Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

The Lewis electron-pair bonding model: the physical background, one century later

Abstract

The shared electron-pair bonding model was suggested by Gilbert Lewis more than 100 years ago. Emerging from the chemical experience of the time, Lewis structures described contemporary aspects of chemical reality in terms of empirically adapted models without any (then unknown) quantum physical underpinnings. This Perspective details the origins and historical development of the Lewis model, which we contrast with the physical understanding of chemical bonding in terms of contemporary quantum chemistry. Some intuitively plausible classical explanations of the past, not least of which are the sharing of electrons by two atoms and the subtypes of shared electron-pair bonding and dative bonding, turned out to be well founded. Some other chemical dogmata, including the concept that bonding occurs only between two nuclei and is caused by spin coupling or that bond energy is of purely electrostatic origin, are less well founded. We now know that covalent bonding is not driven by the formation of an electron pair but rather by the lowering of the kinetic energy density of the shared electrons in the bonding region, which is provided by the interference of the atomic wavefunctions. Lewis structures remain highly useful models for describing chemical bonding in molecular structures and chemical reactions, particularly when supported by quantum chemistry. The concepts behind the three most common quantum chemical approximations — the valence bond, molecular orbital and density functional theories — are described. These methods allow us to learn that bonding is an energetic phenomenon, from which descriptors such as bond length, bond dissociation energies and force constants are derivable. The energetic origins of bonding point to bond energy decomposition analysis as a natural tool for elucidating the actions of bonding electrons.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Gilbert Lewis suggested visualizing atoms as cubes, at the vertices of which lie spheres representing electrons.
Fig. 2: The annual citations of Gilbert Lewis’ paper The atom and the molecule since its publication in 1916.
Fig. 3: A portrait of Gilbert Lewis.
Fig. 4: Heitler and London calculated the energy of H2 as a function of internuclear separation.
Fig. 5: Plot of the energy of H2 versus internuclear separation.

Similar content being viewed by others

References

  1. Lewis, G. N. The atom and the molecule. J. Am. Chem. Soc. 38, 762–785 (1916).

    CAS  Google Scholar 

  2. Heisenberg, W. Über quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen. Z. Phys. 33, 879–893 (1925).

    CAS  Google Scholar 

  3. Schrödinger, E. Quantisierung als Eigenwertproblem. Ann. Physik 79, 361–376 (1926).

    Google Scholar 

  4. Burrau, Ø. Berechnung des Energiewertes des Wasserstoffmolekel-Ions (H2 +) im Normalzustand. Naturwissenschaften 15, 16–17 (1927).

    CAS  Google Scholar 

  5. Heitler, W. & London, F. Wechselwirkung neutraler Atome und homöopolare Bindung nach der Quantenmechanik. Z. Phys. 44, 455–472 (1927).

    CAS  Google Scholar 

  6. Bohr, N. I. On the constitution of atoms and molecules. Philos. Mag. 26, 1–25 (1913).

    CAS  Google Scholar 

  7. Schwarz, W. H. E. 100th Anniversary of Bohr’s model of the atom. Angew. Chem. Int. Ed. 52, 12228–12238 (2013).

    CAS  Google Scholar 

  8. Earnshaw, S. On the nature of the molecular forces which regulate the constitution of the luminiferous ether. Trans. Cambridge Philos. Soc. 7, 97–112 (1842).

    Google Scholar 

  9. Lamb, W. & Retherford, R. C. Fine structure of the hydrogen atom by a microwave method. Phys. Rev. 72, 241 (1947).

    CAS  Google Scholar 

  10. Lennard-Jones, J. E. The electronic structure of some diatomic molecules. Trans. Faraday Soc. 25, 668–686 (1929).

    CAS  Google Scholar 

  11. Hückel, E. Quantentheoretische Beiträge zum Benzolproblem. Z. Phys. 70, 204–286 (1931).

    Google Scholar 

  12. Hellmann, H. Einführung in die Quantenchemie (Deuticke, Leipzig/Wien, 1937).

  13. Pauling, L. & Wilson, E. B. Introduction to Quantum Mechanics: with Applications to Chemistry (McGraw-Hill, New York, 1935).

  14. Pauling, L. The Nature of the Chemical Bond and the Structure of Molecules and Crystals (Cornell Univ. Press, Ithaca NY, 1939).

    Google Scholar 

  15. Shull, H. & Robert, S. Mulliken — scientific donor to chemical acceptors. Nucleus 37, 259 (1960).

    Google Scholar 

  16. Shaik, S. The Lewis legacy: the chemical bond — a territory and heartland of chemistry. J. Comput. Chem. 28, 51–61 (2007).

    CAS  PubMed  Google Scholar 

  17. Gillespie, R. J. & Robinson, E. A. Gilbert, N. Lewis and the chemical bond: the electron pair and the octet rule from 1916 to the present day. J. Comput. Chem. 28, 87–97 (2007).

    CAS  PubMed  Google Scholar 

  18. Ruedenberg, K. & Schwarz, W. H. E. in Pioneers in Quantum Chemistry (eds Strom, E. T. & Wilson, A. K.) 1122, 1–45 (Americal Chemical Society, Washington DC, 2013).

  19. Hildebrand, J. H. & Lewis, G. N. Biogr. Mem. Natl Acad. Sci. USA 0, 208–220 (1958).

    Google Scholar 

  20. Seaborg, G. T. The research style of Gilbert N. Lewis: acids and bases. J. Chem. Educ. 61, 93–100 (1984).

    Google Scholar 

  21. Coffey, P. Cathedrals of Science: The Personalities and Rivalries That Made Modern Chemistry. (Oxford Univ. Press, Oxford, 2008).

    Google Scholar 

  22. Lewis, G. N. Acids and bases. J. Franklin Inst. 226, 293–313 (1938).

    Google Scholar 

  23. Langmuir, I. The arrangements of electrons in atoms and molecules. J. Am. Chem. Soc. 41, 868–934 (1919).

    CAS  Google Scholar 

  24. Langmuir, I. Isomorphism, isosterism and covalence. J. Am. Chem. Soc. 41, 1543–1559 (1919).

    CAS  Google Scholar 

  25. Langmuir, I. The Octet theory of valence and its applications with special reference to organic nitrogen compounds. J. Am. Chem. Soc. 42, 274–292 (1920).

    CAS  Google Scholar 

  26. Kossel, W. Über Molekülbildung als Frage des Atombaus. Ann. Physik 354, 229–362 (1916).

    Google Scholar 

  27. Kohler, R. E. Irving Langmuir and the “octet” theory of valence. Hist. Stud. Phys. Sci. 4, 39–87 (1974).

    CAS  Google Scholar 

  28. Kohler, R. E. The Lewis–Langmuir theory of valence and the chemical community, 1920–1928. Hist. Stud. Phys. Sci. 6, 431–468 (1975).

    CAS  Google Scholar 

  29. Lewis, G. N. Valence and the Structure of Atoms and Molecules (The Chemical Catalog Company, New York, 1923).

    Google Scholar 

  30. Thomson, J. J. The electronic theory of valency — a general discussion. Trans. Faraday Soc. 19, 450–451 (1923).

    Google Scholar 

  31. Lewis, G. N. Introductory address: valence and the electron. Trans. Faraday Soc. 19, 452–458 (1923).

    CAS  Google Scholar 

  32. Zhao, L., Hermann, M., Holzmann, N. & Frenking, G. Dative bonding in main group compounds. Coord. Chem. Rev. 344, 163–204 (2017).

    CAS  Google Scholar 

  33. Haaland, A. Covalent versus dative bonds to main group metals, a useful distinction. Angew. Chem. Int. Ed. 28, 992–1007 (1989).

    Google Scholar 

  34. Lewis, G. N. The chemical bond. J. Chem. Phys. 1, 17–28 (1933).

    CAS  Google Scholar 

  35. Uhlenbeck, G. E. & Goudsmit, S. Ersetzung der Hypothese vom unmechanischen Zwang durch eine Forderung bezüglich des inneren Verhaltens jedes einzelnen Elektrons. Die Naturwissenschaften 13, 953–954 (1925).

    CAS  Google Scholar 

  36. Pauli, W. Über den Zusammenhang des Abschlusses der Elektronengruppen im Atom mit der Komplexstruktur der Spektren. Z. Phys. 31, 765–783 (1925).

    CAS  Google Scholar 

  37. Dirac, P. A. M. The quantum theory of the electron. Proc. R. Soc. A 117, 610–624 (1928).

    Google Scholar 

  38. Pauling, L. The nature of the chemical bond. II. The one electron bond and the three electron bond. J. Am. Chem. Soc. 53, 3225–3237 (1931).

    CAS  Google Scholar 

  39. Fukui, K. Theory of Orientation and Stereoselection (Springer Verlag, Berlin, 1975).

  40. Woodward, R. B. & Hoffmann, R. The Conservation of Orbital Symmetry (Academic Press, Cambridge, 1971).

    Google Scholar 

  41. Löwdin, P. O. On the historical development of the valence bond method and the non-orthogonality problem. J. Mol. Struct. 229, 1–14 (1991).

    Google Scholar 

  42. Hund, F. Zur Frage der chemischen Bindung. II. Z. Phys. 73, 1–30 (1932).

    CAS  Google Scholar 

  43. Hückel, E. Ein Gelehrtenleben (Verlag Chemie, Weinheim, 1975).

    Google Scholar 

  44. Coulson, C. A. Valence (Oxford Univ. Press, Oxford, 1952).

    Google Scholar 

  45. Pauling, L. Quantum mechanics of valence. Nature 170, 384–385 (1952).

    Google Scholar 

  46. Simões, A. A quantum chemical dialogue mediated by textbooks: Pauling’s “The nature of the chemical bond” and Coulson’s “Valence”. Notes Rec. 62, 259–269 (2008).

    Google Scholar 

  47. Streitwieser, A. Molecular Orbital Theory for Organic Chemists (Wiley, New York, 1961).

    Google Scholar 

  48. Griffith, J. S. & Orgel, L. E. Ligand-field theory. Q. Rev. Chem. Soc. 11, 381–393 (1957).

    CAS  Google Scholar 

  49. Ballhausen, C. J. Introduction to Ligand Field Theory (McGraw-Hill, New York, 1962).

    Google Scholar 

  50. Hartmann, H. & Schläfer, H. L. Zur Frage der Bindungsverhältnisse bei Komplexverbindungen. Angew. Chem. 70, 155–163 (1958).

    CAS  Google Scholar 

  51. Fleming, I. Frontier Orbitals and Organic Chemical Reactions (Wiley, New York, 1976).

    Google Scholar 

  52. Gilchrist, T. L. & Storr, R. C. Organic Reactions and Orbital Symmetry 2nd edn (Cambridge Univ. Press, 1971).

  53. Houk, K. N. Frontier molecular orbital theory of cycloaddition reactions. Acc. Chem. Res. 8, 361–369 (1975).

    CAS  Google Scholar 

  54. Dewar, M. J. R. Molecular Orbital Theory for Organic Chemists (Prentice-Hall, Englewood Cliffs, New Jersey, 1975).

    Google Scholar 

  55. Borden, W. T. Modern Molecular Orbital Theory for Organic Chemists (Prentice-Hall, Englewood Cliffs, New Jersey, 1975).

    Google Scholar 

  56. Albright, T. A., Burdett, J. K. & Whangbo, M.-H. Orbital Interactions in Chemistry 2nd edn (Wiley, New York, 2013).

    Google Scholar 

  57. Burdett, J. K. Chemical bonding: a dialogue (Wiley, Chichester, 1997).

    Google Scholar 

  58. Sidgwick, N. V. The Electronic Theory of Valency (Clarendon Press, Oxford, 1927).

    Google Scholar 

  59. Frenking, G., Loschen, C., Krapp, A., Fau, S. & Strauss, S. H. Electronic structure of CO — an exercise in modern chemical bonding theory. J. Comput. Chem. 28, 117–126 (2007).

    CAS  PubMed  Google Scholar 

  60. Hoffmann, R. Building bridges between inorganic and organic chemistry (Nobel lecture). Angew. Chem. Int. Ed. 21, 711–724 (1982).

    Google Scholar 

  61. Mingos, D. M. P. & Hawes, J. C. in Bond and Structure Models. 1–63 (Springer, Berlin, 1985).

  62. Sheong, F. K., Chen, W.-J. & Lin, Z. in The Chemical Bond I: 100 Years Old and Getting Stronger (ed. Mingos, D. M. P.) 89–129 (Springer, Berlin, 2016).

  63. Dewar, M. J. S. A review of π complex theory. Bull. Soc. Chim. Fr. 18, C71–C79 (1951).

    Google Scholar 

  64. Chatt, J. & Duncanson, L. A. Olefin co-ordination compounds. Part III. Infra-red spectra and structure: attempted preparation of acetylene complexes. J. Chem. Soc. 0, 2939–2947 (1953).

    CAS  Google Scholar 

  65. Modern Coordination Chemistry. The Legacy of Joseph Chatt (eds Leigh, G. J. & Winterton, N.) (The Royal Society, London, 2002).

  66. Himmel, D., Krossing, I. & Schnepf, A. Dative bonds in main-group compounds: a case for fewer arrows! Angew. Chem. Int. Ed. 53, 370–374 (2014).

    CAS  Google Scholar 

  67. Frenking, G. Dative bonds in main-group compounds: a case for more arrows! Angew. Chem. Int. Ed. 53, 6040–6046 (2014).

    CAS  Google Scholar 

  68. Himmel, D., Krossing, I. & Schnepf, A. Dative or not dative? Angew. Chem. Int. Ed. 53, 6047–6048 (2014).

    CAS  Google Scholar 

  69. Zhao, L., Schwarz, W. H. E. & Frenking, G. The Lewis electron-pair bonding model: modern energy decomposition analysis. Nat. Rev. Chem. 2, xxxx (2018).

    Google Scholar 

  70. Huber, K. P. & Herzberg, G. Molecular Spectra and Molecular Structure IV. Constants of Diatomic Molecules (Van Nostrand Reinhold, New York, 1979).

  71. Bitter, T., Ruedenberg, K. & Schwarz, W. H. E. Toward a physical understanding of electron-sharing two-center bonds. General aspects. I. J. Comput. Chem. 28, 411–422 (2007).

    CAS  PubMed  Google Scholar 

  72. Bitter, T., Wang, S. G., Ruedenberg, K. & Schwarz, W. H. E. Toward a physical understanding of electron-sharing two-center bonds. II. Pseudo-potential based analysis of diatomic molecules. Theor. Chem. Acc. 127, 237–257 (2010).

    CAS  Google Scholar 

  73. Schmidt, M. W., Ivanic, J. & Ruedenberg, K. in The Chemical Bond (eds Frenking, G. & Shaik, S.) 1–68 (Wiley-VCH, Weinheim, 2014).

  74. Kutzelnigg, W. The physical mechanism of the chemical bond. Angew. Chem. Int. Ed. 12, 546–562 (1973).

    Google Scholar 

  75. Ruedenberg, K. The physical nature of the chemical bond. Rev. Mod. Phys. 34, 326–376 (1962).

    CAS  Google Scholar 

  76. Schmidt, M. W., Ivanic, J. & Ruedenberg, K. Covalent bonds are created by the drive of electron waves to lower their kinetic energy through expansion. J. Chem. Phys. 140, 204104 (2014).

    PubMed  PubMed Central  Google Scholar 

  77. Wilson, C. W. & Goddard, W. A. The role of kinetic energy in chemical binding. Theor. Chim. Acta 26, 195–210 (1972).

    CAS  Google Scholar 

  78. Goddard, W. A. & Wilson, C. W. The role of kinetic energy in chemical binding. Theor. Chim. Acta 26, 211–230 (1972).

    CAS  Google Scholar 

  79. Spackman, M. A. & Maslen, E. N. Chemical properties from the promolecule. J. Phys. Chem. 90, 2020–2027 (1986).

    CAS  Google Scholar 

  80. Kovács, K., Esterhuysen, C. & Frenking, G. The nature of the chemical bond revisited: an energy-partitioning analysis of nonpolar bonds. Chem. Eur. J. 11, 1813–1825 (2005).

    PubMed  Google Scholar 

  81. Krapp, A., Bickelhaupt, F. M. & Frenking, G. Orbital overlap and chemical bonding. Chem. Eur. J. 12, 9196–9216 (2006).

    CAS  PubMed  Google Scholar 

  82. Martín Pendás, A., Francisco, E. & Blanco, M. A. Binding energies of first row diatomics in the light of the interacting quantum atoms approach. J. Phys. Chem. A 110, 12864–12869 (2006).

    PubMed  Google Scholar 

  83. Cardozo, T. M. & Nascimento, M. A. C. Chemical bonding in the N2 molecule and the role of the quantum mechanical interference effect. J. Phys. Chem. A 113, 12541–12548 (2009).

    CAS  PubMed  Google Scholar 

  84. Fantuzzi, F. & Nascimento, M. A. C. Description of polar chemical bonds from the quantum mechanical interference perspective. J. Chem. Theory Comput. 10, 2322–2332 (2014).

    CAS  PubMed  Google Scholar 

  85. Lewis, G. N. Valence and tautomerism. J. Amer. Chem. Soc. 35, 1448–1455 (1913).

    CAS  Google Scholar 

  86. Einstein, A. Quote investigator http://quoteinvestigator.com/2011/05/13/einstein-simple/

  87. [no autors listed]. The Chemical Bond. 1. Fundamental Aspects of Chemical Bonding (eds Frenking, G. & Shaik, S.) (Wiley-VCH, Weinheim, 2014).

  88. [no autors listed]. The Chemical Bond. 2. Chemical Bonding Across the Periodic Table (eds Frenking, G. & Shaik, S.) (Wiley-VCH, Weinheim, 2014).

  89. Szabo, A. & Ostlund, N. S. Modern Quantum Chemistry (Macmillan, New York, 1982).

    Google Scholar 

  90. Shaik, S. & Hiberty, P. C. in A Chemist’s Guide to Valence Bond Theory. 40–80 (John Wiley, New York, 2007).

  91. Cooper, D. Valence Bond Theory (Elsevier, Amsterdam, 2002).

    Google Scholar 

  92. Sini, G., Maitre, P., Hiberty, P. C. & Shaik, S. S. Covalent, ionic and resonating single bonds. J. Mol. Struct. 229, 163–188 (1991).

    Google Scholar 

  93. Shaik, S., Maitre, P., Sini, G. & Hiberty, P. C. The charge-shift bonding concept. Electron-pair bonds with very large ionic–covalent resonance energies. J. Am. Chem. Soc. 114, 7861–7866 (1992).

    CAS  Google Scholar 

  94. Shaik, S., Danovich, D., Wu, W. & Hiberty, P. C. Charge-shift bonding and its manifestations in chemistry. Nat. Chem. 1, 443–449 (2009).

    CAS  PubMed  Google Scholar 

  95. Schwarz, W. H. E., Valtazanos, P. & Ruedenberg, K. Electron difference densities and chemical bonding. Theor. Chim. Acta 68, 471–506 (1985).

    CAS  Google Scholar 

  96. Schwarz, W. H. E., Mensching, L., Valtazanos, P. & Von Niessen, W. A chemically useful definition of electron difference densities. Int. J. Quantum Chem. 30, 439–444 (1986).

    CAS  Google Scholar 

  97. Schwarz, W. H. E. & Mons, H. E. Electron deformation densities compatible with chemical binding. Chem. Phys. Lett. 156, 275–280 (1989).

    CAS  Google Scholar 

  98. Irle, S., Lin, H. L., Niu, J. E. & Schwarz, W. H. E. Electron density and chemical bonding: the shape of independent atoms in molecules. Ber. Bunsenges. Phys. Chem. 96, 1545–1551 (1992).

    CAS  Google Scholar 

  99. Schwarz, W. H. E., Lin, H. L., Irle, S. & Niu, J. E. Shapes of independent atoms and chemical deformation densities of second-row molecules. J. Mol. Struct. 255, 435–459 (1992).

    Google Scholar 

  100. Shaik, S., Danovich, D., Braida, B., Wu, W. & Hiberty, P. C. New landscape of electron-pair bonding: covalent, ionic, and charge-shift bonds. Struct. Bond. 170, 169–211 (2016).

    CAS  Google Scholar 

  101. Foster, J. M. & Boys, S. F. Canonical configurational interaction procedure. Rev. Mod. Phys. 32, 300–302 (1960).

    CAS  Google Scholar 

  102. Edmiston, C. & Ruedenberg, K. Localized atomic and molecular orbitals. Rev. Mod. Phys. 35, 457–464 (1963).

    CAS  Google Scholar 

  103. Pipek, J. & Mezey, P. G. A fast intrinsic localization procedure applicable for ab initio and semiempirical linear combination of atomic orbital wave functions. J. Chem. Phys. 90, 4916–4926 (1989).

    CAS  Google Scholar 

  104. Weinhold, F. & Landis, C. Valency and Bonding: A Natural Bond Orbital Donor–Acceptor Perspective (Cambridge Univ. Press, 2005).

  105. Zubarev, D. Y. & Boldyrev, A. I. Developing paradigms of chemical bonding: adaptive natural density partitioning. Phys. Chem. Chem. Phys. 10, 5207–5217 (2008).

    CAS  PubMed  Google Scholar 

  106. Maseras, F. & Morokuma, K. Application of the natural population analysis to transition-metal complexes. Should the empty metal p orbitals be included in the valence space? Chem. Phys. Lett. 195, 500–504 (1992).

    CAS  Google Scholar 

  107. Bayse, C. A. & Hall, M. B. Prediction of the geometries of simple transition metal polyhydride complexes by symmetry analysis. J. Am. Chem. Soc. 121, 1348–1358 (1999).

    CAS  Google Scholar 

  108. Diefenbach, A., Bickelhaupt, F. M. & Frenking, G. The nature of the transition metal−carbonyl bond and the question about the valence orbitals of transition metals. A bond-energy decomposition analysis of TM(CO)6 q (TMq = Hf2−, Ta, W, Re+, Os2+, Ir3+). J. Am. Chem. Soc. 122, 6449–6458 (2000).

    CAS  Google Scholar 

  109. Frenking, G. & Fröhlich, N. The nature of the bonding in transition-metal compounds. Chem. Rev. 100, 717–774 (2000).

    CAS  PubMed  Google Scholar 

  110. Mardirossian, N. & Head-Gordon, M. Thirty years of density functional theory in computational chemistry: an overview and extensive assessment of 200 density functionals. Mol. Phys. 115, 2315–2372 (2017).

    CAS  Google Scholar 

  111. Goerigk, L. et al. A look at the density functional theory zoo with the advanced GMTKN55 database for general main group thermochemistry, kinetics and noncovalent interactions. Phys. Chem. Chem. Phys. 19, 32184–32215 (2017).

    CAS  PubMed  Google Scholar 

  112. Huang, W. et al. How much can density functional approximations (DFA) fail? The extreme case of the FeO4 species. J. Chem. Theory Comput. 12, 1525–1533 (2016).

    CAS  PubMed  Google Scholar 

  113. Kutzelnigg, W. in Trends and perspectives in modern computational science (eds Maroulis, G. & Simos, T.) 23–62 (International Science Publishers, Leiden, 2006).

  114. Hohenberg, P. & Kohn, W. Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964).

    Google Scholar 

  115. Kohn, W. & Sham, L. J. Self-consistent Equations including exchange and correlation effects. Phys. Rev. 140A, 1133–1138 (1965).

    Google Scholar 

  116. Bickelhaupt, F. M. & Baerends, E. J. Kohn–sham density functional theory: predicting and understanding chemistry. Rev. Comput. Chem. 15, 1–86 (2000).

    CAS  Google Scholar 

  117. Baerends, E. J., Gritsenko, O. V. & van Meer, R. The Kohn–Sham gap, the fundamental gap and the optical gap: the physical meaning of occupied and virtual Kohn–Sham orbital energies. Phys. Chem. Chem. Phys. 15, 16408–16425 (2013).

    CAS  PubMed  Google Scholar 

  118. van Meer, R., Gritsenko, O. V. & Baerends, E. J. Physical meaning of virtual Kohn–Sham orbitals and orbital energies: an ideal basis for the description of molecular excitations. J. Chem. Theory Comput. 10, 4432–4441 (2014).

    PubMed  Google Scholar 

  119. Stowasser, R. & Hoffmann, R. What do the Kohn−Sham orbitals and eigenvalues mean? J. Am. Chem. Soc. 121, 3414–3420 (1999).

    CAS  Google Scholar 

  120. Koch, W. & Holthausen, M. C. A Chemist’s Guide to Density Functional Theory 2nd edn (Wiley-VCH, New York, 2001).

    Google Scholar 

  121. Becke, A. D. Density-functional thermochemistry. 3. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993).

    CAS  Google Scholar 

  122. Yu, H. S., Li, S. L. & Truhlar, D. G. Perspective: Kohn–Sham density functional theory descending a staircase. J. Chem. Phys. 145, 130901 (2016).

    PubMed  Google Scholar 

  123. Jones, R. O. Density functional theory: its origins, rise to prominence, and future. Rev. Mod. Phys. 87, 897–923 (2015).

    Google Scholar 

  124. Pribram-Jones, A., Gross, D. A. & Burke, K. DFT: a theory full of holes? Ann. Rev. Phys. Chem. 66, 283–304 (2015).

    CAS  Google Scholar 

  125. Becke, A. D. Perspective: fifty years of density-functional theory in chemical physics. J. Chem. Phys. 140, 18301A (2014).

    Google Scholar 

  126. Kryachko, E. S. & Ludeña, E. V. Density functional theory: foundations reviewed. Phys. Rep. 544, 123–239 (2014).

    CAS  Google Scholar 

  127. Perdew, J. P., Ruzsinszky, A., Sun, J. & Burke, K. Gedanken densities and exact constraints in density functional theory. J. Chem. Phys. 140, 18A533 (2014).

    Google Scholar 

  128. Swart, M., Bickelhaupt, F. M. & Duran, M. The annual popularity poll for density functionals: edition 2016 http://www.marcelswart.eu/dft-poll/news2016.pdf (2016).

  129. Bader, R. F. W. Atoms in molecules: a quantum theory (Oxford Univ. Press, 1990).

  130. Becke, A. D. & Edgecombe, K. E. A simple measure of electron localization in atomic and molecular systems. J. Chem. Phys. 92, 5397–5403 (1990).

    CAS  Google Scholar 

  131. Grin, Y. Savin, A. & Silvi, B. in The Chemical Bond. 1. Fundamental Aspects of Chemical Bonding ((eds Frenking, G. & Shaik, S.) 345–382 (Wiley-VCH, Weinheim, 2014).

  132. Silvi, B. in The Chemical Bond II: 100 Years Old and Getting Stronger (ed. Mingos, D. M. P.) 213–247 (Springer, Berlin, 2016).

  133. Savin, A., Nesper, R., Wengert, S. & Fässler, T. F. ELF: the electron localization function. Angew. Chem. Int. Ed. 36, 1808–1832 (1997).

    CAS  Google Scholar 

  134. Silvi, B. About Lewis’s heritage: chemical interpretations and quantum chemistry. Theor. Chem. Acc. 136, 106 (2017).

    Google Scholar 

  135. [no authors listed]. The Quantum Theory of Atoms in Molecules: From Solid State to DNA and Drug Design (eds Matta, C. F. & Boyd, R. J.) (Wiley-VCH, Weinheim, 2007).

  136. Mingos, D. M. P. The chemical bond: Lewis and Kossel’s landmark contribution. Struct. Bond. 169, 1–56 (2016).

    CAS  Google Scholar 

  137. Frenking, G. & Hermann, M. Gilbert Lewis and the model of dative bonding. Struct. Bond. 169, 131–156 (2016).

    CAS  Google Scholar 

  138. Filgueiras, C. A. L. Gilbert Lewis e o Centenário da Teoria de Ligãçao por par de Elétrons. Quim. Nova 39, 1262–1268 (2016).

    CAS  Google Scholar 

Download references

Acknowledgements

G.F. and L.Z. acknowledge financial support from Nanjing Tech University (grant nos 39837132 and 39837123) and a SICAM Fellowship from Jiangsu National Synergetic Innovation Center for Advanced Materials. L.Z. also acknowledges financial support from the Natural Science Foundation of Jiangsu Province for Youth (grant no. BK20170964) and the National Natural Science Foundation of China (grant no. 21703099). W.H.E.S. thanks J. Li and the Theoretical & Computational Chemistry Laboratory at Tsinghua University.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the preparation of this manuscript.

Corresponding authors

Correspondence to W. H. Eugen Schwarz or Gernot Frenking.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, L., Schwarz, W.H.E. & Frenking, G. The Lewis electron-pair bonding model: the physical background, one century later. Nat Rev Chem 3, 35–47 (2019). https://doi.org/10.1038/s41570-018-0052-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-018-0052-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing