Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Synthetic materials at the forefront of gene delivery

Abstract

The delivery of nucleic acids with transient activity for genetic engineering is a promising methodology with potential applications in the treatment of diseases ranging from cancer and infectious diseases to heritable disorders. Restoring the expression of a missing protein, correcting defective splicing of transcripts and silencing or modulating the expression of genes are powerful approaches that could have substantial benefits in biological research and medicine. Impressive progress in improving gene delivery has been made in the past decade, and several products have reached the market. However, translating the results of in vitro and preclinical studies into functional therapies is hindered by the suboptimal performance of gene delivery vehicles in capturing, protecting and delivering nucleic acid cargoes safely and efficaciously. Chemistry has a key role in the development of innovative synthetic materials to overcome the challenges of producing next-generation gene delivery therapies and protocols. In this Review, we discuss the latest chemical advances in the production of materials for the delivery of nucleic acids to cells and for gene therapy.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Synthetic materials and challenges for efficient intracellular gene delivery.
Fig. 2: Modifications to create ‘self-delivering’ oligonucleotides.
Fig. 3: Protein-mediated, peptide-mediated and lipid-carrier-mediated gene delivery systems.
Fig. 4: Polymeric approaches to gene delivery.

Part d is reproduced with permission from ref.155, Wiley-VCH.

Fig. 5: Nanoparticles for gene delivery.

References

  1. 1.

    Matteucci, M. D. & Caruthers, M. H. Synthesis of deoxyoligonucleotides on a polymer support. J. Am. Chem. Soc. 103, 3185–3191 (1981).

    CAS  Google Scholar 

  2. 2.

    Saiki, R. K. et al. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239, 487–491 (1988).

    CAS  Google Scholar 

  3. 3.

    Hutchison, C. A. et al. Mutagenesis at a specific position in a DNA sequence. J. Biol. Chem. 253, 6551–6560 (1978).

    CAS  PubMed  Google Scholar 

  4. 4.

    Heim, R. & Tsien, R. Y. Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer. Curr. Biol. 6, 178–182 (1996).

    CAS  PubMed  Google Scholar 

  5. 5.

    Barbas, C. F., Kang, A. S., Lerner, R. A. & Benkovic, S. J. Assembly of combinatorial antibody libraries on phage surfaces: the gene III site. Proc. Natl Acad. Sci. USA 88, 7978–7982 (1991).

    CAS  PubMed  Google Scholar 

  6. 6.

    Wang, L., Brock, A., Herberich, B. & Schultz, P. G. Expanding the genetic code of Escherichia coli. Science 292, 498–500 (2001).

    CAS  PubMed  Google Scholar 

  7. 7.

    Lerner, R. A., Benkovic, S. J. & Schultz, P. G. At the crossroads of chemistry and immunology: catalytic antibodies. Science 252, 659–667 (1991).

    CAS  PubMed  Google Scholar 

  8. 8.

    Siegel, J. B. et al. Computational design of an enzyme catalyst for a stereoselective bimolecular Diels-Alder reaction. Science 329, 309–313 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Wang, L. et al. Synthetic genomics: from DNA synthesis to genome design. Angew. Chem. Int. Ed. 57, 1748–1756 (2018).

    CAS  Google Scholar 

  10. 10.

    Gibson, D. G. et al. Creation of a bacterial cell controlled by a chemically synthesized genome. Science 329, 52–56 (2010).

    CAS  PubMed  Google Scholar 

  11. 11.

    Annaluru, N. et al. Total synthesis of a functional designer eukaryotic chromosome. Science 344, 55–58 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Naldini, L. Gene therapy returns to centre stage. Nature 526, 351–360 (2015).

    CAS  Google Scholar 

  13. 13.

    Dunbar, C. E. et al. Gene therapy comes of age. Science 359, eaan4672 (2018).

    Google Scholar 

  14. 14.

    Sheridan, C. Gene therapy finds its niche. Nat. Biotechnol. 29, 121–128 (2011).

    CAS  PubMed  Google Scholar 

  15. 15.

    Jenks, S. Gene therapy death—“everyone has to share in the guilt”. J. Natl Cancer Inst. 92, 98–100 (2000).

    CAS  PubMed  Google Scholar 

  16. 16.

    Wang, T., Upponi, J. R. & Torchilin, V. P. Design of multifunctional non-viral gene vectors to overcome physiological barriers: dilemmas and strategies. Int. J. Pharm. 427, 3–20 (2012).

    CAS  PubMed  Google Scholar 

  17. 17.

    Juliano, R. L. The delivery of therapeutic oligonucleotides. Nucleic Acids Res. 44, 6518–6548 (2016).

    PubMed  PubMed Central  Google Scholar 

  18. 18.

    Yin, H. et al. Non-viral vectors for gene-based therapy. Nat. Rev. Genet. 15, 541–555 (2014).

    CAS  Google Scholar 

  19. 19.

    Hill, A. B., Chen, M., Chen, C. K., Pfeifer, B. A. & Jones, C. H. Overcoming gene-delivery hurdles: physiological considerations for nonviral vectors. Trends Biotechnol. 34, 91–105 (2016).

    CAS  PubMed  Google Scholar 

  20. 20.

    Giacca, M. & Zacchigna, S. Virus-mediated gene delivery for human gene therapy. J. Control. Release 161, 377–388 (2012).

    CAS  PubMed  Google Scholar 

  21. 21.

    Merten, O. W. & Gaillet, B. Viral vectors for gene therapy and gene modification approaches. Biochem. Eng. J. 108, 98–115 (2016).

    CAS  Google Scholar 

  22. 22.

    Melchiorri, D. et al. Regulatory evaluation of Glybera in Europe — two committees, one mission. Nat. Rev. Drug Discov. 12, 719 (2013).

    CAS  PubMed  Google Scholar 

  23. 23.

    Peng, Z. Current status of gendicine in China: recombinant human Ad-p53 agent for treatment of cancers. Hum. Gene Ther. 16, 1016–1027 (2005).

    CAS  PubMed  Google Scholar 

  24. 24.

    Russell, S. et al. Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65-mediated inherited retinal dystrophy: a randomised, controlled, open-label, phase 3 trial. Lancet 390, 849–860 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Kaiser, J. A second chance. Science 358, 582–585 (2017).

    CAS  PubMed  Google Scholar 

  26. 26.

    Senior, M. After Glybera’s withdrawal, what’s next for gene therapy? Nat. Biotechnol. 35, 491–492 (2017).

    CAS  PubMed  Google Scholar 

  27. 27.

    Hajj, K. A. & Whitehead, K. A. Tools for translation: non-viral materials for therapeutic mRNA delivery. Nat. Rev. Mater. 2, 17056 (2017).

    CAS  Google Scholar 

  28. 28.

    Kaczmarek, J. C., Kowalski, P. S. & Anderson, D. G. Advances in the delivery of RNA therapeutics: from concept to clinical reality. Genome Med. 9, 60 (2017).

    PubMed  PubMed Central  Google Scholar 

  29. 29.

    Reichmuth, A. M., Oberli, M. A., Jaklenec, A., Langer, R. & Blankschtein, D. mRNA vaccine delivery using lipid nanoparticles. Ther. Deliv. 7, 319–334 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Stanton, M. G. Current status of messenger RNA delivery systems. Nucleic Acid. Ther. 28, 158–165 (2018).

    CAS  PubMed  Google Scholar 

  31. 31.

    Hartung, T. & Daston, G. Are in vitro tests suitable for regulatory use? Toxicol. Sci. 111, 233–237 (2009).

    CAS  PubMed  Google Scholar 

  32. 32.

    Khvorova, A. & Watts, J. K. The chemical evolution of oligonucleotide therapies of clinical utility. Nat. Biotechnol. 35, 238–248 (2017). This review provides a comprehensive overview of the chemical modifications of oligonucleotides of medical interest.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Kumar, S. R., Markusic, D. M., Biswas, M., High, K. A. & Herzog, R. W. Clinical development of gene therapy: results and lessons from recent successes. Mol. Ther. Methods Clin. Dev. 3, 16034 (2016).

    PubMed  PubMed Central  Google Scholar 

  34. 34.

    Ginn, S. L., Amaya, A. K., Alexander, I. E., Edelstein, M. & Abedi, M. R. Gene therapy clinical trials worldwide to 2017: an update. J. Gene Med. 20, e3015 (2018).

    PubMed  Google Scholar 

  35. 35.

    Stein, C. A. & Castanotto, D. FDA-approved oligonucleotide therapies in 2017. Mol. Ther. 25, 1069–1075 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Zuckerman, J. E. & Davis, M. E. Clinical experiences with systemically administered siRNA-based therapeutics in cancer. Nat. Rev. Drug Discov. 14, 843–856 (2015).

    CAS  PubMed  Google Scholar 

  37. 37.

    Barata, P., Sood, A. K. & Hong, D. S. RNA-targeted therapeutics in cancer clinical trials: current status and future directions. Cancer Treat. Rev. 50, 35–47 (2016).

    CAS  PubMed  Google Scholar 

  38. 38.

    Adams, D. et al. Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. N. Engl. J. Med. 379, 11–21 (2018).

    CAS  PubMed  Google Scholar 

  39. 39.

    Stein, C. A. et al. Efficient gene silencing by delivery of locked nucleic acid antisense oligonucleotides, unassisted by transfection reagents. Nucleic Acids Res. 38, e3 (2010).

    CAS  PubMed  Google Scholar 

  40. 40.

    Goyenvalle, A. et al. Functional correction in mouse models of muscular dystrophy using exon-skipping tricyclo-DNA oligomers. Nat. Med. 21, 270–275 (2015).

    CAS  PubMed  Google Scholar 

  41. 41.

    Geary, R. S., Baker, B. F. & Crooke, S. T. Clinical and preclinical pharmacokinetics and pharmacodynamics of mipomersen (Kynamro®): a second-generation antisense oligonucleotide inhibitor of apolipoprotein B. Clin. Pharmacokinet. 54, 133–146 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Souleimanian, N. et al. Antisense 2ʹ-deoxy, 2ʹ-fluoroarabino nucleic acid (2’F-ANA) oligonucleotides: in vitro gymnotic silencers of gene expression whose potency is enhanced by fatty acids. Mol. Ther. Nucleic Acids 1, e43 (2012).

    PubMed  PubMed Central  Google Scholar 

  43. 43.

    Azad, R. F., Brown-Driver, V., Buckheit, R. W. & Anderson, K. P. Antiviral activity of a phosphorothioate oligonucleotide complementary to human cytomegalovirus RNA when used in combination with antiviral nucleoside analogs. Antiviral Res. 28, 101–111 (1995).

    CAS  PubMed  Google Scholar 

  44. 44.

    Chi, X., Gatti, P. & Papoian, T. Safety of antisense oligonucleotide and siRNA-based therapeutics. Drug Discov. Today 22, 823–833 (2017).

    CAS  PubMed  Google Scholar 

  45. 45.

    Shen, W. et al. Acute hepatotoxicity of 2ʹ fluoro-modified 5–10–5 gapmer phosphorothioate oligonucleotides in mice correlates with intracellular protein binding and the loss of DBHS proteins. Nucleic Acids Res. 46, 2204–2217 (2018).

    PubMed  PubMed Central  Google Scholar 

  46. 46.

    Burdick, A. D. et al. Sequence motifs associated with hepatotoxicity of locked nucleic acid — modified antisense oligonucleotides. Nucleic Acids Res. 42, 4882–4891 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Fuertes, A., Juanes, M., Granja, J. R. & Montenegro, J. Supramolecular functional assemblies: dynamic membrane transporters and peptide nanotubular composites. Chem. Commun. 53, 7861–7871 (2017).

    CAS  Google Scholar 

  48. 48.

    Meade, B. R. et al. Efficient delivery of RNAi prodrugs containing reversible charge-neutralizing phosphotriester backbone modifications. Nat. Biotechnol. 32, 1256–1261 (2014). This study presents a method for the efficient production of phosphotriester nucleic acid derivatives that have excellent targeting and delivery properties.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    McNamara, J. O. et al. Cell type–specific delivery of siRNAs with aptamer-siRNA chimeras. Nat. Biotechnol. 24, 1005–1015 (2006).

    CAS  PubMed  Google Scholar 

  50. 50.

    Shu, D. et al. Systemic delivery of anti-miRNA for suppression of triple negative breast cancer utilizing RNA nanotechnology. ACS Nano 9, 9731–9740 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Ren, K. et al. A DNA dual lock-and-key strategy for cell-subtype-specific siRNA delivery. Nat. Commun. 7, 13580 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Schmidt, K. et al. Characterizing the effect of GalNAc and phosphorothioate backbone on binding of antisense oligonucleotides to the asialoglycoprotein receptor. Nucleic Acids Res. 45, 2294–2306 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Tanowitz, M. et al. Asialoglycoprotein receptor 1 mediates productive uptake of N-acetylgalactosamine-conjugated and unconjugated phosphorothioate antisense oligonucleotides into liver hepatocytes. Nucleic Acids Res. 45, 12388–12400 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Zlatev, I. et al. Reversal of siRNA-mediated gene silencing in vivo. Nat. Biotechnol. 36, 509–511 (2018).

    CAS  PubMed  Google Scholar 

  55. 55.

    Huang, Y. Preclinical and clinical advances of GalNAc-decorated nucleic acid therapeutics. Mol. Ther. Nucleic Acids 6, 116–132 (2017).

    CAS  PubMed  Google Scholar 

  56. 56.

    Lu, X. et al. Effective antisense gene regulation via noncationic, polyethylene glycol brushes. J. Am. Chem. Soc. 138, 9097–9100 (2016).

    CAS  PubMed  Google Scholar 

  57. 57.

    Jia, F. et al. Depth-profiling the nuclease stability and the gene silencing efficacy of brush-architectured poly(ethylene glycol)–DNA conjugates. J. Am. Chem. Soc. 139, 10605–10608 (2017).

    CAS  PubMed  Google Scholar 

  58. 58.

    Jin, Y. et al. Biodegradable, multifunctional DNAzyme nanoflowers for enhanced cancer therapy. NPG Asia Mater. 9, e365 (2017).

    CAS  Google Scholar 

  59. 59.

    Lee, J. H. et al. Rolling circle transcription-based polymeric siRNA nanoparticles for tumor-targeted delivery. J. Control. Release 263, 29–38 (2017).

    CAS  PubMed  Google Scholar 

  60. 60.

    Rozema, D. B. et al. Protease-triggered siRNA delivery vehicles. J. Control. Release 209, 57–66 (2015).

    CAS  PubMed  Google Scholar 

  61. 61.

    Lee, K. et al. In vivo delivery of transcription factors with multifunctional oligonucleotides. Nat. Mater. 14, 701–706 (2015). This paper presents a procedure for the delivery of transcription factors in vivo using oligonucleotides that are modified with pH-responsive constructs.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. 62.

    McCaffrey, J., Donnelly, R. F. & McCarthy, H. O. Microneedles: an innovative platform for gene delivery. Drug Deliv. Transl Res. 5, 424–437 (2015).

    CAS  PubMed  Google Scholar 

  63. 63.

    Suda, T. & Liu, D. Hydrodynamic gene delivery: its principles and applications. Mol. Ther. 15, 2063–2069 (2007).

    CAS  PubMed  Google Scholar 

  64. 64.

    Stewart, M. P. et al. In vitro and ex vivo strategies for intracellular delivery. Nature 538, 183–192 (2016).

    CAS  PubMed  Google Scholar 

  65. 65.

    Jackson, H. J., Rafiq, S. & Brentjens, R. J. Driving CAR T cells forward. Nat. Rev. Clin. Oncol. 13, 370–383 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. 66.

    Ding, X. et al. High-throughput nuclear delivery and rapid expression of DNA via mechanical and electrical cell-membrane disruption. Nat. Biomed. Eng. 1, 0039 (2017).

    PubMed  PubMed Central  Google Scholar 

  67. 67.

    Chiappini, C. et al. Biodegradable silicon nanoneedles delivering nucleic acids intracellularly induce localized in vivo neovascularization. Nat. Mater. 14, 532–539 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. 68.

    Anderson, C. D., Moisyadi, S., Avelar, A., Walton, C. B. & Shohet, R. V. Ultrasound-targeted hepatic delivery of factor IX in hemophiliac mice. Gene Ther. 23, 510–519 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69.

    Manta, S. et al. Cationic microbubbles and antibiotic-free miniplasmid for sustained ultrasound–mediated transgene expression in liver. J. Control. Release 262, 170–181 (2017).

    CAS  PubMed  Google Scholar 

  70. 70.

    Chertok, B., Langer, R. S. & Anderson, D. G. Spatial control of gene expression by nanocarriers using heparin masking and ultrasound-targeted microbubble destruction. ACS Nano 10, 7267–7278 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. 71.

    Yoon, S., Wang, P., Peng, Q., Wang, Y. & Shung, K. K. Acoustic-transfection for genomic manipulation of single-cells using high frequency ultrasound. Sci. Rep. 7, 5275 (2017).

    PubMed  PubMed Central  Google Scholar 

  72. 72.

    Pastuzyn, E. D. et al. The neuronal gene Arc encodes a repurposed retrotransposon Gag protein that mediates intercellular RNA transfer. Cell 172, 275 (2018).

    CAS  PubMed  Google Scholar 

  73. 73.

    Chen, L. S. et al. Efficient gene transfer using the human JC virus-like particle that inhibits human colon adenocarcinoma growth in a nude mouse model. Gene Ther. 17, 1033–1041 (2010).

    CAS  PubMed  Google Scholar 

  74. 74.

    Lee, P. W. et al. Polymer structure and conformation alter the antigenicity of virus-like particle-polymer conjugates. J. Am. Chem. Soc. 139, 3312–3315 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. 75.

    Zackova Suchanova, J., Neburkova, J., Spanielova, H., Forstova, J. & Cigler, P. Retargeting polyomavirus-like particles to cancer cells by chemical modification of capsid surface. Bioconjug. Chem. 28, 307–313 (2017).

    PubMed  Google Scholar 

  76. 76.

    Tong, G. J., Hsiao, S. C., Carrico, Z. M. & Francis, M. B. Viral capsid DNA aptamer conjugates as multivalent cell-targeting vehicles. J. Am. Chem. Soc. 131, 11174–11178 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. 77.

    Eguchi, A. et al. Efficient siRNA delivery into primary cells by peptide transduction domain-dsRNA binding domain (PTD-DRBD) fusion protein. Nat. Biotechnol. 27, 567–571 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. 78.

    Yang, N. J. et al. Cytosolic delivery of siRNA by ultra-high affinity dsRNA binding proteins. Nucleic Acids Res. 45, 7602–7614 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. 79.

    Bienk, K. et al. An albumin-mediated cholesterol design-based strategy for tuning siRNA pharmacokinetics and gene silencing. J. Control. Release 232, 143–151 (2016).

    CAS  PubMed  Google Scholar 

  80. 80.

    Sarett, S. M. et al. Lipophilic siRNA targets albumin in situ and promotes bioavailability, tumor penetration, and carrier-free gene silencing. Proc. Natl Acad. Sci. USA 114, E6490–E6497 (2017).

    CAS  PubMed  Google Scholar 

  81. 81.

    Hvam, M. L. et al. Fatty acid-modified gapmer antisense oligonucleotide and serum albumin constructs for pharmacokinetic modulation. Mol. Ther. 25, 1710–1717 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. 82.

    Song, E. et al. Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors. Nat. Biotechnol. 23, 709–717 (2005).

    CAS  PubMed  Google Scholar 

  83. 83.

    Cuellar, T. L. et al. Systematic evaluation of antibody-mediated siRNA delivery using an industrial platform of THIOMAB-siRNA conjugates. Nucleic Acids Res. 43, 1189–1203 (2015).

    CAS  PubMed  Google Scholar 

  84. 84.

    Lehto, T., Ezzat, K., Wood, M. J. A. & El Andaloussi, S. Peptides for nucleic acid delivery. Adv. Drug Deliv. Rev. 106, 172–182 (2016).

    CAS  PubMed  Google Scholar 

  85. 85.

    Tai, W. & Gao, X. Functional peptides for siRNA delivery. Adv. Drug Deliv. Rev. 110–111, 157–168 (2017).

    PubMed  Google Scholar 

  86. 86.

    Hammond, S. M. et al. Systemic peptide-mediated oligonucleotide therapy improves long-term survival in spinal muscular atrophy. Proc. Natl Acad. Sci. USA 113, 10962–10967 (2016).

    CAS  PubMed  Google Scholar 

  87. 87.

    Echigoya, Y. et al. Effects of systemic multiexon skipping with peptide-conjugated morpholinos in the heart of a dog model of Duchenne muscular dystrophy. Proc. Natl Acad. Sci. USA 114, 4213–4218 (2017).

    CAS  PubMed  Google Scholar 

  88. 88.

    Medina, S. H. et al. An intrinsically disordered peptide facilitates non-endosomal cell entry. Angew. Chem. Int. Ed. 55, 3369–3372 (2016).

    CAS  Google Scholar 

  89. 89.

    Soudah, T., Mogilevsky, M., Karni, R. & Yavin, E. CLIP6-PNA-peptide conjugates: non-endosomal delivery of splice switching oligonucleotides. Bioconjug. Chem. 28, 3036–3042 (2017).

    CAS  PubMed  Google Scholar 

  90. 90.

    Bulut, S. et al. Slow release and delivery of antisense oligonucleotide drug by self-assembled peptide amphiphile nanofibers. Biomacromolecules 12, 3007–3014 (2011).

    CAS  PubMed  Google Scholar 

  91. 91.

    Mazza, M., Hadjidemetriou, M., de Lázaro, I., Bussy, C. & Kostarelos, K. Peptide nanofiber complexes with siRNA for deep brain gene silencing by stereotactic neurosurgery. ACS Nano 9, 1137–1149 (2015).

    CAS  PubMed  Google Scholar 

  92. 92.

    Yolamanova, M. et al. Peptide nanofibrils boost retroviral gene transfer and provide a rapid means for concentrating viruses. Nat. Nanotechnol. 8, 130–136 (2013).

    CAS  PubMed  Google Scholar 

  93. 93.

    Dai, B. et al. Tunable assembly of amyloid-forming peptides into nanosheets as a retrovirus carrier. Proc. Natl Acad. Sci. USA 112, 2996–3001 (2015).

    CAS  PubMed  Google Scholar 

  94. 94.

    McCarthy, H. O. et al. Development and characterization of self-assembling nanoparticles using a bio-inspired amphipathic peptide for gene delivery. J. Control. Release 189, 141–149 (2014).

    CAS  PubMed  Google Scholar 

  95. 95.

    Udhayakumar, V. K. et al. Arginine-rich peptide-based mRNA nanocomplexes efficiently instigate cytotoxic T cell immunity dependent on the amphipathic organization of the peptide. Adv. Healthc. Mater. 6, 1601412 (2017).

    Google Scholar 

  96. 96.

    Douat, C. et al. A cell-penetrating foldamer with a bioreducible linkage for intracellular delivery of DNA. Angew. Chem. Int. Ed. 54, 11133–11137 (2015).

    CAS  Google Scholar 

  97. 97.

    Gehin, C. et al. Dynamic amphiphile libraries to screen for the “fragrant” delivery of siRNA into HeLa cells and human primary fibroblasts. J. Am. Chem. Soc. 135, 9295–9298 (2013).

    CAS  PubMed  Google Scholar 

  98. 98.

    Louzao, I., García-Fandiño, R. & Montenegro, J. Hydrazone-modulated peptides for efficient gene transfection. J. Mater. Chem. B 5, 4426–4434 (2017).

    CAS  Google Scholar 

  99. 99.

    Lostalé-Seijo, I., Louzao, I., Juanes, M. & Montenegro, J. Peptide/Cas9 nanostructures for ribonucleoprotein cell membrane transport and gene edition. Chem. Sci. 8, 7923–7931 (2017).

    PubMed  PubMed Central  Google Scholar 

  100. 100.

    Li, M. et al. Incorporation of a non-natural arginine analogue into a cyclic peptide leads to formation of positively charged nanofibers capable of gene transfection. Angew. Chem. Int. Ed. 55, 598–601 (2016).

    CAS  Google Scholar 

  101. 101.

    Li, M., Schlesiger, S., Knauer, S. K. & Schmuck, C. A tailor-made specific anion-binding motif in the side chain transforms a tetrapeptide into an efficient vector for gene delivery. Angew. Chem. Int. Ed. 54, 2941–2944 (2015). This article introduces the new guanidiniocarbonyl pyrrole group for nucleic acid delivery.

    CAS  Google Scholar 

  102. 102.

    Montenegro, J., Ghadiri, M. R. & Granja, J. R. Ion channel models based on self-assembling cyclic peptide nanotubes. Acc. Chem. Res. 46, 2955–2965 (2013).

    CAS  PubMed  Google Scholar 

  103. 103.

    Jana, P. et al. Efficient gene transfection through inhibition of β-sheet (amyloid fiber) formation of a short amphiphilic peptide by gold nanoparticles. Angew. Chem. Int. Ed. 56, 8083–8088 (2017).

    CAS  Google Scholar 

  104. 104.

    Freire, J. M. et al. siRNA-cell-penetrating peptides complexes as a combinatorial therapy against chronic myeloid leukemia using BV173 cell line as model. J. Control. Release 245, 127–136 (2017).

    CAS  PubMed  Google Scholar 

  105. 105.

    Felgner, P. L. et al. Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc. Natl Acad. Sci. USA 84, 7413–7417 (1987).

    CAS  PubMed  Google Scholar 

  106. 106.

    Allen, T. M. & Cullis, P. R. Liposomal drug delivery systems: from concept to clinical applications. Adv. Drug Deliv. Rev. 65, 36–48 (2013).

    CAS  PubMed  Google Scholar 

  107. 107.

    Oude Blenke, E. E., van den Dikkenberg, J., van Kolck, B., Kros, A. & Mastrobattista, E. Coiled coil interactions for the targeting of liposomes for nucleic acid delivery. Nanoscale 8, 8955–8965 (2016).

    CAS  PubMed  Google Scholar 

  108. 108.

    Yang, J. et al. Drug delivery via cell membrane fusion using lipopeptide modified liposomes. ACS Cent. Sci. 2, 621–630 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. 109.

    O’Brien, P. J., Elahipanah, S., Rogozhnikov, D. & Yousaf, M. N. Bio-orthogonal mediated nucleic acid transfection of cells via cell surface engineering. ACS Cent. Sci. 3, 489–500 (2017). This study describes a method for the application of bioorthogonal chemistry to the fusion of liposomes.

    PubMed  PubMed Central  Google Scholar 

  110. 110.

    Kauffman, K. J. et al. Optimization of lipid nanoparticle formulations for mRNA delivery in vivo with fractional factorial and definitive screening designs. Nano Lett. 15, 7300–7306 (2015).

    CAS  PubMed  Google Scholar 

  111. 111.

    Farhood, H., Serbina, N. & Huang, L. The role of dioleoyl phosphatidylethanolamine in cationic liposome mediated gene transfer. Biochim. Biophys. Acta 1235, 289–295 (1995).

    PubMed  Google Scholar 

  112. 112.

    Leal, C., Bouxsein, N. F., Ewert, K. K. & Safinya, C. R. Highly efficient gene silencing activity of siRNA embedded in a nanostructured gyroid cubic lipid matrix. J. Am. Chem. Soc. 132, 16841–16847 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. 113.

    Kim, H. & Leal, C. Cuboplexes: topologically active siRNA delivery. ACS Nano 9, 10214–10226 (2015).

    CAS  PubMed  Google Scholar 

  114. 114.

    Evers, M. J. W. et al. State-of-the-art design and rapid-mixing production techniques of lipid nanoparticles for nucleic acid delivery. Small Methods. https://doi.org/10.1002/smtd.201700375 (2018).

    Article  Google Scholar 

  115. 115.

    Whitehead, K. A. et al. Degradable lipid nanoparticles with predictable in vivo siRNA delivery activity. Nat. Commun. 5, 4277 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. 116.

    Viricel, W. et al. Cationic switchable lipids: pH-triggered molecular switch for siRNA delivery. Nanoscale 9, 31–36 (2017).

    CAS  PubMed  Google Scholar 

  117. 117.

    Kranz, L. M. et al. Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature 534, 396–401 (2016).

    PubMed  Google Scholar 

  118. 118.

    Oberli, M. A. et al. Lipid nanoparticle assisted mRNA delivery for potent cancer immunotherapy. Nano Lett. 17, 1326–1335 (2017).

    CAS  PubMed  Google Scholar 

  119. 119.

    Liang, C. et al. Aptamer-functionalized lipid nanoparticles targeting osteoblasts as a novel RNA interference–based bone anabolic strategy. Nat. Med. 21, 288–294 (2015).

    PubMed  PubMed Central  Google Scholar 

  120. 120.

    Ripoll, M. et al. pH-responsive nanometric polydiacetylenic micelles allow for efficient intracellular siRNA delivery. ACS Appl. Mater. Interfaces 8, 30665–30670 (2016).

    CAS  PubMed  Google Scholar 

  121. 121.

    Morin, E., Nothisen, M., Wagner, A. & Remy, J. S. Cationic polydiacetylene micelles for gene delivery. Bioconjug. Chem. 22, 1916–1923 (2011).

    CAS  PubMed  Google Scholar 

  122. 122.

    Neuberg, P. et al. Polydiacetylenic nanofibers as new siRNA vehicles for in vitro and in vivo delivery. Nanoscale 10, 1587–1590 (2018).

    CAS  PubMed  Google Scholar 

  123. 123.

    Jayaraman, M. et al. Maximizing the potency of siRNA lipid nanoparticles for hepatic gene silencing in vivo. Angew. Chem. Int. Ed. 51, 8529–8533 (2012).

    CAS  Google Scholar 

  124. 124.

    Yim, N. et al. Exosome engineering for efficient intracellular delivery of soluble proteins using optically reversible protein–protein interaction module. Nat. Commun. 7, 12277 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. 125.

    Lee, J. et al. Cellular engineering with membrane fusogenic liposomes to produce functionalized extracellular vesicles. ACS Appl. Mater. Interfaces 8, 6790–6795 (2016). This study describes a versatile method for the chemical functionalization of exosomes.

    CAS  PubMed  Google Scholar 

  126. 126.

    O’Loughlin, A. J. et al. Functional delivery of lipid-conjugated siRNA by extracellular vesicles. Mol. Ther. 25, 1580–1587 (2017).

    PubMed  PubMed Central  Google Scholar 

  127. 127.

    Didiot, M. C. et al. Exosome-mediated delivery of hydrophobically modified siRNA for Huntingtin mRNA silencing. Mol. Ther. 24, 1836–1847 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. 128.

    Cui, Z. K. et al. Delivery of siRNA via cationic sterosomes to enhance osteogenic differentiation of mesenchymal stem cells. J. Control. Release 217, 42–52 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. 129.

    Wang, Y. et al. A nanoparticle-based strategy for the imaging of a broad range of tumours by nonlinear amplification of microenvironment signals. Nat. Mater. 13, 204–212 (2014).

    CAS  PubMed  Google Scholar 

  130. 130.

    Xu, X. et al. Ultra-pH-responsive and tumor-penetrating nanoplatform for targeted siRNA delivery with robust anti-cancer efficacy. Angew. Chem. Int. Ed. 55, 7091–7094 (2016).

    CAS  Google Scholar 

  131. 131.

    Xu, X. et al. Multifunctional envelope-type siRNA delivery nanoparticle platform for prostate cancer therapy. ACS Nano 11, 2618–2627 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. 132.

    Zhou, J. et al. pH-sensitive nanomicelles for high-efficiency siRNA delivery in vitro and in vivo: an insight into the design of polycations with robust cytosolic release. Nano Lett. 16, 6916–6923 (2016). This article focuses on the properties of polycations that are required to maximize cytosolic release of siRNA cargoes in conditions of very low uptake.

    CAS  PubMed  Google Scholar 

  133. 133.

    Chiper, M., Tounsi, N., Kole, R., Kichler, A. & Zuber, G. Self-aggregating 1.8 kDa polyethylenimines with dissolution switch at endosomal acidic pH are delivery carriers for plasmid DNA, mRNA, siRNA and exon-skipping oligonucleotides. J. Control. Release 246, 60–70 (2017).

    CAS  PubMed  Google Scholar 

  134. 134.

    Cheng, Y., Yumul, R. C. & Pun, S. H. Virus-inspired polymer for efficient in vitro and in vivo gene delivery. Angew. Chem. Int. Ed. 55, 12013–12017 (2016).

    CAS  Google Scholar 

  135. 135.

    Cheng, Y. et al. Development of switchable polymers to address the dilemma of stability and cargo release in polycationic nucleic acid carriers. Biomaterials 127, 89–96 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. 136.

    McKinlay, C. J. et al. Charge-altering releasable transporters (CARTs) for the delivery and release of mRNA in living animals. Proc. Natl Acad. Sci. USA 114, E448–E456 (2017). This study describes a self-immolative polymer that can deliver mRNA in primary cells and in vivo.

    CAS  PubMed  Google Scholar 

  137. 137.

    Chahal, J. S. et al. Dendrimer-RNA nanoparticles generate protective immunity against lethal Ebola, H1N1 influenza, and Toxoplasma gondii challenges with a single dose. Proc. Natl Acad. Sci. USA 113, E4133–E4142 (2016).

    CAS  PubMed  Google Scholar 

  138. 138.

    Liu, S. et al. Bioreducible zinc(ii)-coordinative polyethylenimine with low molecular weight for robust gene delivery of primary and stem cells. J. Am. Chem. Soc. 139, 5102–5109 (2017).

    CAS  Google Scholar 

  139. 139.

    Zou, Y. et al. Virus-mimicking chimaeric polymersomes boost targeted cancer siRNA therapy in vivo. Adv. Mater. 29, 1703285 (2017).

    Google Scholar 

  140. 140.

    Li, L. et al. Artificial virus delivers CRISPR-Cas9 system for genome editing of cells in mice. ACS Nano 11, 95–111 (2017).

    CAS  PubMed  Google Scholar 

  141. 141.

    Naito, M. et al. A phenylboronate-functionalized polyion complex micelle for ATP-triggered release of siRNA. Angew. Chem. Int. Ed. 51, 10751–10755 (2012).

    CAS  Google Scholar 

  142. 142.

    Naito, M. et al. Enhanced intracellular delivery of siRNA by controlling ATP-responsivity of phenylboronic acid-functionalized polyion complex micelles. Macromol. Biosci. 18, 1700357 (2018).

    Google Scholar 

  143. 143.

    Yoshinaga, N. et al. Polyplex micelles with phenylboronate/gluconamide cross-linking in the core exerting promoted gene transfection through spatiotemporal responsivity to intracellular pH and ATP concentration. J. Am. Chem. Soc. 139, 18567–18575 (2017).

    CAS  PubMed  Google Scholar 

  144. 144.

    Truong, N. P. et al. An influenza virus-inspired polymer system for the timed release of siRNA. Nat. Commun. 4, 1902 (2013).

    PubMed  Google Scholar 

  145. 145.

    Wang, M., Liu, H., Li, L. & Cheng, Y. A fluorinated dendrimer achieves excellent gene transfection efficacy at extremely low nitrogen to phosphorus ratios. Nat. Commun. 5, 3053 (2014).

    PubMed  Google Scholar 

  146. 146.

    Wang, H. et al. Self-assembled fluorodendrimers combine the features of lipid and polymeric vectors in gene delivery. Angew. Chem. Int. Ed. 54, 11647–11651 (2015).

    CAS  Google Scholar 

  147. 147.

    Wang, L. H., Wu, D. C., Xu, H. X. & You, Y. Z. High DNA-binding affinity and gene-transfection efficacy of bioreducible cationic nanomicelles with a fluorinated core. Angew. Chem. Int. Ed. 55, 755–759 (2016).

    CAS  Google Scholar 

  148. 148.

    Zhang, Z. et al. The fluorination effect of fluoroamphiphiles in cytosolic protein delivery. Nat. Commun. 9, 1377 (2018).

    PubMed  PubMed Central  Google Scholar 

  149. 149.

    Davis, M. E. The first targeted delivery of siRNA in humans via a nanoparticle: from concept to clinic. Mol. Pharm. 6, 659–668 (2009).

    CAS  PubMed  Google Scholar 

  150. 150.

    Maity, S., Choudhary, P., Manjunath, M., Kulkarni, A. & Murthy, N. A biodegradable adamantane polymer with ketal linkages in its backbone for gene therapy. Chem. Commun. 51, 15956–15959 (2015).

    CAS  Google Scholar 

  151. 151.

    Chen, X., Qiu, Y. K., Owh, C., Loh, X. J. & Wu, Y. L. Supramolecular cyclodextrin nanocarriers for chemo- and gene therapy towards the effective treatment of drug resistant cancers. Nanoscale 8, 18876–18881 (2016).

    CAS  PubMed  Google Scholar 

  152. 152.

    Eldredge, A. C., Johnson, M. E., Oldenhuis, N. J. & Guan, Z. Focused library approach to discover discrete dipeptide bolaamphiphiles for siRNA delivery. Biomacromolecules 17, 3138–3144 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. 153.

    Yan, Y. et al. Functional polyesters enable selective siRNA delivery to lung cancer over matched normal cells. Proc. Natl Acad. Sci. USA 113, E5702–E5710 (2016).

    CAS  PubMed  Google Scholar 

  154. 154.

    Hao, J. et al. Rapid synthesis of a lipocationic polyester library via ring-opening polymerization of functional valerolactones for efficacious siRNA delivery. J. Am. Chem. Soc. 137, 9206–9209 (2015).

    CAS  PubMed  Google Scholar 

  155. 155.

    Priegue, J. M. et al. In situ functionalized polymers for siRNA delivery. Angew. Chem. Int. Ed. 55, 7492–7495 (2016).

    CAS  Google Scholar 

  156. 156.

    Priegue, J. M. et al. Different-length hydrazone activated polymers for plasmid DNA condensation and cellular transfection. Biomacromolecules 19, 2638–2649 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. 157.

    Zhao, Y. et al. PolyMetformin combines carrier and anticancer activities for in vivo siRNA delivery. Nat. Commun. 7, 11822 (2016).

    PubMed  PubMed Central  Google Scholar 

  158. 158.

    Lyu, Y. et al. Dendronized semiconducting polymer as photothermal nanocarrier for remote activation of gene expression. Angew. Chem. Int. Ed. 56, 9155–9159 (2017).

    CAS  Google Scholar 

  159. 159.

    Tan, Z., Dhande, Y. K. & Reineke, T. M. Cell penetrating polymers containing guanidinium trigger apoptosis in human hepatocellular carcinoma cells unless conjugated to a targeting N-acetyl-galactosamine block. Bioconjug. Chem. 28, 2985–2997 (2017).

    CAS  PubMed  Google Scholar 

  160. 160.

    Liu, Y., Wenning, L., Lynch, M. & Reineke, T. M. New poly(D-glucaramidoamine)s induce DNA nanoparticle formation and efficient gene delivery into mammalian cells. J. Am. Chem. Soc. 126, 7422–7423 (2004).

    CAS  PubMed  Google Scholar 

  161. 161.

    Dong, Y. et al. Poly(glycoamidoamine) brushes formulated nanomaterials for systemic siRNA and mRNA delivery in vivo. Nano Lett. 16, 842–848 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. 162.

    Kaczmarek, J. C. et al. Polymer–lipid nanoparticles for systemic delivery of mRNA to the lungs. Angew. Chem. Int. Ed. 55, 13808–13812 (2016).

    CAS  Google Scholar 

  163. 163.

    Li, J. et al. Structurally programmed assembly of translation initiation nanoplex for superior mRNA delivery. ACS Nano 11, 2531–2544 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. 164.

    Hong, C. A. et al. Dendrimeric siRNA for efficient gene silencing. Angew. Chem. Int. Ed. 54, 6740–6744 (2015).

    CAS  Google Scholar 

  165. 165.

    Smith, T. T. et al. In situ programming of leukaemia-specific T cells using synthetic DNA nanocarriers. Nat. Nanotechnol. 12, 813–820 (2017). This study describes a method for the in situ modification of T cells for cancer immunotherapy.

    CAS  PubMed  PubMed Central  Google Scholar 

  166. 166.

    Graham, F. L. & van der Eb, A. J. A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology 52, 456–467 (1973).

    CAS  PubMed  Google Scholar 

  167. 167.

    Hong, G., Diao, S., Antaris, A. L. & Dai, H. Carbon nanomaterials for biological imaging and nanomedicinal therapy. Chem. Rev. 115, 10816–10906 (2015).

    CAS  PubMed  Google Scholar 

  168. 168.

    Pantarotto, D. et al. Functionalized carbon nanotubes for plasmid DNA gene delivery. Angew. Chem. Int. Ed. 43, 5242–5246 (2004).

    CAS  Google Scholar 

  169. 169.

    Battigelli, A. et al. Ammonium and guanidinium dendron-carbon nanotubes by amidation and click chemistry and their use for siRNA delivery. Small 9, 3610–3619 (2013).

    CAS  PubMed  Google Scholar 

  170. 170.

    Kam, N. W., Liu, Z. & Dai, H. Functionalization of carbon nanotubes via cleavable disulfide bonds for efficient intracellular delivery of siRNA and potent gene silencing. J. Am. Chem. Soc. 127, 12492–12493 (2005).

    CAS  PubMed  Google Scholar 

  171. 171.

    Wang, J. T. et al. The relationship between the diameter of chemically-functionalized multi-walled carbon nanotubes and their organ biodistribution profiles in vivo. Biomaterials 35, 9517–9528 (2014).

    CAS  PubMed  Google Scholar 

  172. 172.

    Cifuentes-Rius, A. et al. In vivo fate of carbon nanotubes with different physicochemical properties for gene delivery applications. ACS Appl. Mater. Interfaces 9, 11461–11471 (2017).

    CAS  PubMed  Google Scholar 

  173. 173.

    Munk, M. et al. Efficient delivery of DNA into bovine preimplantation embryos by multiwall carbon nanotubes. Sci. Rep. 6, 33588 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. 174.

    Maeda-Mamiya, R. et al. In vivo gene delivery by cationic tetraamino fullerene. Proc. Natl Acad. Sci. USA 107, 5339–5344 (2010).

    CAS  PubMed  Google Scholar 

  175. 175.

    Sigwalt, D. et al. Gene delivery with polycationic fullerene hexakis-adducts. Chem. Commun. 47, 4640–4642 (2011).

    CAS  Google Scholar 

  176. 176.

    Wang, J. et al. Visible light-switched cytosol release of siRNA by amphiphilic fullerene derivative to enhance RNAi efficacy in vitro and in vivo. Acta Biomater. 59, 158–169 (2017).

    CAS  PubMed  Google Scholar 

  177. 177.

    Dowaidar, M., Abdelhamid, H. N., Hällbrink, M., Zou, X. & Langel, Ü. Graphene oxide nanosheets in complex with cell penetrating peptides for oligonucleotides delivery. Biochim. Biophys. Acta 1861, 2334–2341 (2017).

    CAS  Google Scholar 

  178. 178.

    Chu, Z. et al. Rapid endosomal escape of prickly nanodiamonds: implications for gene delivery. Sci. Rep. 5, 11661 (2015).

    PubMed  PubMed Central  Google Scholar 

  179. 179.

    Lim, D. G. et al. Polyamidoamine-decorated nanodiamonds as a hybrid gene delivery vector and siRNA structural characterization at the charged interfaces. ACS Appl. Mater. Interfaces 9, 31543–31556 (2017).

    CAS  PubMed  Google Scholar 

  180. 180.

    Zhang, X. Q. et al. Polymer-functionalized nanodiamond platforms as vehicles for gene delivery. ACS Nano 3, 2609–2616 (2009).

    CAS  PubMed  Google Scholar 

  181. 181.

    Chen, M. et al. Nanodiamond vectors functionalized with polyethylenimine for siRNA delivery. J. Phys. Chem. Lett. 1, 3167–3171 (2010).

    CAS  Google Scholar 

  182. 182.

    Yi, Y. et al. Targeted systemic delivery of siRNA to cervical cancer model using cyclic RGD-installed unimer polyion complex-assembled gold nanoparticles. J. Control. Release 244, 247–256 (2016).

    CAS  PubMed  Google Scholar 

  183. 183.

    Conde, J., Oliva, N., Zhang, Y. & Artzi, N. Local triple-combination therapy results in tumour regression and prevents recurrence in a colon cancer model. Nat. Mater. 15, 1128–1138 (2016).

    CAS  PubMed  Google Scholar 

  184. 184.

    Lei, Y. et al. Gold nanoclusters-assisted delivery of NGF siRNA for effective treatment of pancreatic cancer. Nat. Commun. 8, 15130 (2017).

    PubMed  PubMed Central  Google Scholar 

  185. 185.

    Cutler, J. I., Auyeung, E. & Mirkin, C. A. Spherical nucleic acids. J. Am. Chem. Soc. 134, 1376–1391 (2012).

    CAS  PubMed  Google Scholar 

  186. 186.

    Randeria, P. S. et al. siRNA-based spherical nucleic acids reverse impaired wound healing in diabetic mice by ganglioside GM3 synthase knockdown. Proc. Natl Acad. Sci. USA 112, 5573–5578 (2015).

    CAS  PubMed  Google Scholar 

  187. 187.

    Sita, T. L. et al. Dual bioluminescence and near-infrared fluorescence monitoring to evaluate spherical nucleic acid nanoconjugate activity in vivo. Proc. Natl Acad. Sci. USA 114, 4129–4134 (2017).

    CAS  PubMed  Google Scholar 

  188. 188.

    Li, N. et al. Nuclear-targeted siRNA delivery for long-term gene silencing. Chem. Sci. 8, 2816–2822 (2017). This paper shows the effect that the subcellular distribution of the cargo has on the duration of the gene silencing.

    CAS  PubMed  PubMed Central  Google Scholar 

  189. 189.

    Rouge, J. L. et al. Ribozyme–spherical nucleic acids. J. Am. Chem. Soc. 137, 10528–10531 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  190. 190.

    Ruan, W. et al. DNA nanoclew templated spherical nucleic acids for siRNA delivery. Chem. Commun. 54, 3609–3612 (2018).

    CAS  Google Scholar 

  191. 191.

    Calabrese, C. M. et al. Biocompatible infinite-coordination-polymer nanoparticle-nucleic-acid conjugates for antisense gene regulation. Angew. Chem. Int. Ed. 54, 476–480 (2015).

    CAS  Google Scholar 

  192. 192.

    Banga, R. J., Chernyak, N., Narayan, S. P., Nguyen, S. T. & Mirkin, C. A. Liposomal spherical nucleic acids. J. Am. Chem. Soc. 136, 9866–9869 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  193. 193.

    Li, H. et al. Molecular spherical nucleic acids. Proc. Natl Acad. Sci. USA 115, 4340–4344 (2018).

    CAS  PubMed  Google Scholar 

  194. 194.

    Möller, K. et al. Highly efficient siRNA delivery from core–shell mesoporous silica nanoparticles with multifunctional polymer caps. Nanoscale 8, 4007–4019 (2016).

    PubMed  Google Scholar 

  195. 195.

    Shen, J. et al. High capacity nanoporous silicon carrier for systemic delivery of gene silencing therapeutics. ACS Nano 7, 9867–9880 (2013).

    CAS  PubMed  Google Scholar 

  196. 196.

    Kapilov-Buchman, Y., Lellouche, E., Michaeli, S. & Lellouche, J. P. Unique surface modification of silica nanoparticles with polyethylenimine (PEI) for siRNA delivery using cerium cation coordination chemistry. Bioconjug. Chem. 26, 880–889 (2015).

    CAS  PubMed  Google Scholar 

  197. 197.

    Shen, J. et al. Multi-step encapsulation of chemotherapy and gene silencing agents in functionalized mesoporous silica nanoparticles. Nanoscale 9, 5329–5341 (2017).

    CAS  PubMed  Google Scholar 

  198. 198.

    He, C., Lu, K., Liu, D. & Lin, W. Nanoscale metal-organic frameworks for the co-delivery of cisplatin and pooled siRNAs to enhance therapeutic efficacy in drug-resistant ovarian cancer cells. J. Am. Chem. Soc. 136, 5181–5184 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  199. 199.

    Chen, Q. et al. Se/Ru-decorated porous metal-organic framework nanoparticles for the delivery of pooled siRNAs to reversing multidrug resistance in taxol-resistant breast cancer cells. ACS Appl. Mater. Interfaces 9, 6712–6724 (2017).

    CAS  PubMed  Google Scholar 

  200. 200.

    Thierry, A. R. et al. Characterization of liposome-mediated gene delivery: expression, stability and pharmacokinetics of plasmid DNA. Gene Ther. 4, 226–237 (1997).

    CAS  PubMed  Google Scholar 

  201. 201.

    Tsui, N. B., Ng, E. K. & Lo, Y. M. Stability of endogenous and added RNA in blood specimens, serum, and plasma. Clin. Chem. 48, 1647–1653 (2002).

    CAS  PubMed  Google Scholar 

  202. 202.

    Sahin, U., Karikó, K. & Türeci, Ö. mRNA-based therapeutics — developing a new class of drugs. Nat. Rev. Drug Discov. 13, 759–780 (2014).

    CAS  PubMed  Google Scholar 

  203. 203.

    Layzer, J. M. et al. In vivo activity of nuclease-resistant siRNAs. RNA 10, 766–771 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The group of J.M. was partially supported by the Spanish Agencia Estatal de Investigación (AEI) (CTQ2014-59646-R and SAF2017-89890-R), the Xunta de Galicia (ED431G/09, ED431C 2017/25 and 2016-AD031) and the European Regional Development Fund (ERDF). J.M. received a Ramón y Cajal grant (RYC-2013-13784), a European Research Council (ERC) Starting Investigator Grant (DYNAP-677786) and a Young Investigator Grant from the Human Frontier Science Research Program (RGY0066/2017). The authors apologize to all researchers whose work could not be mentioned owing to space constraints.

Author information

Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Javier Montenegro.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Gymnosis

Spontaneous uptake of single-stranded oligonucleotides that are stabilized with backbone modifications in the absence of any carrier or additive.

Aptamer

An oligonucleotide with a defined 3D structure, which binds specifically to a target molecule, such as a protein, with high affinity.

Rolling-circle amplification

An enzymatic method to obtain a long single-stranded DNA molecule, which contains many repeats of the target sequence, from a circular DNA template.

Rolling-circle transcription

An enzymatic method to obtain a long single-stranded RNA molecule, which contains many repeats of the target sequence, from a circular DNA template.

Chimeric antigen receptor

(CAR). A fusion protein comprising the signalling domain of the T cell receptor and an extracellular antigen-binding domain that is usually derived from an antibody, which promotes T cell activation in the presence of the desired antigen.

Neonatal Fc receptor

(FcRn). A receptor that is expressed in many tissues and that binds to serum albumin and to some types of antibodies in the slightly acidic conditions in the early endosome, returning them to the cell exterior and preventing their degradation in the late endosome or lysosome.

Alphavirus replicons

RNA molecules derived from the alphavirus genome, in which genes encoding proteins that are essential for viral replication have been substituted by a gene of interest but can still be replicated and transcribed by the viral RNA polymerase.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lostalé-Seijo, I., Montenegro, J. Synthetic materials at the forefront of gene delivery. Nat Rev Chem 2, 258–277 (2018). https://doi.org/10.1038/s41570-018-0039-1

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing