace gases in clouds and fogs. Chem. Rev. 115, 4157–4198 (2015).

  140. 140.

    Ocampo, J. & Klinger, J. Adsorption of N2 and CO2 on ice. J. Colloid Interface Sci. 86, 377–383 (1982).

  141. 141.

    Bolton, K. & Pettersson, J. B. C. Ice-catalyzed ionization of hydrochloric acid. J. Am. Chem. Soc. 123, 7360–7363 (2001).

  142. 142.

    Fu, T. M. et al. Global budgets of atmospheric glyoxal and methylglyoxal, and implications for formation of secondary organic aerosols. J. Geophys. Res. Atmos. 113, D15303 (2008).

  143. 143.

    Fukuta, N. Activation of atmospheric particles as ice nuclei in cold and dry air. J. Atmos. Sci. 23, 741–750 (1966).

  144. 144.

    Campbell, J. M., Meldrum, F. C. & Christenson, H. K. Observing the formation of ice and organic crystals in active sites. Proc. Natl Acad. Sci. USA 114, 810–815 (2017).

  145. 145.

    Kuhs, W. F., Sippel, C., Falenty, A. & Hansen, T. C. Extent and relevance of stacking disorder in ‘ice Ic’. Proc. Natl Acad. Sci. USA 109, 21259–21264 (2012).

  146. 146.

    Zhang, D. et al. Atomic-resolution transmission electron microscopy of electron beam–sensitive crystalline materials. Science 359, 675–679 (2018).

  147. 147.

    Reddy, S. K. et al. On the accuracy of the MB-pol many-body potential for water: interaction energies, vibrational frequencies, and classical thermodynamic and dynamical properties from clusters to liquid water and ice. J. Chem. Phys. 145, 194504 (2016).

  148. 148.

    Bartók, A. P., Gillan, M. J., Manby, F. R. & Csányi, G. Machine-learning approach for one- and two-body corrections to density functional theory: applications to molecular and condensed water. Phys. Rev. B 88, 054104 (2013).

  149. 149.

    Morawietz, T., Singraber, A., Dellago, C. & Behler, J. How van der Waals interactions determine the unique properties of water. Proc. Natl Acad. Sci. USA 113, 8368–8373 (2016).

  150. 150.

    Laury, M. L., Wang, L. P., Pande, V. S., Head-Gordon, T. & Ponder, J. W. Revised parameters for the AMOEBA polarizable atomic multipole water model. J. Phys. Chem. B 119, 9423–9437 (2015).

  151. 151.

    Xantheas, S. S., Burnham, C. J. & Harrison, R. J. Development of transferable interaction models for water. II. Accurate energetics of the first few water clusters from first principles. J. Chem. Phys. 116, 1493–1499 (2002).

  152. 152.

    Ceriotti, M. et al. Nuclear quantum effects in water and aqueous systems: experiment, theory, and current challenges. Chem. Rev. 116, 7529–7550 (2016).

  153. 153.

    Paesani, F. & Voth, G. A. Quantum effects strongly influence the surface premelting of ice. J. Phys. Chem. C 112, 324–327 (2008).

  154. 154.

    Fitzner, M., Sosso, G. C., Cox, S. J. & Michaelides, A. Ice is born in low-mobility regions of supercooled liquid water. Proc. Natl Acad. Sci. USA 116 2009–2014 (2019).

  155. 155.

    Pedersen, A., Wikfeldt, K. T., Karssemeijer, L., Cuppen, H. & Jónsson, H. Molecular reordering processes on ice (0001) surfaces from long timescale simulations. J. Chem. Phys. 141, 234706 (2014).

  156. 156.

    Bockstedte, M., Michl, A., Kolb, M., Mehlhorn, M. & Morgenstern, K. Incomplete bilayer termination of the ice (0001) surface. J. Phys. Chem. C 120, 1097–1109 (2016).

  157. 157.

    Silva Junior, D. L. & De Koning, M. Structure and energetics of extended defects in ice Ih. Phys. Rev. B Condens. Matter Mater. Phys. 85, 024119 (2012).

  158. 158.

    Walker, A. M., Gale, J. D., Slater, B. & Wright, K. Atomic scale modelling of the cores of dislocations in complex materials part 2: applications. Phys. Chem. Chem. Phys. 7, 3235–3242 (2005).

  159. 159.

    Walker, A. M., Gale, J. D., Slater, B. & Wright, K. Atomic scale modelling of the cores of dislocations in complex materials part 1: methodology. Phys. Chem. Chem. Phys. 7, 3227–3234 (2005).

  160. 160.

    Wettlaufer, J. S. Impurity effects in the premelting of ice. Phys. Rev. Lett. 82, 2516–2519 (1999).

  161. 161.

    Frenken, J. W. M. & Van Der Veen, J. F. Observation of surface melting. Phys. Rev. Lett. 54, 134–137 (1985).

  162. 162.

    Köster, A., Mausbach, P. & Vrabec, J. Premelting, solid-fluid equilibria, and thermodynamic properties in the high density region based on the Lennard-Jones potential. J. Chem. Phys. 147 144502 (2017).

  163. 163.

    Del Cerro, C. & Jameson, G. J. The behavior of pentane, hexane, and heptane on water. J. Colloid Interface Sci. 78, 362–375 (1980).

  164. 164.

    Nguyen, T. T. et al. Comparison of permutationally invariant polynomials, neural networks, and Gaussian approximation potentials in representing water interactions through many-body expansions. J. Chem. Phys. 148, 241725 (2018).

  165. 165.

    VandeVondele, J., Borštnik, U. & Hutter, J. Linear scaling self-consistent field calculations with millions of atoms in the condensed phase. J. Chem. Theory Comput. 8, 3565–3573 (2012).

  166. 166.

    Skylaris, C-K., Haynes, P. D., Mostofi, A. A. & Payne, M. C. Introducing ONETEP: linear-scaling density functional simulations on parallel computers. J. Chem. Phys. 122, 084119 (2005).

  167. 167.

    Slater, B., Michaelides, A., Salzmann, C. G. & Lohmann, U. A. Blue-sky approach to understanding cloud formation. Bull. Am. Meteorol. Soc. 97, 1797–1802 (2016).

  168. 168.

    Weber, B. et al. Molecular insight into the slipperiness of ice. J. Phys. Chem. Lett. 9 2838–2842 (2018).

  169. 169.

    Clegg, M. & Abbatt, D. Uptake of gas-phase SO2 and H2O2 by ice surfaces: dependence on partial pressure, temperature, and surface acidity. J. Phys. Chem. A 105, 6630–6636 (2001).

  170. 170.

    Huthwelker, T., Ammann, M. & Peter, T. The uptake of acidic gases on ice. Chem. Rev. 106, 1375–1444 (2006).

  171. 171.

    Langenberg, S. & Schurath, U. Gas chromatography using ice-coated fused silica columns: study of adsorption of sulfur dioxide on water ice. Atmos. Chem. Phys. 18, 7527–7537 (2018).

  172. 172.

    Owston, P. G. & Lonsdale, K. The crystalline structure of ice. J. Glaciol. 1, 118–123 (1948).

  173. 173.

    Lonsdale, K. The structure of ice. Proc. R. Soc. Lond. A. Math. Phys. Sci. 247, 424–434 (1958).

  174. 174.

    Peterson, S. W. & Levy, H. A. A single-crystal neutron diffraction study of heavy ice. Acta Crystallogr. 10, 70–76 (1957).

  175. 175.

    Wollan, E. O., Davidson, W. L. & Shull, C. G. Neutron diffraction study of the structure of ice. Phys. Rev. 75, 1348–1352 (1949).

  176. 176.

    Bernal, J. D. & Fowler, R. H. A. Theory of water and ionic solution, with particular reference to hydrogen and hydroxyl ions. J. Chem. Phys. 1, 515–548 (1933).

  177. 177.

    Tajima, Y., Matsuo, T. & Suga, H. Phase transition in KOH-doped hexagonal ice. Nature 299, 810–812 (1982).

  178. 178.

    Kawada, S. Dielectric dispersion and phase transition of KOH doped ice. J. Physical Soc. Japan 32, 1442 (1972).

  179. 179.

    Howe, R. & Whitworth, R. W. A determination of the crystal structure of ice XI. J. Chem. Phys. 90, 4450–4453 (1989).

  180. 180.

    Leadbetter, A. J. et al. The equilibrium low-temperature structure of ice. J. Chem. Phys. 82, 424–428 (1985).

  181. 181.

    Bjerrum, N. Structure and properties of ice. Science 115, 385–390 (1952).

  182. 182.

    Itoh, H., Kawamura, K., Hondoh, T. & Mae, S. Molecular dynamics studies of self-interstitials in ice Ih. J. Chem. Phys. 105, 2408–2413 (1996).

  183. 183.

    König, H. Eine kubische eismodifikation [German]. Z. Kristallogr. Cryst. Mater. 105, 279–286 (1943).

  184. 184.

    Shallcross, F. V. & Carpenter, G. B. X-Ray diffraction study of the cubic phase of ice. J. Chem. Phys. 26, 782–784 (1957).

  185. 185.

    Whalley, E. Cubic ice in nature. J. Phys. Chem. 87, 4174–4179 (1983).

  186. 186.

    Malkin, T. L. et al. Structure of ice crystallized from supercooled water. Proc. Natl Acad. Sci. USA 109, 1041–1045 (2012).

  187. 187.

    Handa, Y. P., Klug, D. D. & Whalley, E. Difference in energy between cubic and hexagonal ice. J. Chem. Phys. 84, 7009–7010 (1986).

  188. 188.

    Lupi, L. et al. Role of stacking disorder in ice nucleation. Nature 551, 218–222 (2017).

  189. 189.

    Pauling, L. The structure and entropy of ice and of other crystals with some randomness of atomic arrangement. J. Am. Chem. Soc. 57, 2680–2684 (1935).

  190. 190.

    Nakamura, H. & Cartwright, J. H. E. De nive sexangula - a history of ice and snow - part 1. Weather 71, 291–294 (2016).

  191. 191.

    Magnus, O. Historia de Gentibus Septentrionalibus (Rome, 1555).

  192. 192.

    Thomson, D. On Growth and Form (Canto, 1961).

  193. 193.

    Libbrecht, K. G. The formation of snow crystals. Am. Sci. 95, 52–59 (2007).

  194. 194.

    Shultz, M. J. Crystal growth in ice and snow. Phys. Today 71, 35–39 (2018).

  195. 195.

    Fletcher, N. H. The Chemical Physics of Ice (Cambridge Univ. Press, 1970).

Download references

Acknowledgements

The authors thank J. Abbatt, T. Bartels-Rausch and E. Wolff for helpful information in compiling this Review. B.S. and A.M. thank C. Vega, M. Fitzner, C. Salzmann, E. Wang and, in particular, L. Macdowell for helpful comments on this Review. The constructive reviews from referees are also acknowledged. The work of A.M. is supported by the European Research Council (ERC) under the European Union’s Seventh Framework Programme: Grant Agreement number 616121 (HeteroIce).

Reviewers information

Nature Reviews Chemistry thanks V. Molinero and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Affiliations

  1. Department of Chemistry, University College London, London, UK

    • Ben Slater
  2. Thomas Young Centre, Department of Physics and Astronomy, and London Centre for Nanotechnology, University College London, London, UK

    • Angelos Michaelides

Authors

  1. Search for Ben Slater in:

  2. Search for Angelos Michaelides in:

Contributions

The authors contributed equally to all aspects of the article.

Competing interests

The authors declare no competing interests.

Corresponding authors

Correspondence to Ben Slater or Angelos Michaelides.

About this article

Publication history

Published

Issue Date

DOI

https://doi.org/10.1038/s41570-019-0080-8