Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Hexafluoroisopropanol as a highly versatile solvent

Abstract

1,1,1,3,3,3-Hexafluoroisopropanol (HFIP) has recently become a very popular solvent or additive with applications across the spectrum of chemistry. Analysis shows that it possesses a wide range of interesting and unique properties. In this Perspective, we detail the main uses of HFIP in the natural sciences and disclose the underlying principles that give it such wide appeal. Accordingly, we show the broad usage and beneficial effects in many areas of chemistry.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Use of HFIP in oxidation reactions with H2O2.
Figure 2: Selected examples of the reactivity of organic molecules based on the functional group or reagent that HFIP can activate.
Figure 3: Metal-free C–H bond activation has been reported when using HFIP as a solvent.
Figure 4: The use of HFIP in electrochemical processes has become increasingly common in recent years.
Figure 5: Selected examples of organometallic species used in combination with HFIP.
Figure 6: Applications of HFIP in chemical biology.
Figure 7: Supramolecular, polymer and materials chemistry influenced by HFIP solvent.

Similar content being viewed by others

References

  1. Bégué, J.-P., Bonnet-Delpon, D. & Crousse, B. Fluorinated alcohols: a new medium for selective and clean reaction. Synlett 2004, 18–29 (2004).

    Google Scholar 

  2. Shuklov, I. A., Dubrovina, N. V. & Börner, A. Fluorinated alcohols as solvents, cosolvents and additives in homogeneous catalysis. Synthesis 2007, 2925–2943 (2007).

    Article  CAS  Google Scholar 

  3. Shryne, T. M. & Kim, L. Process for the epoxidation of olefins. US Patent 4024165 (1977).

  4. Neimann, K. & Neumann, R. Electrophilic activation of hydrogen peroxide: selective oxidation reactions in perfluorinated alcohol solvents. Org. Lett. 2, 2861–2863 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Berkessel, A. & Andreae, M. R. M. Efficient catalytic methods for the Baeyer–Villiger oxidation and epoxidation with hydrogen peroxide. Tetrahedron Lett. 42, 2293–2295 (2001).

    Article  CAS  Google Scholar 

  6. Berkessel, A., Andreae, M. R. M., Schmickler, H. & Lex, J. Baeyer–Villiger oxidations with hydrogen peroxide in fluorinated alcohols: lactone formation by a nonclassical mechanism. Angew. Chem. Int. Ed. 41, 4481–4484 (2002).

    Article  CAS  Google Scholar 

  7. Berkessel, A. & Adrio, J. A. Dramatic acceleration of olefin epoxidation in fluorinated alcohols: activation of hydrogen peroxide by multiple H-bond networks. J. Am. Chem. Soc. 128, 13412–13420 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Motiwala, H. F., Vekariya, R. H. & Aubé, J. Intramolecular Friedel–Crafts acylation reaction promoted by 1,1,1,3,3,3-hexafluoro-2-propanol. Org. Lett. 17, 5484–5487 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. Hollóczki, O. et al. The catalytic effect of fluoroalcohol mixtures depends on domain formation. ACS Catal. 7, 1846–1852 (2017).

    Article  CAS  Google Scholar 

  10. Motiwala, H. F. et al. Overcoming product inhibition in catalysis of the intramolecular Schmidt reaction. J. Am. Chem. Soc. 135, 9000–9009 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Motiwala, H. F., Charaschanya, M., Day, V. W. & Aubé, J. Remodeling and enhancing Schmidt reaction pathways in hexafluoroisopropanol. J. Org. Chem. 81, 1593–1609 (2016).

    Article  CAS  PubMed  Google Scholar 

  12. Vekariya, R. H. & Aubé, J. Hexafluoro-2-propanol-promoted intermolecular Friedel–Crafts acylation reaction. Org. Lett. 18, 3534–3537 (2016).

    Article  CAS  PubMed  Google Scholar 

  13. Ratnikov, M. O., Tumanov, V. V. & Smit, W. A. Lewis acid catalyst free electrophilic alkylation of silicon-capped π donors in 1,1,1,3,3,3-hexafluoro-2-propanol. Angew. Chem. Int. Ed. 47, 9739–9742 (2008).

    Article  CAS  Google Scholar 

  14. Kushwaha, K. et al. Metal-free synthesis of chlorinated β-amino ketones via an unexpected reaction of imines with arylacetylenes in 1,1,1,3,3,3-hexafluoro-2-propanol. Adv. Synth. Catal. 358, 41–49 (2016).

    Article  CAS  Google Scholar 

  15. Malakar, C. C., Stas, S., Herrebout, W. & Tehrani, K. A. Lewis acid mediated vinyl-transfer reaction of alkynes to N-alkylimines by using the N-alkyl residue as a sacrificial hydrogen donor. Chem. Eur. J. 19, 14263–14270 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. Li, G.-X. & Qu, J. Friedel–Crafts alkylation of arenes with epoxides promoted by fluorinated alcohols or water. Chem. Commun. 46, 2653–2655 (2010).

    Article  CAS  Google Scholar 

  17. Tian, Y., Xu, X., Zhang, L. & Qu, J. Tetraphenylphosphonium tetrafluoroborate/1,1,1,3,3,3-hexafluoroisopropanol (Ph4PBF4/HFIP) effecting epoxide-initiated cation–olefin polycyclizations. Org. Lett. 18, 268–271 (2016).

    Article  CAS  PubMed  Google Scholar 

  18. Trillo, P., Baeza, A. & Nájera, C. Fluorinated alcohols as promoters for the metal-free direct substitution reaction of allylic alcohols with nitrogenated, silylated, and carbon nucleophiles. J. Org. Chem. 77, 7344–7354 (2012).

    Article  CAS  PubMed  Google Scholar 

  19. Zhang, F.-Z., Tian, Y., Li, G.-X. & Qu, J. Intramolecular etherification and polyene cyclization of π-activated alcohols promoted by hot water. J. Org. Chem. 80, 1107–1115 (2015).

    Article  CAS  PubMed  Google Scholar 

  20. Ratnikov, M. O., Tumanov, V. V. & Smit, W. A. Elaboration of a Lewis acid-free protocol for the alkylation of silicon-containing π-donors by β-arylthioalkyl chlorides. Tetrahedron 66, 1832–1836 (2010).

    Article  CAS  Google Scholar 

  21. Champagne, P. A., Benhassine, Y., Desroches, J. & Paquin, J.-F. Friedel–Crafts reaction of benzyl fluorides: selective activation of C–F bonds as enabled by hydrogen bonding. Angew. Chem. Int. Ed. 53, 13835–13839 (2014).

    Article  CAS  Google Scholar 

  22. Denmark, S. E., Burk, M. T. & Hoover, A. J. On the absolute configurational stability of bromonium and chloronium ions. J. Am. Chem. Soc. 132, 1232–1233 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Kita, Y., Tohma, H., Masanao, I., Hatanaka, K. & Yakura, T. A novel oxidative azidation of aromatic compounds with hypervalent iodine reagent, phenyliodine(III) bis(trifluoroacetate) (PIFA) and trimethylsilyl azide. Tetrahedron Lett. 32, 4321–4324 (1991).

    Article  CAS  Google Scholar 

  24. Kita, Y. et al. Hypervalent iodine-induced nucleophilic substitution of para-substituted phenol ethers. Generation of cation radicals reactive intermediates. J. Am. Chem. Soc. 116, 3684–3691 (1994).

    Article  CAS  Google Scholar 

  25. Ito, M. et al. Organocatalytic C–H/C–H′ cross-biaryl coupling: C-selective arylation of sulfonanilides with aromatic hydrocarbons. J. Am. Chem. Soc. 135, 14078–14081 (2013).

    Article  CAS  PubMed  Google Scholar 

  26. Morimoto, K., Sakamoto, K., Ohshika, T., Dohi, T. & Kita, Y. Organo-iodine(III)-catalyzed oxidative phenol–arene and phenol–phenol cross-coupling reaction. Angew. Chem. Int. Ed. 55, 3652–3656 (2016).

    Article  CAS  Google Scholar 

  27. Eberson, L., Persson, O. & Hartshorn, M. P. Detection and reactions of radical cations generated by photolysis of aromatic compounds with tetranitromethane in 1,1,1,3,3,3-hexafluoro-2-propanol at room temperature. Angew. Chem. Int. Ed. Engl. 34, 2268–2269 (1995).

    Article  Google Scholar 

  28. Colomer, I., Coura Barcelos, R. & Donohoe, T. J. Catalytic hypervalent iodine promoters lead to styrene dimerization and the formation of tri- and tetrasubstituted cyclobutanes. Angew. Chem. Int. Ed. 55, 4748–4752 (2016).

    Article  CAS  Google Scholar 

  29. Colomer, I., Batchelor-McAuley, C., Odell, B., Donohoe, T. J. & Compton, R. G. Hydrogen bonding to hexafluoroisopropanol controls the oxidative strength of hypervalent iodine reagents. J. Am. Chem. Soc. 138, 8855–8861 (2016).

    Article  CAS  PubMed  Google Scholar 

  30. Mfuh, A. M. et al. Additive- and metal-free, predictably 1,2- and 1,3-regioselective, photoinduced dual C–H/C–X borylation of haloarenes. J. Am. Chem. Soc. 138, 8408–8411 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Adams, A. M. & Du Bois, J. Organocatalytic C–H hydroxylation with Oxone® enabled by an aqueous fluoroalcohol solvent system. Chem. Sci. 5, 656–659 (2014).

    Article  CAS  Google Scholar 

  32. Kirste, A. et al. ortho-Selective phenol-coupling reaction by anodic treatment on boron-doped diamond electrode using fluorinated alcohols. Chem. Eur. J. 15, 2273–2277 (2009).

    Article  CAS  PubMed  Google Scholar 

  33. Kirste, A., Schnakenburg, G., Stecker, F., Fischer, A. & Waldvogel, S. R. Anodic phenol–arene cross-coupling reaction on boron-doped diamond electrodes. Angew. Chem. Int. Ed. 49, 971–975 (2010).

    Article  CAS  Google Scholar 

  34. Kirste, A., Elser, B., Schnakenburg, G. & Waldvogel, S. R. Efficient anodic and direct phenol-arene C,C cross-coupling: the benign role of water or methanol. J. Am. Chem. Soc. 134, 3571–3576 (2012).

    Article  CAS  PubMed  Google Scholar 

  35. Elser, B. et al. Source of selectivity in oxidative cross-coupling of aryls by solvent effect of 1,1,1,3,3,3-hexafluoropropan-2-ol. Chem. Eur. J. 21, 12321–12325 (2015).

    Article  CAS  Google Scholar 

  36. Elser, B., Schollmeyer, D., Dyballa, K. M., Franke, R. & Waldvogel, S. R. Metal- and reagent-free highly selective anodic cross-coupling reaction of phenols. Angew. Chem. Int. Ed. 53, 5210–5213 (2014).

    Google Scholar 

  37. Lips, S. et al. Synthesis of meta-terphenyl-2,2′′-diols by anodic C–C cross-coupling reactions. Angew. Chem. Int. Ed. 55, 10872–10876 (2016).

    Article  CAS  Google Scholar 

  38. Gieshoff, T., Schollmeyer, D. & Waldvogel, S. R. Access to pyrazolidin-3,5-diones through anodic N–N bond formation. Angew. Chem. Int. Ed. 55, 9437–9440 (2016).

    Article  CAS  Google Scholar 

  39. Wencel-Delord, J. & Colobert, F. A remarkable solvent effect of fluorinated alcohols on transition metal catalysed C–H functionalizations. Org. Chem. Front. 3, 394–400 (2016).

    Article  CAS  Google Scholar 

  40. Leow, D., Li, G., Mei, T.-S. & Yu, J.-Q. Activation of remote meta-C–H bonds assisted by an end-on template. Nature 486, 518–522 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bag, S. et al. Remote para-C–H functionalization of arenes by a D-shaped biphenyl template-based assembly. J. Am. Chem. Soc. 137, 11888–11891 (2015).

    Article  CAS  PubMed  Google Scholar 

  42. Li, G., Leow, D., Wan, L. & Yu, J.-Q. Ether-directed ortho-C–H olefination with a palladium(II)/monoprotected amino acid catalyst. Angew. Chem. Int. Ed. 52, 1245–1247 (2013).

    Article  CAS  Google Scholar 

  43. Colletto, C., Islam, S., Juliá-Hernández, F. & Larrosa, I. Room-temperature direct β-arylation of thiophenes and benzo[b]thiophenes and kinetic evidence for a Heck-type pathway. J. Am. Chem. Soc. 138, 1677–1683 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gong, W., Zhang, G., Liu, T., Giri, R. & Yu, J.-Q. Site-selective C(sp3)–H functionalization of di-, tri-, and tetrapeptides at the N-terminus. J. Am. Chem. Soc. 136, 16940–16946 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhang, F.-L., Hong, K., Li, T.-J., Park, H. & Yu, J.-Q. Functionalization of C(sp3)–H bonds using a transient directing group. Science 351, 252–256 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chen, G. et al. Ligand-accelerated enantioselective methylene C(sp3)–H bond activation. Science 353, 1023–1027 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gaster, E. et al. Significant enhancement in the efficiency and selectivity of iron-catalyzed oxidative cross-coupling of phenols by fluoroalcohols. Angew. Chem. Int. Ed. 54, 4198–4202 (2015).

    Article  CAS  Google Scholar 

  48. Libman, A. et al. Synthetic and predictive approach to unsymmetrical biphenols by iron-catalyzed chelated radical–anion oxidative coupling. J. Am. Chem. Soc. 137, 11453–11460 (2015).

    Article  CAS  PubMed  Google Scholar 

  49. Narute, S., Parnes, R., Toste, F. D. & Pappo, D. Enantioselective oxidative homocoupling and cross-coupling of 2-naphthols catalyzed by chiral iron phosphate complexes. J. Am. Chem. Soc. 138, 16553–16560 (2016).

    Article  CAS  PubMed  Google Scholar 

  50. Wang, H., Moselage, M., González, M. J. & Ackermann, L. Selective synthesis of indoles by cobalt(III)-catalyzed C–H/N–O functionalization with nitrones. ACS Catal. 6, 2705–2709 (2016).

    Article  CAS  Google Scholar 

  51. Romanov-Michailidis, F., Sedillo, K. F., Neely, J. M. & Rovis, T. Expedient access to 2,3-dihydropyridines from unsaturated oximes by Rh(III)-catalyzed C–H activation. J. Am. Chem. Soc. 137, 8892–8895 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bakhmutova, E. V. et al. First investigation of non-classical dihydrogen bonding between an early transition-metal hydride and alcohols: IR, NMR, and DFT approach. Chem. Eur. J. 10, 661–671 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Gutsul, E. I. et al. Low-temperature IR and NMR studies of the interaction of group 8 metal dihydrides with alcohols. Chem. Eur. J. 9, 2219–2228 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. Belkova, N. V. et al. Experimental and computational studies of hydrogen bonding and proton transfer to [Cp*Fe(dppe)H]. Chem. Eur. J. 11, 873–888 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. Dub, P. A. et al. Protonation of Cp*M(dppe)H hydrides: peculiarities of the osmium congener. Eur. J. Inorg. Chem. 2010, 1489–1500 (2010).

    Article  CAS  Google Scholar 

  56. Bakhmutov, V. I. et al. In-depth NMR and IR study of the proton transfer equilibrium between [{(MeC(CH2PPh2)3}Ru(CO)H2] and hexafluoroisopropanol. Can. J. Chem. 79, 479–489 (2001).

    Article  CAS  Google Scholar 

  57. Ayllón, J. A., Gervaux, C., Sabo-Etienne, S. & Chaudret, B. First NMR observation of the intermolecular dynamic proton transfer equilibrium between a hydride and coordinated dihydrogen: (dppm)2HRuH···H−OR = [(dppm)2HRu(H2)]+(OR). Organometallics 16, 2000–2002 (1997).

    Article  Google Scholar 

  58. Jena, P. Materials for hydrogen storage: past, present, and future. J. Phys. Chem. Lett. 2, 206–211 (2011).

    Article  CAS  Google Scholar 

  59. Kubas, G. J. Hydrogen activation on organometallic complexes and H2 production, utilization, and storage for future energy. J. Organomet. Chem. 694, 2648–2653 (2009).

    Article  CAS  Google Scholar 

  60. Belkova, N. V. et al. Dihydrogen bonding in complex (PP3)RuH(η1-BH4) featuring two proton-accepting hydride sites: experimental and theoretical studies. Inorg. Chem. 53, 1080–1090 (2014).

    Article  CAS  PubMed  Google Scholar 

  61. Golub, I. E. et al. Two pathways of proton transfer reaction to (triphos)Cu(η1-BH4) via a dihydrogen bond [triphos = 1,1,1-tris(diphenylphosphinomethyl)ethane]. Dalton Trans. 45, 9127–9135 (2016).

    Article  CAS  PubMed  Google Scholar 

  62. Herrmann, I. K. et al. Intravenous application of a primary sevoflurane metabolite improves outcome in murine septic peritonitis: first results. PLoS ONE 8, e72057 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Urner, M. et al. Insight into the beneficial immunomodulatory mechanism of the sevoflurane metabolite hexafluoro-2-propanol in a rat model of endotoxaemia. Clin. Exp. Immunol. 181, 468–479 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Urner, M. et al. Fluorinated groups mediate the immunomodulatory effects of volatile anesthetics in acute cell injury. Am. J. Respir. Cell Mol. Biol. 45, 617–624 (2011).

    Article  CAS  PubMed  Google Scholar 

  65. Mulla, H. R. & Cammers-Goodwin, A. Stability of a minimalist, aromatic cluster in aqueous mixtures of fluoro alcohol. J. Am. Chem. Soc. 122, 738–739 (2000).

    Article  CAS  Google Scholar 

  66. Gerig, J. T. Structure and solvation of melittin in 1,1,1,3,3,3-hexafluoro-2-propanol/water. Biophys. J. 86, 3166–3175 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Buck, M. Trifluoroethanol and colleagues: cosolvents come of age. Recent studies with peptides and proteins. Q. Rev. Biophys. 31, 297–355 (1998).

    Article  CAS  PubMed  Google Scholar 

  68. Wang, L., Wang, D. & Li, F. Insight into the structures of the second and fifth transmembrane domains of Slc11a1 in membrane mimics. J. Pept. Sci. 20, 165–172 (2014).

    Article  CAS  PubMed  Google Scholar 

  69. Hong, D.-P., Hoshino, M., Kuboi, R. & Goto, Y. Clustering of fluorine-substituted alcohols as a factor responsible for their marked effects on proteins and peptides. J. Am. Chem. Soc. 121, 8427–8433 (1999).

    Article  CAS  Google Scholar 

  70. Andersen, N. H. et al. Effect of hexafluoroisopropanol on the thermodynamics of peptide secondary structure formation. J. Am. Chem. Soc. 121, 9879–9880 (1999).

    Article  CAS  Google Scholar 

  71. Chatterjee, C. & Gerig, J. T. Interactions of hexafluoro-2-propanol with the Trp-cage peptide. Biochemistry 45, 14665–14674 (2006).

    Article  CAS  PubMed  Google Scholar 

  72. Beaumont, C. et al. Two new human DMT1 gene mutations in a patient with microcytic anaemia, low ferritinemia, and liver iron overload. Blood 107, 4168–4170 (2006).

    Article  CAS  PubMed  Google Scholar 

  73. Booth, V., Waring, A. J., Walther, F. J. & Keough, K. M. NMR structures of the C-terminal segment of surfactant protein b in detergent micelles and hexafluoro-2-propanol. Biochemistry 43, 15187–15194 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. Li, Z. et al. Bis[alkynylplatinum(II)] terpyridine molecular tweezer with conformationally-rigid spacer: modulating the binding selectivity in a three-component supramolecular recognition system. Dalton Trans. 45, 17290–17295 (2016).

    Article  CAS  PubMed  Google Scholar 

  75. Miura, Y. et al. Synthesis of well-defined syndiotactic poly(methyl methacrylate) with low-temperature atom transfer radical polymerization in fluoroalcohol. J. Polym. Sci. A Polym. Chem. 44, 1436–1446 (2006).

    Article  CAS  Google Scholar 

  76. Percec, V. et al. Ultrafast synthesis of ultrahigh molar mass polymers by metal-catalyzed living radical polymerization of acrylates, methacrylates, and vinyl chloride mediated by SET at 25 °C. J. Am. Chem. Soc. 128, 14156–14165 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Chen, H. et al. Samarium powder as catalyst for SET-LRP of acrylonitrile in 1,1,1,3,3,3-hexafluoro-2-propanol for control of molecular weight and tacticity. J. Polym. Sci. A Polym. Chem. 49, 2924–2930 (2011).

    Article  CAS  Google Scholar 

  78. Yamada, K., Nakano, T. & Okamoto, Y. Free-radical copolymerization of vinyl esters using fluoroalcohols as solvents: the solvent effect on the monomer reactivity ratio. J. Polym. Sci. A Polym. Chem. 38, 220–228 (2000).

    Article  CAS  Google Scholar 

  79. Wang, W., Zhang, Z., Zhu, J., Zhou, N. & Zhu, X. Single electron transfer-living radical polymerization of methyl methacrylate in fluoroalcohol: dual control over molecular weight and tacticity. J. Polym. Sci. A Polym. Chem. 47, 6316–6327 (2009).

    Article  CAS  Google Scholar 

  80. Wang, W. et al. Simultaneously improving controls over molecular weight and stereoregularity of poly(4-vinylpyridine) via a hydrogen bonding-facilitated controlled radical polymerization. Polymer 54, 3248–3253 (2013).

    Article  CAS  Google Scholar 

  81. Wu, H. et al. Hydrogen bonding promoting the controlled radical polymerization of 2-vinyl pyridine: supramonomer for better control. Polym. Chem. 6, 2620–2625 (2015).

    Article  CAS  Google Scholar 

  82. Lui, Q. et al. RAFT polymerization of N-vinylpyrrolidone mediated by cyanoprop-2-yl-1-dithionaphthalate in the presence of a fluoroalcohol: the possibility of altering monomer properties by hydrogen bonding? Polym. Chem. 7, 2015–2021 (2016).

    Article  CAS  Google Scholar 

  83. Miroshnichenko, A. V., Tumanov, V. V., Menshov, V. M. & Smit, W. A. Case of an acid-free cationic polymerization of alkenes. An efficient preparation of poly-β-pinene in hexafluoroisopropanol medium. J. Polym. Res. 19, 9884–9887 (2012).

    Article  CAS  Google Scholar 

  84. Miyaji, H., Satoh, K. & Kamigaito, M. Bio-based polyketones by selective ring-opening radical polymerization of α-pinene-derived pinocarvone. Angew. Chem. Int. Ed. 55, 1372–1376 (2016).

    Article  CAS  Google Scholar 

  85. Kuznetsov, D. M., Tumanov, V. V. & Smit, W. A. Cationic polymerization of styrenes under essentially neutral conditions. J. Polym. Res. 20, 128 (2013).

    Article  CAS  Google Scholar 

  86. Kuznetsov, D. M., Tumanov, V. V. & Smit, W. A. Acetal-induced cationic polymerization of styrene and indene in hexafluoroisopropanol. Medeleev Commun. 23, 274–276 (2013).

    Article  CAS  Google Scholar 

  87. Makaya, K., Terada, S., Ohgo, K. & Asakura, T. Comparative study of silk fibroin porous scaffolds derived from salt/water and sucrose/hexafluoroisopropanol in cartilage formation. J. Biosci. Bioeng. 108, 68–75 (2009).

    Article  CAS  PubMed  Google Scholar 

  88. Sashina, E. S. et al. Study of a possibility of applying the films of the silk fibroin and its mixtures with synthetic polymers for creating the materials of contact lenses. Russ. J. Appl. Chem. 82, 898–904 (2009).

    Article  CAS  Google Scholar 

  89. Zhang, F., Zuo, B. Q. & Bai, L. Study on the structure of SF fiber mats electrospun with HFIP and FA and cells behavior. J. Mater. Sci. 44, 5682–5687 (2009).

    Article  CAS  Google Scholar 

  90. Jean-Gilles, R. et al. Novel modeling approach to generate a polymeric nanofiber scaffold for salivary gland cells. J. Nanotechnol. Eng. Med. 1, 031008 (2010).

    Article  CAS  Google Scholar 

  91. Mamangun, D. M., Santana, J. L., Ouchen, F., Grote, J. G. & Sotzing, G. A. Orthogonal alignment of DNA using hexafluoroisopropanol as solvent for film castings. RSC Adv. 4, 39798–39801 (2014).

    Article  CAS  Google Scholar 

  92. Phillips, A. J. 1,1,1,3,3,3-Hexafluoro-2-propanol. e-Eros Encycl. Reagents Org. Synth.http://dx.doi.org/10.1002/047084289X.rn01164 (2010).

  93. Eberson, L., Hartshorn, M. P. & Persson, O. 1,1,1,3,3,3-Hexafluoropropan-2-ol as a solvent for the generation of highly persistent radical cations. J. Chem. Soc., Perkin Trans. 2, 1735–1744 (1995).

    Article  Google Scholar 

  94. Brenek, S. J. et. al. Development of a practical and convergent process for the preparation of sulopenem. Org. Process Res. Dev. 16, 1348–1359 (2012).

    Article  CAS  Google Scholar 

  95. Serjeant, E. P. & Dempsey, B. Ionisation Constants of Organic Acids in Aqueous Solution (Pergamon Press, 1979).

    Google Scholar 

  96. Carre, B. & Devynck, J. The acidity functions of trifluoroethanol and hexafluoroisopropanol, and their mixtures with water. Anal. Chim. Acta 131, 141–147 (1981).

    Article  CAS  Google Scholar 

  97. Bates, R. G. Determination of pH: Theory and Practice 2nd edn (Wiley, 1973).

    Google Scholar 

  98. Reichardt, C. & Welton, T. Solvents and Solvent Effects in Organic Chemistry 4th edn (Wiley, 2011).

    Google Scholar 

  99. Bentley, T. W. & Carter, G. E. Relatively fast solvolytic reactions of 1-adamantyl mesylate. Further development of the YOTs scale of solvent ionizing power and the NOTs scale of solvent nucleophilicity. J. Org. Chem. 48, 579–584 (1983).

    Article  CAS  Google Scholar 

  100. Colomer, I., Coura Barcelos, R., Christensen, K. E. & Donohoe, T. J. Orthogonally protected 1,2-diols from electron-rich alkenes using metal-free olefin syn-dihydroxylation. Org. Lett. 18, 5880–5883 (2016).

    Article  CAS  PubMed  Google Scholar 

  101. Kelley, B. T., Walters, J. C. & Wengryniuk, S. E. Access to diverse oxygen heterocycles via oxidative rearrangement of benzylic tertiary alcohols. Org. Lett. 18, 1896–1899 (2016).

    Article  CAS  PubMed  Google Scholar 

  102. Middleton, W. J. & Lindsey, R. V. Hydrogen bonding in fluoro alcohols. J. Am. Chem. Soc. 86, 4948–4952 (1964).

    Article  CAS  Google Scholar 

  103. Maiti, N. C., Carey, P. R. & Anderson, V. E. Correlation of an alcohol's αC–D stretch with hydrogen bond strength in complexes with amines. J. Phys. Chem. A. 107, 9910–9917 (2003).

    Article  CAS  Google Scholar 

  104. Maiti, N. C., Zhu, Y., Carmichael, I., Serianni, A. S. & Anderson, V. E. 1JCH Correlates with alcohol hydrogen bond strength. J. Org. Chem. 71, 2878–2880 (2006).

    Article  CAS  PubMed  Google Scholar 

  105. Berkessel, A., Adrio, J. A., Hüttenhain, D. & Neudörfl, J. M. Unveiling the “booster effect” of fluorinated alcohol solvents: aggregation-induced conformational changes and cooperatively enhanced H-bonding. J. Am. Chem. Soc. 128, 8421–8426 (2006).

    Article  CAS  PubMed  Google Scholar 

  106. Sawyer, D. T., Sobkowiak, A. & Roberts, J. L. Jr Electrochemistry for Chemists 2nd edn (Wiley, 1995).

    Google Scholar 

  107. Ayata, S., Stefanova, A., Ernst, S. & Baltruschat, H. The electro-oxidation of water and alcohols at BDD in hexafluoroisopropanol. J. Electroanal. Chem. 701, 1–6 (2013).

    Article  CAS  Google Scholar 

  108. Francke, R., Cericola, D., Kötz, R., Weingarth, D. & Waldvogel, S. R. Novel electrolytes for electrochemical double layer capacitors based on 1,1,1,3,3,3-hexafluoropropan-2-ol. Electrochim. Acta 62, 372–380 (2012).

    Article  CAS  Google Scholar 

  109. Hallett-Tapley, G., Cozens, F. L. & Schepp, N. P. Absolute reactivity of arylallyl carbocations. J. Phys. Org. Chem. 22, 343–348 (2009).

    Article  CAS  Google Scholar 

  110. Ammer, J. & Mayr, H. Solvent nucleophilicities of hexafluoroisopropanol/water mixtures. J. Phys. Org. Chem. 26, 59–63 (2013).

    Article  CAS  Google Scholar 

  111. Acharya, A., Anumandla, D. & Jeffrey, C. S. Dearomative indole cycloaddition reactions of aza-oxyallyl cationic intermediates: modular access to pyrroloindolines. J. Am. Chem. Soc. 137, 14858–14860 (2015).

    Article  CAS  PubMed  Google Scholar 

  112. DiPoto, M. C., Hughes, R. P. & Wu, J. Dearomative indole (3+2) reactions with azaoxyallyl cations — new method for the synthesis of pyrroloindolines. J. Am. Chem. Soc. 137, 14861–14864 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank GlaxoSmithKline, the Engineering and Physical Sciences Research Council (EPSRC) and the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme (Grant No. FP7/2007-2013) for funding. A.E.R.C. is grateful to the EPSRC Centre for Doctoral Training in Synthesis for Biology and Medicine (Grant No. EP/L015838/1) for a studentship, generously supported by AstraZeneca, Diamond Light Source, Defence Science and Technology Laboratory, Evotec, GlaxoSmithKline, Janssen, Novartis, Pfizer, Syngenta, Takeda, UCB and Vertex. The authors thank R. G. Compton and C. Batchelor-McAuley for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to all aspects of article research, writing and editing. A.E.R.C. and M.B.H. contributed equally to this work.

Corresponding authors

Correspondence to Ignacio Colomer or Timothy J. Donohoe.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Colomer, I., Chamberlain, A., Haughey, M. et al. Hexafluoroisopropanol as a highly versatile solvent. Nat Rev Chem 1, 0088 (2017). https://doi.org/10.1038/s41570-017-0088

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/s41570-017-0088

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing