Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Solving the oxygen sensitivity of sensitized photon upconversion in life science applications

A Correction to this article was published on 29 November 2018

This article has been updated

Abstract

The conversion of low-energy light into high-energy light, also known as upconversion, can be exploited in life science applications such as bioimaging and phototherapy. Sensitized triplet–triplet annihilation upconversion (sTTA-UC) is one type of upconversion in which a photosensitizer is excited using a low-energy light and then transfers energy to an annihilator that emits at much higher energy. Changing the molecular components enables the fine-tuning of excitation and emission wavelengths. sTTA-UC is an appealing approach because it results in high upconversion efficiencies. However, its sensitivity to the presence of dioxygen in living cells and biological tissues is problematic. In this Review, the essential requirements of sTTA-UC for bio-nanodevices and life science applications are outlined before discussing the different ways to circumvent the dioxygen sensitivity of sTTA-UC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Upconversion for photoactivated chemotherapy.
Fig. 2: Typical power dependency of upconversion emission in a sTTA-UC mechanism.
Fig. 3: Oxygen sensitivity of triplet–triplet annihilation upconversion.
Fig. 4: Chemical strategies to prevent quenching of sTTA-UC by triplet or singlet dioxygen.
Fig. 5: Protecting sTTA-UC in vesicles using antioxidants.
Fig. 6: In vitro and in vivo imaging with sTTA-UC nanoparticles.
Fig. 7: Upconversion luminescence imaging of polymersomes in living A549 cells.
Fig. 8: In vivo activation of a coumarin–chlorambucil prodrug, and antitumour activity of the photoreleased anticancer drug.

Similar content being viewed by others

Change history

  • 29 November 2018

    Equation 2 in the original version of the article should read:

References

  1. Zhou, J., Liu, Q., Feng, W., Sun, Y. & Li, F. Upconversion luminescent materials: advances and applications. Chem. Rev. 115, 395–465 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. Hopkins, S. L. H. et al. In vitro cell irradiation protocol for testing photopharmaceuticals and the effect of blue, green, and red light on human cancer cell lines. Photochem. Photobiol. Sci. 15, 644–653 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Vogel, A. & Venugopalan, V. Mechanisms of pulsed laser ablation of biological tissues. Chem. Rev. 103, 577–644 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Plaetzer, K., Krammer, B., Berlanda, J., Berr, F. & Kiesslich, T. Photophysics and photochemistry of photodynamic therapy: fundamental aspects. Lasers Med. Sci. 24, 259–268 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Askes, S. H. C. et al. Water-dispersible silica-coated upconverting liposomes: can a thin silica layer protect TTA-UC against oxygen quenching? ACS Biomater. Sci. Eng. 3, 322–334 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Farrer, N. J., Salassa, L. & Sadler, P. J. Photoactivated chemotherapy (PACT): the potential of excited-state d-block metals in medicine. Dalton Trans 48, 10690–10701 (2009).

    Article  CAS  Google Scholar 

  7. Wachter, E., Heidary, D. K., Howerton, B. S., Parkin, S. & Glazer, E. C. Light-activated ruthenium complexes photobind DNA and are cytotoxic in the photodynamic therapy window. Chem. Commun. 48, 9649–9651 (2012).

    Article  CAS  Google Scholar 

  8. Clarke, M. J. Ruthenium metallopharmaceuticals. Coord. Chem. Rev. 236, 209–233 (2003).

    Article  CAS  Google Scholar 

  9. Szaciłowski, K., Macyk, W., Drzewiecka-Matuszek, A., Brindell, M. & Stochel, G. Bioinorganic photochemistry: frontiers and mechanisms. Chem. Rev. 105, 2647–2694 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Gianferrara, T. et al. Ruthenium−porphyrin conjugates with cytotoxic and phototoxic antitumor activity. J. Med. Chem. 53, 4678–4690 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Allison, R. R. & Sibata, C. H. Oncologic photodynamic therapy photosensitizers: a clinical review. Photodiag. Photodyn. Ther. 7, 61–75 (2010).

    Article  CAS  Google Scholar 

  12. Byrnes, K. R. et al. Light promotes regeneration and functional recovery and alters the immune response after spinal cord injury. Lasers. Surg. Med. 36, 171–185 (2005).

    Article  PubMed  Google Scholar 

  13. Betanzos-Lara, S. et al. Photoactivatable organometallic pyridyl ruthenium(II) arene complexes. Organometallics 31, 3466–3479 (2012).

    Article  CAS  Google Scholar 

  14. Laemmel, A.-C., Collin, J.-P. & Sauvage, J.-P. Efficient and selective photochemical labilization of a given bidentate ligand in mixed ruthenium(II) complexes of the Ru(phen)2L2+ and Ru(bipy)2L2+ family (L = sterically hindering chelate). Eur. J. Inorg. Chem. 1999, 383–386 (1999).

    Article  Google Scholar 

  15. Schatzschneider, U. Photoactivated biological activity of transition-metal complexes. Eur. J. Inorg. Chem. 2010, 1451–1467 (2010).

    Article  CAS  Google Scholar 

  16. Sgambellone, M. A., David, A., Garner, R. N., Dunbar, K. R. & Turro, C. Cellular toxicity induced by the photorelease of a caged bioactive molecule: design of a potential dual-action Ru(II) complex. J. Am. Chem. Soc. 135, 11274–11282 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. Bonnet, S., Limburg, B., Meeldijk, J. D., Klein Gebbink, R. J. M. & Killian, J. A. Ruthenium-decorated lipid vesicles: light-induced release of [Ru(terpy)(bpy)(OH2)]2+ and thermal back coordination. J. Am. Chem. Soc. 133, 252–261 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. Arora, K. et al. Effects of methyl substitution in ruthenium tris(2-pyridylmethyl)amine photocaging groups for nitriles. Inorg. Chem. 55, 6968–6979 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mackay, F. S. et al. A photoactivated trans-diammine platinum complex as cytotoxic as cisplatin. Chem. Eur. J. 12, 3155–3161 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Westendorf, A. F. et al. Trans, trans, trans-[PtIV(N3)2(OH)2(py)(NH3)]: a light-activated antitumor platinum complex that kills human cancer cells by an apoptosis-independent mechanism. Mol. Cancer Ther. 11, 1894–1904 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Perfahl, S. et al. Photoactivation of diiodido-Pt(IV) complexes coupled to upconverting nanoparticles. Mol. Pharm. 13, 2346–2362 (2016).

    Article  CAS  PubMed  Google Scholar 

  22. Bednarski, P. J., Mackay, F. S. & Sadler, P. J. Photoactivatable platinum complexes. Anticancer Agents Med. Chem. 7, 75–93 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Rwei, A. Y., Wang, W. & Kohane, D. S. Photoresponsive nanoparticles for drug delivery. Nano Today 10, 451–467 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Schönberger, M. & Trauner, D. A. Photochromic agonist for μ-opioid receptors. Angew. Chem. Int. Ed. 53, 3264–3267 (2014).

    Article  CAS  Google Scholar 

  25. Bown, S. G. et al. Photodynamic therapy for cancer of the pancreas. Gut 50, 549–557 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lou, P.-J. et al. Interstitial photodynamic therapy as salvage treatment for recurrent head and neck cancer. Br. J. Cancer 91, 441–446 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Moore, C. M. et al. Light penetration in the human prostate: a whole prostate clinical study at 763 nm. J. Biomed. Opt. 16, 015003 (2011).

    Article  PubMed  Google Scholar 

  28. Karakullukcu, B. et al. mTHPC mediated interstitial photodynamic therapy of recurrent nonmetastatic base of tongue cancers: development of a new method. Head Neck 34, 1597–1606 (2012).

    Article  PubMed  Google Scholar 

  29. Karakullukcu, B. et al. MR and CT based treatment planning for mTHPC mediated interstitial photodynamic therapy of head and neck cancer: description of the method. Laser Surg. Med. 45, 517–523 (2013).

    Google Scholar 

  30. Ye, C., Zhou, L., Wang, X. & Liang, Z. Photon upconversion: from two-photon absorption (TPA) to triplet–triplet annihilation (TTA). Phys. Chem. Chem. Phys. 18, 10818–10835 (2016).

    Article  CAS  PubMed  Google Scholar 

  31. Ibarra-Ruiz, A. M., Burbano, D. C. R. & Capobianco, J. A. in Advances in Physics: X Vol. 1 194–225 (Taylor & Francis, 2016).

  32. Singh-Rachford, T. N. & Castellano, F. N. Photon upconversion based on sensitized triplet–triplet annihilation. Coord. Chem. Rev. 254, 2560–2573 (2010).

    Article  CAS  Google Scholar 

  33. Ye, C., Zhou, L., Wang, X. & Liang, Z. Photon upconversion: from two-photon absorption (TPA) to triplet-triplet annihilation (TTA). Phys. Chem. Chem. Phys. 18, 10818–10835 (2016).

    Article  CAS  PubMed  Google Scholar 

  34. Salierno, M., Marceca, E., Peterka, D. S., Yuste, R. & Etchenique, R. A fast ruthenium polypyridine cage complex photoreleases glutamate with visible or IR light in one and two photon regimes. J. Inorg. Biochem. 104, 418–422 (2010).

    Article  CAS  PubMed  Google Scholar 

  35. Huang, H. et al. Highly charged ruthenium(II) polypyridyl complexes as lysosome-localized photosensitizers for two-photon photodynamic therapy. Angew. Chem. Int. Ed. 127, 14255–14258 (2015).

    Article  Google Scholar 

  36. Hess, J. et al. Evaluation of the medicinal potential of two ruthenium(II) polypyridine complexes as one- and two-photon photodynamic therapy photosensitizers. Chem. Eur. J. 23, 9888–9896 (2017).

    Article  CAS  PubMed  Google Scholar 

  37. Boca, S. C. et al. An ethylene-glycol decorated ruthenium (II) complex for two-photon photodynamic therapy. Chem. Commun. (Camb.) 30, 4590–4592 (2009).

    Article  CAS  Google Scholar 

  38. Fino, E. et al. RuBi-glutamate: two-photon and visible-light photoactivation of neurons and dendritic spines. Front. Neural Circuit 3, 2–10 (2009).

    Article  CAS  Google Scholar 

  39. Dong, J. et al. A versatile and robust vesicle based on a photocleavable surfactant for two-photon-tuned release. Chem. Eur. J. 19, 7931–7936 (2013).

    Article  CAS  PubMed  Google Scholar 

  40. Nikolenko, V., Yuste, R., Zayat, L., Baraldo, L. M. & Etchenique, R. Two-photon uncaging of neurochemicals using inorganic metal complexes. Chem. Commun. (Camb.) 13, 1752–1754 (2005).

    Article  CAS  Google Scholar 

  41. Monguzzi, A., Tubino, R., Hoseinkhani, S., Campione, M. & Meinardi, F. Low power, non-coherent sensitized photon up-conversion: modelling and perspectives. Phys. Chem. Chem. Phys. 14, 4322–4332 (2012).

    Article  CAS  PubMed  Google Scholar 

  42. Chen, Y. et al. Two-photon luminescent metal complexes for bioimaging and cancer phototherapy. Coordin Chem. Rev. 310, 16–40 (2016).

    Article  CAS  Google Scholar 

  43. Chatterjee, D. K., Gnanasammandhan, M. K. & Zhang, Y. Small upconverting fluorescent nanoparticles for biomedical applications. Small 6, 2781–2795 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. Li, C. & Lin, J. Rare earth fluoride nano-/microcrystals: synthesis, surface modification and application. J. Mater. Chem. 20, 6831–6847 (2010).

    Article  CAS  Google Scholar 

  45. Shen, J., Zhao, L. & Han, G. Lanthanide-doped upconverting luminescent nanoparticle platforms for optical imaging-guided drug delivery and therapy. Adv. Drug Deliv. Rev. 65, 744–755 (2013).

    Article  CAS  PubMed  Google Scholar 

  46. Chatterjee, D. K., Fong, L. S. & Zhang, Y. Nanoparticles in photodynamic therapy: an emerging paradigm. Adv. Drug Deliv. Rev. 60, 1627–1637 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. Lin, M. et al. Recent advances in synthesis and surface modification of lanthanide-doped upconversion nanoparticles for biomedical applications. Biotechnol. Adv. 30, 1551–1561 (2012).

    Article  CAS  PubMed  Google Scholar 

  48. Dcona, M. M., Yu, Q., Capobianco, J. A. & Hartman, M. C. T. Near infrared light mediated release of doxorubicin using upconversion nanoparticles. Chem. Commun. 51, 8477–8479 (2015).

    Article  CAS  Google Scholar 

  49. Liu, X., Yan, C.-H. & Capobianco, J. A. Photon upconversion nanomaterials. Chem. Soc. Rev. 44, 1299–1301 (2015).

    Article  CAS  PubMed  Google Scholar 

  50. Rojas-Gutierrez, P. A., DeWolf, C. & Capobianco, J. A. Formation of a supported lipid bilayer on faceted LiYF 4:Tm 3+/Yb 3+upconversion nanoparticles. Part. Part. Syst. Charact. 33, 865–870 (2016).

    Article  CAS  Google Scholar 

  51. He, S. et al. Ultralow-intensity near-infrared light induces drug delivery by upconverting nanoparticles. Chem. Commun. 51, 431–434 (2015).

    Article  CAS  Google Scholar 

  52. Zhang, P., Steelant, W., Kumar, M. & Scholfield, M. Versatile photosensitizers for photodynamic therapy at infrared excitation. J. Am. Chem. Soc. 129, 4526–4527 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wang, C., Tao, H., Cheng, L. & Liu, Z. Near-infrared light induced in vivo photodynamic therapy of cancer based on upconversion nanoparticles. Biomaterials 32, 6145–6154 (2011).

    Article  CAS  PubMed  Google Scholar 

  54. Ruggiero, E., Hernandez-Gil, J., Mareque-Rivas, J. C. & Salassa, L. Near infrared activation of an anticancer PtIV complex by Tm-doped upconversion nanoparticles. Chem. Commun. 51, 2091–2094 (2015).

    Article  CAS  Google Scholar 

  55. Lv, W. et al. A phosphorescent iridium(III) complex-modified nanoprobe for hypoxia bioimaging via time-resolved luminescence microscopy. Adv. Sci. 2, 1500107 (2015).

    Article  CAS  Google Scholar 

  56. Lucky, S. S., Soo, K. C. & Zhang, Y. Nanoparticles in photodynamic therapy. Chem. Rev. 115, 1990–2042 (2015).

    Article  CAS  PubMed  Google Scholar 

  57. Liu, J. et al. Ultrasensitive nanosensors based on upconversion nanoparticles for selective hypoxia imaging in vivo upon near-infrared excitation. J. Am. Chem. Soc. 136, 9701–9709 (2014).

    Article  CAS  PubMed  Google Scholar 

  58. Hudson, D. E., Hudson, D. O., Wininger, J. M. & Richardson, B. D. Penetration of laser light at 808 and 980 nm in bovine tissue samples. Photomed. Laser Surg. 31, 163–168 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Meijer, M. S. et al. Absolute upconversion quantum yields of blue-emitting LiYF4:Yb3+,Tm3+ upconverting nanoparticles. Phys. Chem. Chem. Phys. 20, 22556–22562 (2018).

    Article  CAS  PubMed  Google Scholar 

  60. Boyer, J.-C. & van Veggel, F. C. J. M. Absolute quantum yield measurements of colloidal NaYF4: Er3+, Yb3+ upconverting nanoparticles. Nanoscale 2, 1417–1419 (2010).

    Article  CAS  PubMed  Google Scholar 

  61. Chen, Z., Sun, W., Butt, H.-J. & Wu, S. Upconverting-nanoparticle-assisted photochemistry induced by low-intensity near-infrared light: how low can we go? Chem. Eur. J 21, 9165–9170 (2015).

    Article  CAS  Google Scholar 

  62. Schmidt, T. W. & Castellano, F. N. Photochemical upconversion: the primacy of kinetics. J. Phys. Chem. Lett. 5, 4062–4072 (2014).

    Article  CAS  PubMed  Google Scholar 

  63. Liu, Q., Yang, T., Feng, W. & Li, F. Blue-emissive upconversion nanoparticles for low-power-excited bioimaging in vivo. J. Am. Chem. Soc. 134, 5390–5397 (2012).

    Article  CAS  PubMed  Google Scholar 

  64. Liu, Q. et al. A general strategy for biocompatible, high-effective upconversion nanocapsules based on triplet–triplet annihilation. J. Am. Chem. Soc. 135, 5029–5037 (2013). This is the first demonstration of sTTA-UC bioimaging in mice.

    Article  CAS  PubMed  Google Scholar 

  65. Kwon, O. S. et al. Dual-color emissive upconversion nanocapsules for differential cancer bioimaging in vivo. ACS Nano 10, 1512–1521 (2016).

    Article  CAS  PubMed  Google Scholar 

  66. Kim, J.-H. & Kim, J.-H. Triple-emulsion microcapsules for highly efficient multispectral upconversion in the aqueous phase. ACS Photon. 2, 633–638 (2015).

    Article  CAS  Google Scholar 

  67. Baluschev, S. et al. Upconversion with ultrabroad excitation band: simultaneous use of two sensitizers. Appl. Phys. Lett. 90, 181103–181103 (2007).

    Article  CAS  Google Scholar 

  68. Duan, P., Yanai, N., Nagatomi, H. & Kimizuka, N. Photon upconversion in supramolecular gel matrices: spontaneous accumulation of light-harvesting donor-acceptor arrays in nanofibers and acquired air stability. J. Am. Chem. Soc. 137, 1887–1894 (2015).

    Article  CAS  PubMed  Google Scholar 

  69. Parker, C. A. & Hatchard, C. G. Sensitized anti-stokes delayed fluorescence. Proc. Chem. Soc. 0, 386–387 (1962).

    CAS  Google Scholar 

  70. Parker, C. A., Hatchard, C. G. & Joyce, T. A. Selective and mutual sensitization of delayed fluorescence. Nature 205, 1282–1284 (1965).

    Article  CAS  Google Scholar 

  71. Keivanidis, P. E. et al. Up-conversion photoluminescence in polyfluorene doped with metal(II)–octaethyl porphyrins. Adv. Mater. 15, 2095–2098 (2003). This paper presents the rediscovery of the sTTA-UC phenomenon using PtOEP and fluorene molecules.

    Article  CAS  Google Scholar 

  72. Kozlov, D. & Castellano, F. Anti-Stokes delayed fluorescence from metal-organic bichromophores. Chem. Commun. (Camb.) 2860–2861 (2004).

  73. Zhao, J., Ji, S. & Guo, H. Triplet-triplet annihilation based upconversion: from triplet sensitizers and triplet acceptors to upconversion quantum yields. RSC Adv. 1, 937–950 (2011).

    Article  CAS  Google Scholar 

  74. Baluschev, S., Katta, K., Avlasevich, Y. & Landfester, K. Annihilation upconversion in nanoconfinement: solving the oxygen quenching problem. Mater. Horizons 3, 478–486 (2016).

    Article  CAS  Google Scholar 

  75. Filatov, M. A. et al. Reversible oxygen addition on a triplet sensitizer molecule: protection from excited state depopulation. Phys. Chem. Chem. Phys. 17, 6501–6510 (2015).

    Article  CAS  PubMed  Google Scholar 

  76. Borisov, S. M., Larndorfer, C. & Klimant, I. Triplet–triplet annihilation-based anti-stokes oxygen sensing materials with a very broad dynamic range. Adv. Funct. Mater. 22, 4360–4368 (2012).

    Article  CAS  Google Scholar 

  77. Filatov, M. et al. Extending the infrared limit of oxygenic photosynthesis. SPIE Newsroom https://doi.org/10.1117/2.1201403.005378 (2014).

    Article  Google Scholar 

  78. Menon, K. R., Jose, S. & Suraishkumar, G. K. Photon up-conversion increases biomass yield in Chlorella vulgaris. Biotechnol. J. 9, 1547–1553 (2014).

    Article  CAS  PubMed  Google Scholar 

  79. Majek, M., Faltermeier, U., Dick, B., Pérez-Ruiz, R. & Jacobi von Wangelin, A. Application of visible-to-UV photon upconversion to photoredox catalysis: the activation of aryl bromides. Chem. Eur. J. 21, 15496–15501 (2015).

    Article  CAS  PubMed  Google Scholar 

  80. Kwon, O. S., Kim, J. H., Cho, J. K. & Kim, J. H. Triplet-triplet annihilation upconversion in CdS-decorated SiO2 nanocapsules for sub-bandgap photocatalysis. ACS Appl. Mater. Interfaces 7, 318–325 (2015).

    Article  CAS  PubMed  Google Scholar 

  81. Fang, J. et al. CdS/Pt photocatalytic activity boosted by high-energetic photons based on efficient triplet–triplet annihilation upconversion. Appl. Catal. B 217, 100–107 (2017).

    Article  CAS  Google Scholar 

  82. Monguzzi, A. et al. Efficient broadband triplet-triplet annihilation-assisted photon upconversion at subsolar irradiance in fully organic systems. Adv. Funct. Mater. 25, 5617–5624 (2015).

    Article  CAS  Google Scholar 

  83. Nattestad, A. et al. An intermediate band dye-sensitised solar cell using triplet-triplet annihilation. Phys. Chem. Chem. Phys. 17, 24826–24830 (2015).

    Article  CAS  PubMed  Google Scholar 

  84. Hill, S. P., Banerjee, T., Dilbeck, T. & Hanson, K. Photon upconversion and photocurrent generation via self-assembly at organic–inorganic interfaces. J. Phys. Chem. Lett. 6, 4510–4517 (2015).

    Article  CAS  PubMed  Google Scholar 

  85. Nattestad, A. et al. Dye-sensitized solar cell with integrated triplet–triplet annihilation upconversion system. J. Phys. Chem. Lett. 4, 2073–2078 (2013).

    Article  CAS  PubMed  Google Scholar 

  86. Liu, Q., Feng, W., Yang, T., Yi, T. & Li, F. Upconversion luminescence imaging of cells and small animals. Nat. Protoc. 8, 2033–2044 (2013).

    Article  CAS  PubMed  Google Scholar 

  87. Wohnhaas, C. et al. Triplet–triplet annihilation upconversion based nanocapsules for bioimaging under excitation by red and deep-red light. Macromol. Biosci. 13, 1422–1430 (2013).

    Article  CAS  PubMed  Google Scholar 

  88. Nagai, A. et al. Tumor imaging based on photon upconversion of Pt(II) porphyrin rhodamine co-modified NIR excitable cellulose enhanced by aggregation. ACS Biomater. Sci. Eng. 1, 1206–1210 (2015).

    Article  CAS  PubMed  Google Scholar 

  89. Wohnhaas, C. et al. Annihilation upconversion in cells by embedding the dye system in polymeric nanocapsules. Macromol. Biosci. 11, 772–778 (2011).

    Article  CAS  PubMed  Google Scholar 

  90. Mattiello, S. et al. Self-assembled dual dye-doped nanosized micelles for high-contrast up-conversion bioimaging. Adv. Funct. Mater. 26, 8447–8454 (2016).

    Article  CAS  Google Scholar 

  91. Tian, B., Wang, Q., Su, Q., Feng, W. & Li, F. In vivo biodistribution and toxicity assessment of triplet-triplet annihilation-based upconversion nanocapsules. Biomaterials 112, 10–19 (2017).

    Article  CAS  PubMed  Google Scholar 

  92. Askes, S. H. C., Kloz, M., Bruylants, G., Kennis, J. T. & Bonnet, S. Triplet-triplet annihilation upconversion followed by FRET for the red light activation of a photodissociative ruthenium complex in liposomes. Phys. Chem. Chem. Phys. 17, 27380–27390 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Askes, S. H. C., Bahreman, A. & Bonnet, S. Activation of a photodissociative ruthenium complex by triplet–triplet annihilation upconversion in liposomes. Angew. Chem. Int. Ed. Engl. 53, 1029–1033 (2014). This is the first chemical demonstration that the light generated in situ by sTTA-UC in liposomes can be used to activate a PACT molecule.

    Article  CAS  PubMed  Google Scholar 

  94. Huang, L. et al. Expanding anti-stokes shifting in triplet-triplet annihilation upconversion for in vivo anticancer prodrug activation. Angew. Chem. Int. Ed. Engl. 56, 14400–14404 (2017). This is the first in vivo demonstration that sTTA-UC can be used to activate a photoactivated chemotherapeutic compound.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Cheng, Y. Y. et al. Entropically driven photochemical upconversion. J. Phys. Chem. A 115, 1047–1053 (2011).

    Article  CAS  PubMed  Google Scholar 

  96. Simon, Y. C. & Weder, C. Low-power photon upconversion through triplet-triplet annihilation in polymers. J. Mater. Chem. 22, 20817–20830 (2012).

    Article  CAS  Google Scholar 

  97. Monguzzi, A., Tubino, R. & Meinardi, F. Upconversion-induced delayed fluorescence in multicomponent organic systems: role of Dexter energy transfer. Phys. Rev. B 77, 155122 (2008).

    Article  CAS  Google Scholar 

  98. Haefele, A., Blumhoff, J., Khnayzer, R. S. & Castellano, F. N. Getting to the (Square) root of the problem: how to make noncoherent pumped upconversion linear. J. Phys. Chem. Lett. 3, 299–303 (2012).

    Article  CAS  Google Scholar 

  99. Simon, Y. C. et al. Low-power upconversion in dye-doped polymer nanoparticles. Macromol. Rapid Commun. 33, 498–502 (2012).

    Article  CAS  PubMed  Google Scholar 

  100. Cheng, Y. Y. et al. On the efficiency limit of triplet-triplet annihilation for photochemical upconversion. Phys. Chem. Chem. Phys. 12, 66–71 (2010).

    Article  CAS  PubMed  Google Scholar 

  101. Cheng, Y. Y. et al. Kinetic analysis of photochemical upconversion by triplet−triplet annihilation: beyond any spin statistical limit. J. Phys. Chem. Lett. 1, 1795–1799 (2010).

    Article  CAS  Google Scholar 

  102. Moseley, H. et al. Ambulatory photodynamic therapy: a new concept in delivering photodynamic therapy. Br. J. Dermatol. 154, 747–750 (2006).

    CAS  PubMed  Google Scholar 

  103. Monguzzi, A. et al. Unraveling triplet excitons photophysics in hyper-cross-linked polymeric nanoparticles: toward the next generation of solid-state upconverting materials. J. Phys. Chem. Lett. 7, 2779–2785 (2016).

    Article  CAS  PubMed  Google Scholar 

  104. Singh-Rachford, T. N., Lott, J., Weder, C. & Castellano, F. N. Influence of temperature on low-power upconversion in rubbery polymer blends. J. Am. Chem. Soc. 131, 12007–12014 (2009).

    Article  CAS  PubMed  Google Scholar 

  105. Islangulov, R. R., Lott, J., Weder, C. & Castellano, F. N. Noncoherent low-power upconversion in solid polymer films. J. Am. Chem. Soc. 129, 12652–12653 (2007).

    Article  CAS  PubMed  Google Scholar 

  106. Monguzzi, A., Tubino, R. & Meinardi, F. Multicomponent polymeric film for red to green low power sensitized up-conversion. J. Phys. Chem. A 113, 1171–1174 (2009).

    Article  CAS  PubMed  Google Scholar 

  107. Merkel, P. B. & Dinnocenzo, J. P. Low-power green-to-blue and blue-to-UV upconversion in rigid polymer films. J. Lumin. 129, 303–306 (2009).

    Article  CAS  Google Scholar 

  108. Cui, X., Zhao, J., Zhou, Y., Ma, J. & Zhao, Y. Reversible photoswitching of triplet–triplet annihilation upconversion using dithienylethene photochromic switches. J. Am. Chem. Soc. 136, 9256–9259 (2014).

    Article  CAS  PubMed  Google Scholar 

  109. Marsico, F. et al. Hyperbranched unsaturated polyphosphates as protective matrix for long-term photon upconversion in air. J. Am. Chem. Soc. 136, 11057–11064 (2014).

    Article  CAS  PubMed  Google Scholar 

  110. Tilley, A. J., Robotham, B. E., Steer, R. P. & Ghiggino, K. P. Sensitized non-coherent photon upconversion by intramolecular triplet–triplet annihilation in a diphenylanthracene pendant polymer. Chem. Phys. Lett. 618, 198–202 (2015).

    Article  CAS  Google Scholar 

  111. Jiang, X., Guo, X., Peng, J., Zhao, D. & Ma, Y. Triplet–triplet annihilation photon upconversion in polymer thin film: sensitizer design. ACS Appl. Mater. Interfaces 8, 11441–11449 (2016).

    Article  CAS  PubMed  Google Scholar 

  112. Lee, S. H., Lott, J. R., Simon, Y. C. & Weder, C. Melt-processed polymer glasses for low-power upconversion via sensitized triplet-triplet annihilation. J. Mater. Chem. C 1, 5142–5148 (2013).

    Article  CAS  Google Scholar 

  113. Lee, S.-H. et al. Low-power upconversion in poly(mannitol-sebacate) networks with tethered diphenylanthracene and palladium porphyrin. J. Inorg. Organomet. Polym. Mater. 24, 898–903 (2014).

    Article  CAS  Google Scholar 

  114. Lee, S. H., Thévenaz, D. C., Weder, C. & Simon, Y. C. Glassy poly(methacrylate) terpolymers with covalently attached emitters and sensitizers for low-power light upconversion. J. Polym. Sci. A Polym. Chem. 53, 1629–1639 (2015).

    Article  CAS  Google Scholar 

  115. Vadrucci, R., Weder, C. & Simon, Y. C. Organogels for low-power light upconversion. Mater. Horizons 2, 120–124 (2015).

    CAS  Google Scholar 

  116. Ogawa, T., Yanai, N., Monguzzi, A. & Kimizuka, N. Highly efficient photon upconversion in self-assembled light-harvesting molecular systems. Sci. Rep. 5, 10882 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Murakami, Y. et al. Transparent and nonflammable ionogel photon upconverters and their solute transport properties. J. Phys. Chem. B 120, 748–755 (2016).

    Article  CAS  PubMed  Google Scholar 

  118. Vadrucci, R., Weder, C. & Simon, Y. C. Low-power photon upconversion in organic glasses. J. Mater. Chem. C 2, 2837–2841 (2014).

    Article  CAS  Google Scholar 

  119. Huang, Z. et al. Hybrid molecule-nanocrystal photon upconversion across the visible and near-infrared. Nano Lett. 15, 5552–5557 (2015).

    Article  CAS  PubMed  Google Scholar 

  120. Wohnhaas, C. et al. All organic nanofibers as ultralight versatile support for triplet-triplet annihilation upconversion. ACS Macro Lett. 2, 446–450 (2013).

    Article  CAS  PubMed  Google Scholar 

  121. Kim, J.-H., Deng, F., Castellano, F. N. & Kim, J.-H. Red-to-blue/cyan/green upconverting microcapsules for aqueous- and dry-phase color tuning and magnetic sorting. ACS Photon. 1, 382–388 (2014).

    Article  CAS  Google Scholar 

  122. Tanaka, K. et al. Hypoxic condition-selective upconversion via triplet–triplet annihilation based on POSS-core dendrimer complexes. Bioorg. Med. Chem. 21, 2678–2681 (2013).

    Article  CAS  PubMed  Google Scholar 

  123. Turshatov, A., Busko, D., Baluschev, S., Miteva, T. & Landfester, K. Micellar carrier for triplet–triplet annihilation-assisted photon energy upconversion in a water environment. New J. Phys. 13, 083035 (2011).

    Article  CAS  Google Scholar 

  124. Kim, J.-H. & Kim, J.-H. Encapsulated triplet–triplet annihilation-based upconversion in the aqueous phase for sub-band-gap semiconductor photocatalysis. J. Am. Chem. Soc. 134, 17478–17481 (2012).

    Article  CAS  PubMed  Google Scholar 

  125. Ye, C. et al. Oil-in-water microemulsion: an effective medium for triplet-triplet annihilated upconversion with efficient triplet acceptors. J. Mater. Chem. C 2, 8507–8514 (2014).

    Article  CAS  Google Scholar 

  126. Liu, J., Bu, W., Pan, L. & Shi, J. NIR-triggered anticancer drug delivery by upconverting nanoparticles with integrated azobenzene-modified mesoporous silica. Angew. Chem. Int. Ed. 52, 4375–4379 (2013).

    Article  CAS  Google Scholar 

  127. Cao, X., Hu, B., Ding, R. & Zhang, P. Plasmon-enhanced homogeneous and heterogeneous triplet-triplet annihilation by gold nanoparticles. Phys. Chem. Chem. Phys. 17, 14479–14483 (2015).

    Article  CAS  PubMed  Google Scholar 

  128. Penconi, M., Gentili, P. L., Massaro, G., Elisei, F. & Ortica, F. A triplet-triplet annihilation based up-conversion process investigated in homogeneous solutions and oil-in-water microemulsions of surfactant. Photochem. Photobiol. Sci. 13, 48–61 (2014).

    Article  CAS  PubMed  Google Scholar 

  129. Wang, W. et al. Efficient triplet-triplet annihilation-based upconversion for nanoparticle phototargeting. Nano Lett. 15, 6332–6338 (2015).

    Article  CAS  PubMed  Google Scholar 

  130. Mutsamwira, S., Ainscough, E. W., Partridge, A. C., Derrick, P. J. & Filichev, V. V. DNA-based assemblies for photochemical upconversion. J. Phys. Chem. B 119, 14045–14052 (2015).

    Article  CAS  PubMed  Google Scholar 

  131. Huang, Z. et al. Nanocrystal size and quantum yield in the upconversion of green to violet light with CdSe and anthracene derivatives. Chem. Mater. 27, 7503–7507 (2015).

    Article  CAS  Google Scholar 

  132. Zhang, C., Zheng, J. Y., Zhao, Y. S. & Yao, J. Organic core-shell nanostructures: microemulsion synthesis and upconverted emission. Chem. Commun. (Camb.) 46, 4959–4961 (2010).

    Article  CAS  Google Scholar 

  133. Hill, S. P., Dilbeck, T., Baduell, E. & Hanson, K. Integrated photon upconversion solar cell via molecular self-assembled bilayers. ACS Energy Lett. 1, 3–8 (2016).

    Article  CAS  Google Scholar 

  134. Thévenaz, D. C. et al. Single-component upconverting polymeric nanoparticles. Macromol. Rapid Commun. 37, 826–832 (2016).

    Article  CAS  PubMed  Google Scholar 

  135. Poznik, M., Faltermeier, U., Dick, B. & Konig, B. Light upconverting soft particles: triplet-triplet annihilation in the phospholipid bilayer of self-assembled vesicles. RSC Adv. 6, 41947–41950 (2016).

    Article  CAS  Google Scholar 

  136. Askes, S. H. C. et al. Imaging upconverting polymersomes in cancer cells: biocompatible antioxidants brighten triplet-triplet annihilation upconversion. Small 12, 5579–5590 (2016).

    Article  CAS  PubMed  Google Scholar 

  137. Askes, S. H. C. et al. Imaging the lipid bilayer of giant unilamellar vesicles using red-to-blue light upconversion. Chem. Commun. (Camb.) 51, 9137–9140 (2015). This is the first demonstration that antioxidants allow sTTA-UC vesicles to work in air.

    Article  CAS  Google Scholar 

  138. Mahboub, M., Huang, Z. & Tang, M. L. Efficient infrared-to-visible upconversion with subsolar irradiance. Nano Lett. 16, 7169–7175 (2016).

    Article  CAS  PubMed  Google Scholar 

  139. Thevenaz, D. C. et al. Thermoresponsive low-power light upconverting polymer nanoparticles. Mater. Horizons 3, 602–607 (2016).

    CAS  Google Scholar 

  140. Grewer, C. & Brauer, H.-D. Mechanism of the triplet-state quenching by molecular oxygen in solution. J. Phys. Chem. 98, 4230–4235 (1994).

    Article  CAS  Google Scholar 

  141. Wilkinson, F. & Abdel-Shafi, A. A. Mechanism of quenching of triplet states by molecular oxygen: biphenyl derivatives in different solvents. J. Phys. Chem. A 103, 5425–5435 (1999).

    Article  CAS  Google Scholar 

  142. Mongin, C., Golden, J. H. & Castellano, F. N. Liquid PEG polymers containing antioxidants: a versatile platform for studying oxygen-sensitive photochemical processes. ACS Appl. Mater. Interfaces 8, 24038–24048 (2016).

    Article  CAS  PubMed  Google Scholar 

  143. Boutin, P. C., Ghiggino, K. P., Kelly, T. L. & Steer, R. P. Photon upconversion by triplet–triplet annihilation in Ru(bpy)3- and DPA-functionalized polymers. J. Phys. Chem. Lett. 4, 4113–4118 (2013).

    Article  CAS  Google Scholar 

  144. Tzenka, M., Vladimir, Y., Gabriele, N. & Stanislav, B. Annihilation assisted upconversion: all-organic, flexible and transparent multicolour display. New J. Phys. 10, 103002 (2008).

    Article  CAS  Google Scholar 

  145. Svagan, A. J. et al. Photon energy upconverting nanopaper: a bioinspired oxygen protection strategy. ACS Nano 8, 8198–8207 (2014).

    Article  CAS  PubMed  Google Scholar 

  146. Duan, P., Yanai, N. & Kimizuka, N. Photon upconverting liquids: matrix-free molecular upconversion systems functioning in air. J. Am. Chem. Soc. 135, 19056–19059 (2013). This paper presents the first sTTA-UC system working in air.

    Article  CAS  PubMed  Google Scholar 

  147. Hisamitsu, S., Yanai, N. & Kimizuka, N. Photon-upconverting ionic liquids: effective triplet energy migration in contiguous ionic chromophore arrays. Angew. Chem. Int. Ed. Engl. 54, 11550–11554 (2015).

    Article  CAS  PubMed  Google Scholar 

  148. Amemori, S., Sasaki, Y., Yanai, N. & Kimizuka, N. Near-infrared-to-visible photon upconversion sensitized by a metal complex with spin-forbidden yet strong S0–T1 absorption. J. Am. Chem. Soc. 138, 8702–8705 (2016).

    Article  CAS  PubMed  Google Scholar 

  149. Méndez-Hurtado, J., López, R., Suárez, D. & Menéndez, M. I. Theoretical study of the oxidation of histidine by singlet oxygen. Chem. Eur. J. 18, 8437–8447 (2012).

    Article  CAS  PubMed  Google Scholar 

  150. Wan, S., Lin, J., Su, H., Dai, J. & Lu, W. Photochemically deoxygenating solvents for triplet–triplet annihilation photon upconversion operating in air. Chem. Commun. (Camb.) 54, 3907–3910 (2018).

    Article  CAS  Google Scholar 

  151. Askes, S. H. C., Meijer, M., Bouwens, T., Landman, I. & Bonnet, S. Red light activation of Ru(II) polypyridyl prodrugs via triplet-triplet annihilation upconversion: feasibility in air and through meat. Molecules 21, 1460 (2016).

    Article  CAS  PubMed Central  Google Scholar 

  152. Dzebo, D., Moth-Poulsen, K. & Albinsson, B. Robust triplet-triplet annihilation photon upconversion by efficient oxygen scavenging. Photoch. Photobio. Sci. 16, 1327–1334 (2017).

    Article  CAS  Google Scholar 

  153. Brigger, I., Dubernet, C. & Couvreur, P. Nanoparticles in cancer therapy and diagnosis. Adv. Drug Deliv. Rev. 64, 24–36 (2012).

    Article  Google Scholar 

  154. Nam, J. et al. Surface engineering of inorganic nanoparticles for imaging and therapy. Adv. Drug Deliv. Rev. 65, 622–648 (2013).

    Article  CAS  PubMed  Google Scholar 

  155. Sanchez-Cano, C. & Hannon, M. J. Novel and emerging approaches for the delivery of metallo-drugs. Dalton Trans 48, 10702–10711 (2009).

    Article  CAS  Google Scholar 

  156. Svenson, S. Theranostics: are we there yet? Mol. Pharm. 10, 848–856 (2013).

    Article  CAS  PubMed  Google Scholar 

  157. Bansal, A. & Zhang, Y. Photocontrolled nanoparticle delivery systems for biomedical applications. Acc. Chem. Res. 47, 3052–3060 (2014).

    Article  CAS  PubMed  Google Scholar 

  158. Feldmann, H. J., Molls, M. & Vaupel, P. Blood flow and oxygenation status of human tumors. Strahlenther. Onkol. 175, 1–9 (1999).

    Article  CAS  PubMed  Google Scholar 

  159. Vaupel, P., Kallinowski, F. & Okunieff, P. Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res. 49, 6449–6465 (1989).

    CAS  PubMed  Google Scholar 

  160. Graves, E. E. et al. Hypoxia in models of lung cancer: implications for targeted therapeutics. Clin. Cancer Res. 16, 4843–4852 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Liu, Q., Wang, W., Zhan, C., Yang, T. & Kohane, D. S. Enhanced precision of nanoparticle phototargeting in vivo at a safe irradiance. Nano Lett. 16, 4516–4520 (2016).

    Article  CAS  PubMed  Google Scholar 

  162. Zhao, L. et al. Near-infrared photoregulated drug release in living tumor tissue via yolk-shell upconversion nanocages. Adv. Funct. Mater. 24, 363–371 (2014).

    Article  CAS  Google Scholar 

  163. Cui, S. et al. In vivo targeted deep-tissue photodynamic therapy based on near-infrared light triggered upconversion nanoconstruct. ACS Nano 7, 676–688 (2013).

    Article  CAS  PubMed  Google Scholar 

  164. Kouno, H. et al. Triplet energy migration-based photon upconversion by amphiphilic molecular assemblies in aerated water. Chem. Sci. 7, 5224–5229 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Wu, W. et al. Tuning the emissive triplet excited states of platinum(ii) Schiff base complexes with pyrene, and application for luminescent oxygen sensing and triplet-triplet-annihilation based upconversions. Dalton Trans 40, 11550–11561 (2011).

    Article  CAS  PubMed  Google Scholar 

  166. Parker, C. A. & Joyce, T. A. Formation efficiency and energy of the perylene triplet. Chem. Commun. 4, 108–109 (1966).

  167. Turshatov, A. et al. Synergetic effect in triplet–triplet annihilation upconversion: highly efficient multi-chromophore emitter. Chem. Phys. Chem. 13, 3112–3115 (2012).

    Article  CAS  PubMed  Google Scholar 

  168. Penconi, M., Ortica, F., Elisei, F. & Gentili, P. L. New molecular pairs for low power non-coherent triplet-triplet annihilation based upconversion: dependence on the triplet energies of sensitizer and emitter. J. Lumin. 135, 265–270 (2013).

    Article  CAS  Google Scholar 

  169. Islangulov, R. R., Kozlov, D. V. & Castellano, F. N. Low power upconversion using MLCT sensitizers. Chem. Commun. 0, 3776–3778 (2005).

  170. Nardello, V., Brault, D., Chavalle, P. & Aubry, J. Measurement of photogenerated singlet oxygen (1O2 (1 Δg)) in aqueous solution by specific chemical trapping with sodium 1, 3-cyclohexadiene-1, 4-diethanoate. J. Photochem. Photobiol. D 39, 146–155 (1997).

    Article  CAS  Google Scholar 

  171. Wasserman, H. H., Scheffer, J. R. & Cooper, J. L. Singlet oxygen reactions with 9,10-diphenylanthracene peroxide. J. Am. Chem. Soc. 94, 4991–4996 (1972).

    Article  CAS  Google Scholar 

  172. Xu, M. et al. Time-oxygen and light indicating via photooxidation mediated up-conversion. J. Mater. Chem. C 4, 9986–9992 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Dutch Organization for Scientific Research (NWO-CW) via an Innovational Research Incentives Scheme (VIDI) grant to S.B. The European Research Council is kindly acknowledged for a Starting Grant to S.B. E. Bouwman is gratefully acknowledged for her support and input.

Author information

Authors and Affiliations

Authors

Contributions

S. Askes and S. Bonnet contributed equally to the article.

Corresponding author

Correspondence to Sylvestre Bonnet.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Prodrugs

Compounds that are introduced in a living organism in a chemical form that is not biologically active but that, once in the living organism, transform into a drug molecule that is biologically active.

Polymersomes

Nano-sized or micro-sized vesicles, the membrane of which is made of amphiphilic block copolymers.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Askes, S.H.C., Bonnet, S. Solving the oxygen sensitivity of sensitized photon upconversion in life science applications. Nat Rev Chem 2, 437–452 (2018). https://doi.org/10.1038/s41570-018-0057-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-018-0057-z

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research