Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The increasing dynamic, functional complexity of bio-interface materials

Abstract

In nature, interfacial molecular interactions are at the heart of all biological processes and are mediated by diverse stimuli. Inspired by nature's responsive mechanisms and our increased capability to manipulate matter at the molecular level, new bio-interface materials are being developed that respond efficiently to a variety of external stimuli. In this Review, we discuss emerging methods for imparting surfaces with dynamic properties and how this, in turn, is leading to increased functional complexity at the bio-interface. We examine how recent advances are becoming important in providing new insights into cell behaviour and spurring substantial progress in the fields of regenerative medicine and tissue engineering. These advances provide new opportunities to address the complex issues associated with biofouling and facilitate the production of implantable on-demand sensing devices and highly effective delivery, bioseparation and bioelectrocatalytic systems. Although progress is being made, we also highlight that current methods are still limited in their capability to impart complex functionality onto the bio-interface to fully address the current challenges in biotechnology and biomedicine. Exciting prospects include the incorporation of full reversibility of interactions, a broad repertoire of multi-responsiveness and bidirectional actuation at the bio-interface, as well as the capability to incorporate the developed systems in practical applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The types of stimuli that have been explored to develop dynamic bio-interfaces and biological and medical applications of bio-interfaces.
Figure 2: An example of an in vitro bioseparation system.
Figure 3: Two models of dual-signal bioelectrocatalysis.
Figure 4: Two approaches to regulate cell adhesion–detachment.
Figure 5: Regulation of Arg–Gly–Asp peptide availability for cell adhesion–detachment.
Figure 6: An electroresponsive self-assembled monolayer for understanding cell mobility
Figure 7: Approaches to control bacterial adhesion.

Similar content being viewed by others

References

  1. Mendes, P. M. Stimuli-responsive surfaces for bio-applications. Chem. Soc. Rev. 37, 2512–2529 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Mendes, P. M. Cellular nanotechnology: making biological interfaces smarter. Chem. Soc. Rev. 42, 9207–9218 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Pranzetti, A. et al. An electrically reversible switchable surface to control and study early bacterial adhesion dynamics in real-time. Adv. Mater. 25, 2181–2185 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Epstein, A. K., Hong, D., Kim, P. & Aizenberg, J. Biofilm attachment reduction on bioinspired, dynamic, micro-wrinkling surfaces. New J. Phys. 15, 095018 (2013).

    Article  CAS  Google Scholar 

  5. Shastri, A. et al. An aptamer-functionalized chemomechanically modulated biomolecule catch-and-release system. Nat. Chem. 7, 447–454 (2015).

    Article  CAS  PubMed  Google Scholar 

  6. Ashaduzzaman, M. et al. Studies on an on/off-switchable immunosensor for troponin T. Biosens. Bioelectron. 73, 100–107 (2015).

    Article  CAS  PubMed  Google Scholar 

  7. Parlak, O. et al. Programmable bioelectronics in a stimuli-encoded 3D graphene interface. Nanoscale 8, 9976–9981 (2016).

    Article  CAS  PubMed  Google Scholar 

  8. Patra, H. K. et al. On/off-switchable anti-neoplastic nanoarchitecture. Sci. Rep. 5, 14571 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gao, H. et al. Near-infrared light-triggered switchable nanoparticles for targeted chemo/photothermal cancer therapy. ACS Appl. Mater. Interfaces 8, 15103–15112 (2016).

    Article  CAS  PubMed  Google Scholar 

  10. Patra, H. K. et al. MRI-visual order-disorder micellar nanostructures for smart cancer theranostics. Adv. Healthc. Mater. 3, 526–535 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. Tompa, P. The principle of conformational signaling. Chem. Soc. Rev. 45, 4252–4284 (2016).

    Article  CAS  PubMed  Google Scholar 

  12. Keskin, O., Tuncbag, N. & Gursoy, A. Predicting protein-protein interactions from the molecular to the proteome level. Chem. Rev. 116, 4884–4909 (2016).

    Article  CAS  PubMed  Google Scholar 

  13. Ghitti, M., Musco, G. & Spitaleri, A. in Protein Conformational Dynamics Vol. 805 Advances in Experimental Medicine and Biology (eds Han, K. L., Zhang, X. & Yang, M. J. ) 271–329 (Springer-Verlag, Berlin, Germany, 2014).

    Book  Google Scholar 

  14. Janowska, M. K., Wu, K. P. & Baum, J. Unveiling transient protein-protein interactions that modulate inhibition of alpha-synuclein aggregation by beta-synuclein, a pre-synaptic protein that co-localizes with alpha-synuclein. Sci. Rep. 5, 15164 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rudolph, J. Inhibiting transient protein-protein interactions: lessons from the Cdc25 protein tyrosine phosphatases. Nat. Rev. Cancer 7, 202–211 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Petta, I., Lievens, S., Libert, C., Tavernier, J. & De Bosscher, K. Modulation of protein-protein interactions for the development of novel therapeutics. Mol. Ther. 24, 707–718 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shimizu, Y., Boehm, H., Yamaguchi, K., Spatz, J. P. & Nakanishi, J. A photoactivatable nanopatterned substrate for analyzing collective cell migration with precisely tuned cell-extracellular matrix ligand interactions. PLOS ONE 9, e91875 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Lee, E. J., Luo, W., Chan, E. W. & Yousaf, M. N. A molecular smart surface for spatio-temporal studies of cell mobility. PLOS ONE 10, e0118126 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Jeon, G., Yang, S. Y., Byun, J. & Kim, J. K. Electrically actuatable smart nanoporous membrane for pulsatile drug release. Nano Lett. 11, 1284–1288 (2011).

    Article  CAS  PubMed  Google Scholar 

  20. Wan, P. B. & Chen, X. D. Stimuli-responsive supramolecular interfaces for controllable bioelectrocatalysis. ChemElectroChem 1, 1602–1612 (2014).

    Article  CAS  Google Scholar 

  21. Hyun, J., Lee, W. K., Nath, N., Chilkoti, A. & Zauscher, S. Capture and release of proteins on the nanoscale by stimuli-responsive elastin-like polypeptide “switches”. J. Am. Chem. Soc. 126, 7330–7335 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Megeed, Z., Winters, R. M. & Yarmush, M. L. Modulation of single-chain antibody affinity with temperature-responsive elastin-like polypeptide linkers. Biomacromolecules 7, 999–1004 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Cantini, E. et al. Electrically responsive surfaces: experimental and theoretical investigations. Acc. Chem. Res. 49, 1223–1231 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pivetal, J. et al. Micro-magnet arrays for specific single bacterial cell positioning. J. Magn. Magn. Mater. 380, 72–77 (2015).

    Article  CAS  Google Scholar 

  25. Polte, T. R. et al. Nanostructured magnetizable materials that switch cells between life and death. Biomaterials 28, 2783–2790 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Mertz, D. et al. Mechanotransductive surfaces for reversible biocatalysis activation. Nat. Mater. 8, 731–735 (2009).

    Article  CAS  PubMed  Google Scholar 

  27. Kadem, L. F. et al. Rapid reversible photoswitching of integrin-mediated adhesion at the single-cell level. Adv. Mater. 28, 1799–1802 (2016).

    Article  CAS  PubMed  Google Scholar 

  28. Giner-Casares, J. J., Henriksen-Lacey, M., Garcia, I. & Liz-Marzan, L. M. Plasmonic surfaces for cell growth and retrieval triggered by near-infrared light. Angew. Chem. Int. Ed. 55, 974–978 (2016).

    Article  CAS  Google Scholar 

  29. Yu, Q. et al. Nanopatterned polymer brushes as switchable bioactive interfaces. Nanoscale 5, 3632–3637 (2013).

    Article  CAS  PubMed  Google Scholar 

  30. Liu, H. L. et al. Hydrophobic interaction-mediated capture and release of cancer cells on thermoresponsive nanostructured surfaces. Adv. Mater. 25, 922–927 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. Wei, T., Yu, Q., Zhan, W. & Chen, H. A smart antibacterial surface for the on-demand killing and releasing of bacteria. Adv. Healthcare Mater. 5, 449–456 (2016).

    Article  CAS  Google Scholar 

  32. Gensel, J. et al. Cavitation engineered 3D sponge networks and their application in active surface construction. Adv. Mater. 24, 985–959 (2012).

    Article  CAS  PubMed  Google Scholar 

  33. Srinivasan, N., Bhagawati, M., Ananthanarayanan, B. & Kumar, S. Stimuli-sensitive intrinsically disordered protein brushes. Nat. Commun. 5, 5145 (2014).

    Article  CAS  PubMed  Google Scholar 

  34. Wang, S. et al. DNA orientation-specific adhesion and patterning of living mammalian cells on self-assembled DNA monolayers. Chem. Sci. 7, 2722–2727 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pan, G. et al. Dynamic introduction of cell adhesive factor via reversible multicovalent phenylboronic acid/cis-diol polymeric complexes. J. Am. Chem. Soc. 136, 6203–6206 (2014).

    Article  CAS  PubMed  Google Scholar 

  36. Lutolf, M. P. et al. Synthetic matrix metalloproteinase-sensitive hydrogels for the conduction of tissue regeneration: engineering cell-invasion characteristics. Proc. Natl Acad. Sci. USA 100, 5413–5418 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zelzer, M. et al. Phosphatase responsive peptide surfaces. J. Mater. Chem. 22, 12229–12237 (2012).

    Article  CAS  Google Scholar 

  38. Richardson, J. J., Bjornmalm, M. & Caruso, F. Multilayer assembly. Technology-driven layer-by-layer assembly of nanofilms. Science 348, aaa2491 (2015).

    Article  PubMed  CAS  Google Scholar 

  39. Paul, N. et al. Molecularly imprinted conductive polymers for controlled trafficking of neurotransmitters at solid–liquid interfaces. Soft Matter 9, 1364–1371 (2012).

    Article  Google Scholar 

  40. Xia, D. Y., Ku, Z. Y., Lee, S. C. & Brueck, S. R. J. Nanostructures and functional materials fabricated by interferometric lithography. Adv. Mater. 23, 147–179 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Glass, R., Moller, M. & Spatz, J. P. Block copolymer micelle nanolithography. Nanotechnology 14, 1153–1160 (2003).

    Article  CAS  Google Scholar 

  42. Lohmuller, T. et al. Nanopatterning by block copolymer micelle nanolithography and bioinspired applications. Biointerphases 6, MR1–MR12 (2011).

    Article  PubMed  CAS  Google Scholar 

  43. Osypova, A. et al. Dual stimuli-responsive coating designed through layer-by-layer assembly of PAA-b-PNIPAM block copolymers for the control of protein adsorption. Soft Matter 11, 8154–8164 (2015).

    Article  CAS  PubMed  Google Scholar 

  44. Kaniewska, K., Karbarz, M. & Stojek, Z. Electrochemical attachment of thermo- and pH-sensitive interpenetrating-polymers-network hydrogel to conducting surface. Electrochim. Acta 179, 372–378 (2015).

    Article  CAS  Google Scholar 

  45. An, X. N. et al. Rational design of multi-stimuli-responsive nanoparticles for precise cancer therapy. ACS Nano 10, 5947–5958 (2016).

    Article  CAS  PubMed  Google Scholar 

  46. Okano, T., Yamada, N., Sakai, H. & Sakurai, Y. A novel recoverv svstern for cultured cells using plasrna-trGatid polystyrene dishes grafted with poly(N-isopropylacrylarnide). J. Biomed. Mater. Res. 27, 1243–1251 (1993).

    Article  CAS  PubMed  Google Scholar 

  47. Lashkor, M., Rawson, F. J., Stephenson-Brown, A., Preece, J. A. & Mendes, P. M. Electrically-driven modulation of surface-grafted rgd peptides for manipulation of cell adhesion. Chem. Commun. 50, 15589–15592 (2014).

    Article  CAS  Google Scholar 

  48. Parthasarathy, P. et al. Spatially controlled assembly of nanomaterials at the nanoscale. J. Nanosci. Nanotechnol. 9, 650–654 (2009).

    Article  CAS  PubMed  Google Scholar 

  49. Blonder, R., Katz, E., Willner, I., Wray, V. & Buckmann, A. F. Application of a nitrospiropyran-FAD-reconstituted glucose oxidase and charged electron mediators as optobioelectronic assemblies for the amperometric transduction of recorded optical signals: control of the ‘’on’’–’’off’’ direction of the photoswitch. J. Am. Chem. Soc. 119, 11747–11757 (1997).

    Article  CAS  Google Scholar 

  50. Wan, P., Chen, Y., Xing, Y., Chi, L. & Zhang, X. Combining host-guest systems with nonfouling material for the fabrication of a biosurface: toward nearly complete and reversible resistance of cytochrome c. Langmuir 26, 12515–12517 (2010).

    Article  CAS  PubMed  Google Scholar 

  51. Yeung, C. L. et al. Tuning specific biomolecular interactions using electro-switchable oligopeptide surfaces. Adv. Funct. Mater. 20, 2657–2663 (2010).

    Article  CAS  Google Scholar 

  52. You, J. et al. Noninvasive photodetachment of stem cells on tunable conductive polymer nano thin films: selective harvesting and preserved differentiation capacity. ACS Nano 7, 4119–4128 (2013).

    Article  CAS  PubMed  Google Scholar 

  53. Ng, C. C. A. et al. Using an electrical potential to reversibly switch surfaces between two states for dynamically controlling cell adhesion. Angew. Chem. Int. Ed. 51, 7706–7710 (2012).

    Article  CAS  Google Scholar 

  54. Murase, Y., Maeda, S., Hashimoto, S. & Yoshida, R. Design of a mass transport surface utilizing peristaltic motion of a self-oscillating gel. Langmuir 25, 483–489 (2009).

    Article  CAS  PubMed  Google Scholar 

  55. Suzuki, D., Kobayashi, T., Yoshida, R. & Hirai, T. Soft actuators of organized self-oscillating microgels. Soft Matter 8, 11447–11449 (2012).

    Article  CAS  Google Scholar 

  56. Maeda, S., Hara, Y., Sakai, T., Yoshida, R. & Hashimoto, S. Self-walking gel. Adv. Mater. 19, 3480–3484 (2007).

    Article  CAS  Google Scholar 

  57. Homma, K. et al. Fabrication of micropatterned self-oscillating polymer brush for direction control of chemical waves. Small 13, 8 (2017).

    Article  CAS  Google Scholar 

  58. Chen, H. M., Zhang, W. Z., Zhu, G. Z., Xie, J. & Chen, X. Y. Rethinking cancer nanotheranostics. Nat. Rev. Mater. 2, 17024 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Baetke, S. C., Lammers, T. & Kiessling, F. Applications of nanoparticles for diagnosis and therapy of cancer. Br. J. Radiol. 88, 12 (2015).

    Article  Google Scholar 

  60. Hatakeyama, H. Recent advances in endogenous and exogenous stimuli-responsive nanocarriers for drug delivery and therapeutics. Chem. Pharm. Bull. 65, 612–617 (2017).

    Article  CAS  Google Scholar 

  61. Li, F. Y., Lu, J. X., Kong, X. Q., Hyeon, T. & Ling, D. S. Dynamic nanoparticle assemblies for biomedical applications. Adv. Mater. 29, 30 (2017).

    Google Scholar 

  62. Zhou, M. X. et al. The application of stimuli-responsive nanocarriers for targeted drug delivery. Curr. Top. Med. Chem. 17, 2319–2334 (2017).

    CAS  PubMed  Google Scholar 

  63. Bjö rnmalm, M., Thurecht, K. J., Michael, M., Scott, A. M. & Caruso, F. Bridging bio–nano science and cancer nanomedicine. ACS Nano 11, 9594–9613 (2017).

    Article  CAS  Google Scholar 

  64. MacEwan, S. R. & Chilkoti, A. From composition to cure: a systems engineering approach to anticancer drug carriers. Angew. Chem. Int. Ed. 56, 6712–6733 (2017).

    Article  CAS  Google Scholar 

  65. Sneider, A., VanDyke, D., Paliwal, S. & Rai, P. Remotely triggered nano-theranostics for cancer applications. Nanotheranostics 1, 1–22 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Wang, J., Tao, W., Chen, X., Farokhzad, O. C. & Liu, G. Emerging advances in nanotheranostics with intelligent bioresponsive systems. Theranostics 7, 3915–3919 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zhao, Y., Tavares, A. C. & Gauthier, M. A. Nano-engineered electro-responsive drug delivery systems. J. Mater. Chem. B 4, 3019–3030 (2016).

    Article  CAS  PubMed  Google Scholar 

  68. Uppalapati, D., Boyd, B. J., Garg, S., Travas-Sejdic, J. & Svirskis, D. Conducting polymers with defined micro- or nanostructures for drug delivery. Biomaterials 111, 149–162 (2016).

    Article  CAS  PubMed  Google Scholar 

  69. Seyfoddin, A. et al. Electro-responsive macroporous polypyrrole scaffolds for triggered dexamethasone delivery. Eur. J. Pharm. Biopharm. 94, 419–426 (2015).

    Article  CAS  PubMed  Google Scholar 

  70. Lorenzo, R. A., Carro, A. M., Concheiro, A. & Alvarez-Lorenzo, C. Stimuli-responsive materials in analytical separation. Anal. Bioanal. Chem. 407, 4927–4948 (2015).

    Article  CAS  PubMed  Google Scholar 

  71. Wegner, S. V., Sentü rk, O. I. & Spatz, J. P. Photocleavable linker for the patterning of bioactive molecules. Sci. Rep. 5, 18309 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Katz, E., Minko, S., Halamek, J., MacVittie, K. & Yancey, K. Electrode interfaces switchable by physical and chemical signals for biosensing, biofuel, and biocomputing applications. Anal. Bioanal. Chem. 405, 3659–3672 (2013).

    Article  CAS  PubMed  Google Scholar 

  73. Tam, T. K. et al. Biochemically controlled bioelectrocatalytic interface. J. Am. Chem. Soc. 130, 10888–10889 (2008).

    Article  CAS  PubMed  Google Scholar 

  74. Pita, M., Privman, M. & Katz, E. Biocatalytic enzyme networks designed for binary-logic control of smart electroactive nanobiointerfaces. Top. Catal. 55, 1201–1216 (2012).

    Article  CAS  Google Scholar 

  75. Willner, I., Liondagan, M., Marxtibbon, S. & Katz, E. Bioelectrocatalyzed amperometric transduction of recorded optical signals using monolayer-modified au-electrodes. J. Am. Chem. Soc. 117, 6581–6592 (1995).

    Article  CAS  Google Scholar 

  76. Willner, I. & Katz, E. Magnetic control of electrocatalytic and bioelectrocatalytic processes. Angew. Chem. Int. Ed. 42, 4576–4588 (2003).

    Article  CAS  Google Scholar 

  77. Parlak, O., Turner, A. P. F. & Tiwari, A. On/Off-switchable zipper-like bioelectronics on a graphene interface. Adv. Mater. 26, 482–486 (2014).

    Article  CAS  PubMed  Google Scholar 

  78. Yao, H. et al. A stimuli-responsive biosensor of glucose on layer-by-layer films assembled through specific lectin-glycoenzyme recognition. Sensors 16, 563 (2016).

    Article  CAS  PubMed Central  Google Scholar 

  79. Parlak, O., Ashaduzzaman, M., Kollipara, S. B., Tiwari, A. & Turner, A. P. F. Switchable bioelectrocatalysis controlled by dual stimuli-responsive polymeric interface. ACS Appl. Mater. Interfaces 7, 23837–23847 (2015).

    Article  CAS  PubMed  Google Scholar 

  80. Patra, H. K. et al. Inflammation-sensitive in situ smart scaffolding for regenerative medicine. Nanoscale 8, 17213–17222 (2016).

    Article  CAS  PubMed  Google Scholar 

  81. Hirose, M., Kwon, O. H., Yamato, M., Kikuchi, A. & Okano, T. Creation of designed shape cell sheets that are noninvasively harvested and moved onto another surface. Biomacromolecules 1, 377–381 (2000).

    Article  CAS  PubMed  Google Scholar 

  82. Yamato, M., Konno, C., Utsumi, M., Kikuchi, A. & Okano, T. Thermally responsive polymer-grafted surfaces facilitate patterned cell seeding and co-culture. Biomaterials 23, 561–567 (2002).

    Article  CAS  PubMed  Google Scholar 

  83. Liu, H. et al. Dual-responsive surfaces modified with phenylboronic acid-containing polymer brush to reversibly capture and release cancer cells. J. Am. Chem. Soc. 135, 7603–7609 (2013).

    Article  CAS  PubMed  Google Scholar 

  84. Pan, G., Guo, Q., Ma, Y., Yang, H. & Li, B. Thermo-responsive hydrogel layers imprinted with RGDS peptide: a system for harvesting cell sheets. Angew. Chem. Int. Ed. 52, 6907–6911 (2013).

    Article  CAS  Google Scholar 

  85. Desseaux, S. & Klok, H. Temperature-controlled masking/unmasking of cell-adhesive cues with poly(ethylene glycol) methacrylate based brushes. Biomacromolecules 15, 3859–3865 (2014).

    Article  CAS  PubMed  Google Scholar 

  86. Gong, Y. et al. Photoresponsive “smart template” via host guest interaction for reversible cell adhesion. Macromolecules 44, 7499–7502 (2011).

    Article  CAS  Google Scholar 

  87. Goulet-Hanssens, A., Sun, K. L. W., Kennedy, T. E. & Barrett, C. J. Photoreversible surfaces to regulate cell adhesion. Biomacromolecules 13, 2958–2963 (2012).

    Article  CAS  PubMed  Google Scholar 

  88. Kadem, L. F. et al. High-frequency mechanostimulation of cell adhesion. Angew. Chem. Int. Ed. 56, 225–229 (2017).

    Article  CAS  Google Scholar 

  89. Yu, Q., Johnson, L. M. & Ló pez, G. P. Nanopatterned polymer brushes for triggered detachment of anchorage-dependent cells. Adv. Funct. Mater. 24, 3751–3759 (2014).

    Article  CAS  Google Scholar 

  90. Wan, A. M. et al. 3D conducting polymer platforms for electrical control of protein conformation and cellular functions. J. Mater. Chem. B 3, 5040–5048 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Kraehenbuehl, T. P. et al. Three-dimensional extracellular matrix-directed cardioprogenitor differentiation: systematic modulation of a synthetic cell-responsive PEG-hydrogel. Biomaterials 29, 2757–2766 (2008).

    Article  CAS  PubMed  Google Scholar 

  92. Wei, Y. et al. Directing stem cell differentiation via electrochemical reversible switching between nanotubes and nanotips of polypyrrole array. ACS Nano 11, 5915–5924 (2017).

    Article  CAS  PubMed  Google Scholar 

  93. Salvay, D. M. & Shea, L. D. Inductive tissue engineering with protein and DNA-releasing scaffolds. Mol. Biosyst. 2, 36–48 (2006).

    Article  CAS  PubMed  Google Scholar 

  94. Xiong, X. H. et al. Reversible bacterial adhesion on mixed poly(dimethylaminoethyl methacrylate)/poly(acrylamidophenyl boronic acid) brush surfaces. Langmuir 31, 12054–12060 (2015).

    Article  CAS  PubMed  Google Scholar 

  95. Yu, Q., Wu, Z. Q. & Chen, H. Dual-function antibacterial surfaces for biomedical applications. Acta Biomater. 16, 1–13 (2015).

    Article  PubMed  CAS  Google Scholar 

  96. Yu, Q., Cho, J., Shivapooja, P., Ista, L. K. & Lopez, G. P. Nanopatterned smart polymer surfaces for controlled attachment, killing, and release of bacteria. ACS Appl. Mater. Interfaces 5, 9295–9304 (2013).

    Article  CAS  PubMed  Google Scholar 

  97. Dong, Y. S., Xiong, X. H., Lu, X. W., Wu, Z. Q. & Chen, H. Antibacterial surfaces based on poly(cationic liquid) brushes: switchability between killing and releasing via anion counterion switching. J. Mater. Chem. B 4, 6111–6116 (2016).

    Article  CAS  PubMed  Google Scholar 

  98. Gushchin, I. et al. Mechanism of transmembrane signaling by sensor histidine kinases. Science 356, eaah6345 (2017).

    Article  PubMed  CAS  Google Scholar 

  99. Persat, A. Bacterial mechanotransduction. Curr. Opin. Microbiol. 36, 1–6 (2017).

    Article  CAS  PubMed  Google Scholar 

  100. Alsharif, G. et al. Host attachment and fluid shear are integrated into a mechanical signal regulating virulence in Escherichia coli O157:H7. Proc. Natl Acad. Sci. USA 112, 5503–5508 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Grinthal, A. & Aizenberg, J. Mobile interfaces: liquids as a perfect structural material for multifunctional, antifouling surfaces. Chem. Mat. 26, 698–708 (2014).

    Article  CAS  Google Scholar 

  102. Sohka, T. et al. An externally tunable bacterial band-pass filter. Proc. Natl Acad. Sci. USA 106, 10135–10140 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support for this work from the Engineering and Physical Sciences Research Council (EPSRC; EP/K027263/1) and the European Research Council (ERC; Consolidator Grant 614787).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to researching data for the article and writing, reviewing and editing the article before submission.

Corresponding author

Correspondence to Paula M. Mendes.

Ethics declarations

Competing interests

The authors declare no competing interests.

PowerPoint slides

Glossary

Theranostics

The combination of therapeutic and diagnostic capabilities in the same system.

Bioelectrocatalysis

The use of materials derived from biological systems as catalysts for electrochemical processes.

Molecular imprinting

The construction of selective recognition sites in polymeric materials, where a target template is employed to facilitate recognition site formation.

Addressability

The capability to apply a specific stimulus.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomes, B., Simões, B. & Mendes, P. The increasing dynamic, functional complexity of bio-interface materials. Nat Rev Chem 2, 0120 (2018). https://doi.org/10.1038/s41570-018-0120

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/s41570-018-0120

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing