Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Evolution of macromolecular complexity in drug delivery systems

Abstract

Designing therapeutics is a process with many challenges. Even if the first hurdle — designing a drug that modulates the action of a particular biological target in vitro — is overcome, selective delivery to that target in vivo presents a major barrier. Side-effects can, in many cases, result from the need to use higher doses without targeted delivery. However, the established use of macromolecules to encapsulate or conjugate drugs can provide improved delivery, and stands to enable better therapeutic outcomes. In this Review, we discuss how drug delivery approaches have evolved alongside our ability to prepare increasingly complex macromolecular architectures. We examine how this increased complexity has overcome the challenges of drug delivery and discuss its potential for fulfilling unmet needs in nanomedicine.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Analysis of macromolecular structure evolution in drug delivery.
Figure 2: Macromolecular architectures in drug delivery and examples of the methodologies for their synthesis.
Figure 3: Common drug delivery methods: oral, intravenous, transdermal and local administration.
Figure 4: Self-assembled structures from an ABC-type amphiphilic miktoarm polymer.
Figure 5: Synthesis of architecturally complex branched macromolecular structures.
Figure 6: Examples of smart nanoassemblies constructed using a combination of different synthetic methodologies.
Figure 7: Telodendrimers combine important characteristics of hyperbranched and monodisperse dendrons with those of linear polymers.
Figure 8: Polymer backbones are grafted with pendant targeting moieties that contain conjugated antiparallel coiled-coil peptides.
Figure 9: Anti-inflammatory activity of drug-free macromolecules.

References

  1. 1

    Hubbell, J. A. & Langer, R. Translating materials design to the clinic. Nat. Mater. 12, 963–966 (2013).

    CAS  PubMed  Article  Google Scholar 

  2. 2

    Duncan, R. & Gaspar, R. Nanomedicines under the microscope. Mol. Pharm. 8, 2101–2141 (2011).

    CAS  PubMed  Article  Google Scholar 

  3. 3

    Curry, F.-R. E. Drug delivery: redefining tumour vascular barriers. Nat. Nanotechnol. 11, 494–496 (2016).

    CAS  PubMed  Article  Google Scholar 

  4. 4

    Drug Delivery Technology Market by Route of Administration (Oral (Solid), Pulmonary (Nebulizer), Injectable (Device), Ocular (Liquid), Topical (Solid), Implantable (Active), Transmucosal (Oral)), Patient Care Setting (Hospital, ASC) - Global Forecast to 2021 Markets and Marketshttp://www.marketsandmarkets.com/Market-Reports/drug-delivery-technologies-market-1085.html (2015).

  5. 5

    Pamies, P. & Stoddart, A. Materials for drug delivery. Nat. Mater. 12, 957 (2013).

    CAS  PubMed  Article  Google Scholar 

  6. 6

    Kannan, R. M., Nancy, E., Kannan, S. & Tomalia, D. A. Emerging concepts in dendrimer based nanomedicine: from design principles to clinical applications. J. Intern. Med. 276, 579–617 (2014).

    CAS  PubMed  Article  Google Scholar 

  7. 7

    Elsabahy, M., Heo, G. S., Lim, S.-M., Sun, G. & Wooley, K. L. Polymeric nanostructures for imaging and therapy. Chem. Rev. 115, 10967–11011 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  8. 8

    Cheng, C. J., Tietjen, G. T., Saucier-Sawyer, J. K. & Saltzman, W. M. A holistic approach to targeting disease with polymeric nanoparticles. Nat. Rev. Drug Discov. 14, 239–247 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  9. 9

    Zelikin, A. N., Ehrhadrt, C. & Healy, A. M. Materials and methods for delivery of biological drugs. Nat. Chem. 8, 997–1007 (2016).

    CAS  PubMed  Article  Google Scholar 

  10. 10

    Mitragotri, S., Burke, P. A. & Langer, R. Overcoming the challenges in administering biopharmaceuticals: formulation and delivery strategies. Nat. Rev. Drug Discov. 13, 655–672 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  11. 11

    Kamaly, N., Yameen, B., Wu, J. & Farokhzad, O. C. Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release. Chem. Rev. 116, 2602–2663 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  12. 12

    Tong, R. et al. Smart chemistry in polymeric nanomedicine. Chem. Soc. Rev. 43, 6982–7012 (2014).

    CAS  PubMed  Article  Google Scholar 

  13. 13

    Maeda, H., Nakamura, H. & Fang, J. The EPR effect for macromolecular drug delivery to solid tumors: improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv. Drug Delivery Rev. 65, 71–79 (2013).

    CAS  Article  Google Scholar 

  14. 14

    Zhang, S., Gao, H. & Bao, G. Physical principles of nanoparticle cellular endocytosis. ACS Nano 9, 8655–8671 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  15. 15

    Pridgen, E. M. et al. Transepithelial transport of Fc-targeted nanoparticles by the neonatal Fc receptor for oral delivery. Sci. Transl. Med. 5, 213ra167 (2013).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  16. 16

    Wu, J. et al. Development of multinuclear polymeric nanoparticles as robust protein nanocarriers. Angew. Chem. Int. Ed. 53, 8975–8979 (2014).

    CAS  Article  Google Scholar 

  17. 17

    Clark, A. J. & Davis, M. E. Increased brain uptake of targeted nanoparticles by adding an acid-cleavable linkage between transferrin and the nanoparticle core. Proc. Natl Acad. Sci. USA 112, 12486–12491 (2015).

    CAS  PubMed  Article  Google Scholar 

  18. 18

    Kabanov, A. V. & Batrakova, E. V. New technologies for drug delivery across the blood brain barrier. Curr. Pharm. Design 10, 1355–1363 (2004).

    CAS  Article  Google Scholar 

  19. 19

    Peppas, N. Historical perspective on advanced drug delivery: how engineering design and mathematical modeling helped the field mature. Adv. Drug Deliv. Rev. 65, 5–9 (2013).

    CAS  PubMed  Article  Google Scholar 

  20. 20

    Couvreur, P. Nanoparticles in drug delivery: past, present and future. Adv. Drug Deliv. Rev. 65, 21–23 (2013).

    CAS  PubMed  Article  Google Scholar 

  21. 21

    Kamaly, N., Xiao, Z., Valencia, P. M., Radovic-Moreno, A. F. & Farokhzad, O. C. Targeted polymeric therapeutic nanoparticles: design, development and clinical translation. Chem. Soc. Rev. 41, 2971–3010 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  22. 22

    Gregoriadis, G. The carrier potential of liposomes in biology and medicine. N. Engl. J. Med. 295, 765–770 (1976).

    CAS  PubMed  Article  Google Scholar 

  23. 23

    Torchilin, V. P. Recent advances with liposomes as pharmaceutical carriers. Nat. Rev. Drug Discov. 4, 145–160 (2005).

    CAS  PubMed  Article  Google Scholar 

  24. 24

    Lasic, D. D. & Papahadjopoulos, D. Liposomes revisited. Science 267, 1275–1276 (1995).

    CAS  PubMed  Article  Google Scholar 

  25. 25

    Çağdas¸, M., Sezer, A. D. & Bucak, S. in Applications of Nanotechnology in Drug Delivery Ch. 1 (INTECH, 2014).

    Google Scholar 

  26. 26

    Garay, R. P., El-Gewely, R., Armstrong, J. K., Garratty, G. & Richette, P. Antibodies against polyethylene glycol in healthy subjects and in patients treated with PEG-conjugated agents. Expert Opin. Drug Deliv. 9, 1319–1323 (2012).

    CAS  Article  PubMed  Google Scholar 

  27. 27

    Tung, H. Y. et al. Selective delivery of PEGylated compounds to tumor cells by anti-PEG hybrid antibodies. Mol. Cancer Ther. 14, 1317–1326 (2015).

    CAS  PubMed  Article  Google Scholar 

  28. 28

    Knop, K., Hoogenboom, R., Fischer, D. & Schubert, U. S. Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. Angew. Chem. Int. Ed. 49, 6288–6308 (2010).

    CAS  Article  Google Scholar 

  29. 29

    Samad, A., Sultana, Y. & Aqil, M. Liposomal drug delivery systems: an update review. Curr. Drug Deliv. 4, 297–305 (2007).

    CAS  PubMed  Article  Google Scholar 

  30. 30

    Pattni, B. S., Chupin, V. V. & Torchilin, V. P. New developments in liposomal drug delivery. Chem. Rev. 115, 10938–10966 (2015).

    CAS  PubMed  Article  Google Scholar 

  31. 31

    Allen, T. M. & Cullis, P. R. Liposomal drug delivery systems: from concept to clinical applications. Adv. Drug Deliv. Rev. 65, 36–48 (2013).

    CAS  PubMed  Article  Google Scholar 

  32. 32

    Sercombe, L. et al. Advances and challenges of liposome assisted drug delivery. Front. Pharmacol. 6 286 (2015).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  33. 33

    Helm, F. & Fricker, G. Liposomal conjugates for drug delivery to the central nervous system. Pharmaceutics 7, 27–42 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  34. 34

    Astruc, D. Introduction to nanomedicine. Molecules 21, 1–6 (2016).

    Google Scholar 

  35. 35

    Yang, S., Yuan, W. & Jin, T. Formulating protein therapeutics into particulate forms. Expert Opin. Drug Deliv. 6, 1123–1133 (2009).

    CAS  PubMed  Article  Google Scholar 

  36. 36

    Bogdansky, S. in Biodegradable Polymers as Drug Delivery Systems (eds Chasin, M. & Langer, R. ) 231–259 (Marcel Dekker, 1990).

    Google Scholar 

  37. 37

    Elzoghby, A. O., Samy, W. M. & Elgindy, N. A. Albumin-based nanoparticles as potential controlled release drug delivery systems. J. Control. Release 157, 168–182 (2012).

    CAS  PubMed  Article  Google Scholar 

  38. 38

    Gradishar, W. J. Albumin-bound paclitaxel: a next generation taxane. Expert Opin. Pharmacother. 7, 1041–1053 (2006).

    CAS  PubMed  Article  Google Scholar 

  39. 39

    Bader, R. A. & Putnam, D. A. Engineering Polymer Systems for Improved Drug Delivery (Wiley, 2014).

    Google Scholar 

  40. 40

    Traverso, G. & Langer, R. Perspective: special delivery for the gut. Nature 519, S19 (2015).

    CAS  PubMed  Article  Google Scholar 

  41. 41

    Wong, P. T. & Choi, S. K. Mechanisms of drug release in nanotherapeutic delivery systems. Chem. Rev. 115, 3388–3432 (2015).

    CAS  PubMed  Article  Google Scholar 

  42. 42

    Elsabahy, M. & Wooley, K. Data mining as a guide for the construction of cross-linked nanoparticles with low immunotoxicity via control of polymer chemistry and supramolecular assembly. Acc. Chem. Res. 48, 1620–1630 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  43. 43

    Delplace, V. & Nicolas, J. Degradable vinyl polymers for biomedical applications. Nat. Chem. 7, 771–784 (2015).

    CAS  PubMed  Article  Google Scholar 

  44. 44

    Salvador-Morales, C., Zhang, L., Langer, R. & Farokhzad, O. C. Immunocompatibility properties of lipid–polymer hybrid nanoparticles with heterogeneous surface functional groups. Biomaterials 30, 2231–2240 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  45. 45

    Langer, R. S. & Peppas, N. A. Present and future applications of biomaterials in controlled drug delivery systems. Biomaterials 2, 201–214 (1981).

    CAS  Article  PubMed  Google Scholar 

  46. 46

    Langer, R. Drug delivery and targeting. Nature 392, 5–10 (1998).

    CAS  PubMed  Google Scholar 

  47. 47

    Sinha, V. R., Khosla, L. Bioadsorbable polymers for implantable therapeutic systems. Drug Dev. Ind. Pharm. 24, 1129–1138 (1998).

    CAS  PubMed  Article  Google Scholar 

  48. 48

    Duncan, R. Polymer conjugates as anticancer nanomedicines. Nat. Rev. Cancer 6, 688–701 (2006).

    CAS  PubMed  Article  Google Scholar 

  49. 49

    Peppas, N. A. in Smart Polymers: Applications in Biotechnology and Biomedicine 2nd edn (eds Galaev, I. M. & Mattiasson, B. ) (CRC, 2008).

    Google Scholar 

  50. 50

    Liechty, W. B., Kryscio, D. R., Slaughter, B. V. & Peppas, N. A. Polymers for drug delivery systems. Annu. Rev. Chem. Biomol. Eng. 1, 149–173 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  51. 51

    Duncan, R. & Vicent, M. J. Polymer therapeutics-prospects for 21st century: the end of the beginning. Adv. Drug Deliv. Rev. 65, 60–70 (2013).

    CAS  PubMed  Article  Google Scholar 

  52. 52

    Kurniasih, I. N., Keilitz, J. & Haag, R. Dendritic nanocarriers based on hyperbranched polymers. Chem. Soc. Rev. 44, 4145–4164 (2015).

    CAS  PubMed  Article  Google Scholar 

  53. 53

    Sharma, A. & Kakkar, A. Designing dendrimers and miktoarm polymer based multi-tasking nanocarriers for efficient medical therapy. Molecules 20, 16987–17015 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  54. 54

    Tong, R. & Langer, R. Nanomedicines targeting the tumor environment. Cancer J. 21, 314–321 (2015).

    CAS  PubMed  Article  Google Scholar 

  55. 55

    Epps, T. H. III, O’Reilly, R. K. Block copolymers: controlling nanostructure to generate functional materials – synthesis, characterization, and engineering. Chem. Sci. 7, 1674–1689 (2016).

    CAS  Article  Google Scholar 

  56. 56

    Schluter, D. A., Hawker, C. & Sakamoto, J. (eds) Synthesis of Polymers: New Structures & Methods (Wiley, 2012).

    Google Scholar 

  57. 57

    Theato, P. & Klok, H.-A. (eds) Functional Polymers by Post-Polymerization Modification: Concepts, Guidelines and Applications (Wiley, 2012).

    Book  Google Scholar 

  58. 58

    Du, Y., Chen, W., Zheng, M., Meng, F. & Zhong, Z. pH-Sensitive degradable chimaeric polymersomes for the intracellular release of doxorubicin hydrochloride. Biomaterials 33, 7291–7299 (2012).

    CAS  PubMed  Article  Google Scholar 

  59. 59

    Nederberg, F. et al. Simple approach to stabilized micelles employing miktoarm terpolymers and stereocomplexes with application in paclitaxel delivery. Biomacromolecules 10, 1460–1468 (2009).

    CAS  PubMed  Article  Google Scholar 

  60. 60

    Franc, G. & Kakkar, A. K. Click methodologies: efficient, simple and greener routes to design dendrimers. Chem. Soc. Rev. 39, 1536–1544 (2010).

    CAS  PubMed  Article  Google Scholar 

  61. 61

    Chang, W., Wu, D. & Liu, Y. Michael addition polymerization of trifunctional amine and acrylic monomer: a versatile platform for development of biomaterials. Biomacromolecules 17, 3115–3126 (2016).

    Article  CAS  Google Scholar 

  62. 62

    Arseneault, M., Wafer, C. & Morin, J.-F. Recent advances in click chemistry applied to dendrimer synthesis. Molecules 20, 9263–9294 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  63. 63

    Brandl, F. P. & Gregoritza, M. The Diels–Alder reaction: a powerful tool for the design of drug delivery systems and biomaterials. Eur. J. Pharm. Biopharm. 97, 438–453 (2015).

    PubMed  Article  CAS  Google Scholar 

  64. 64

    Devaraj, N. K. & Weissleder, R. Biomedical applications of tetrazine cycloadditions. Acc. Chem. Res. 44, 816–827 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  65. 65

    Yang, K. S., Budin, G., Reiner, T., Vinegoni, C. & Weissleder, R. Bioorthogonal imaging of aurora kinase A in live cells. Angew. Chem. Int. Ed. 27, 6598–6603 (2012).

    Article  CAS  Google Scholar 

  66. 66

    Castonguay, A. et al. Thermosensitive dendrimer formulation for drug delivery at physiologically relevant temperatures. Chem. Commun. 47, 12146–12148 (2011).

    CAS  Article  Google Scholar 

  67. 67

    Killops, K. L., Campos, L. M. & Hawker, C. J. Robust, efficient, and orthogonal synthesis of dendrimers via thiol-ene “click” chemistry. J. Am. Chem. Soc. 130, 5062–5064 (2008).

    CAS  PubMed  Article  Google Scholar 

  68. 68

    Cai, L. et al. Telodendrimer nanocarrier for co-delivery of paclitaxel and cisplatin: a synergistic combination nanotherapy for ovarian cancer treatment. Biomaterials 37, 456–468 (2015).

    CAS  PubMed  Article  Google Scholar 

  69. 69

    Hunter, A. C. & Moghimi, S. M. Smart polymers in drug delivery: a biological perspective, Polym. Chem.http://dx.doi.org/10.1039/C6PY00676K (2017).

  70. 70

    Batycky, R. P., Hanes, J., Langer, R. & Edwards, D. A. A theoretical model of erosion and macromolecular drug release from biodegrading microspheres. J. Pharm. Sci. 86, 1464–1477 (1997).

    CAS  PubMed  Article  Google Scholar 

  71. 71

    Brazel, C. S. & Peppas, N. A. Modeling of drug release from swellable polymers. Eur. J. Pharm. Biopharm. 49, 47–58 (2000).

    CAS  PubMed  Article  Google Scholar 

  72. 72

    Xu, X. et al. Multifunctional envelope-type siRNA delivery nanoparticle platform for prostate cancer therapy. ACS Nano 11, 2618–2627 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  73. 73

    Xu, X. et al. Ultra-pH-responsive and tumor-penetrating nanoplatform for targeted siRNA delivery with robust anti-cancer efficacy. Angew. Chem. Int. Ed. 55, 7091–7094 (2016).

    CAS  Article  Google Scholar 

  74. 74

    Moghimi, S. M., Hunter, A. C. & Murray, J. C. Long-circulating and target specific nanoparticles: theory to practice. Pharmacol. Rev. 53, 283–318 (2001).

    CAS  PubMed  Google Scholar 

  75. 75

    Farokhzad, O. C. & Langer, R. Nanomedicine: developing smarter therapeutic and diagnostic modalities. Adv. Drug Deliv. Rev. 58, 1456–1459 (2006).

    CAS  PubMed  Article  Google Scholar 

  76. 76

    Panyam, J. & Labhasetwar, V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv. Drug Deliv. Rev. 55, 329–347 (2003).

    CAS  PubMed  Article  Google Scholar 

  77. 77

    Soppimath, K. S., Aminabhavi, T. M., Kulkarni, A. R. & Rudzinski, W. E. Biodegradable polymeric nanoparticles as drug delivery devices. J. Control. Release 70, 1–20 (2001).

    CAS  PubMed  Article  Google Scholar 

  78. 78

    Nair, L. S. & Laurencin, C. T. Biodegradable polymers as biomaterials. Prog. Polym. Sci. 32, 762–798 (2007).

    CAS  Article  Google Scholar 

  79. 79

    Jain, J. P., Chitkara, D. & Kumar, N. Polyanhydrides as localized drug delivery carrier: an update. Expert Opin. Drug Deliv. 5, 889–907 (2008).

    CAS  PubMed  Article  Google Scholar 

  80. 80

    Heller, J. & Barr, J. Poly(ortho esters) — from concept to reality. Biomacromolecules 5, 1625–1632 (2004).

    CAS  PubMed  Article  Google Scholar 

  81. 81

    Teasdale, I. & Bruddemann, O. Polyphosphazenes: multifunctional, biodegradable vehicles for drug and gene delivery. Polymers 5, 161–187 (2013).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  82. 82

    Zhao, Z., Wang, J., Mao, H. Q. & Leong, K. W. Polyphosphoesters in drug and gene delivery. Adv. Drug Deliv. Rev. 55, 483–499 (2003).

    CAS  PubMed  Article  Google Scholar 

  83. 83

    Vauthier, C., Dubernet, C., Chauvierre, C., Brigger, I. & Couvreur, P. Drug delivery to resistant tumors: the potential of poly(alkylcyanoacrylate) nanoparticles. J. Control. Release 93, 151–160 (2003).

    CAS  PubMed  Article  Google Scholar 

  84. 84

    Nicolas, J. & Couvreur, P. Synthesis of poly(alkyl cyanoacrylate)-based colloidal nanomedicine. WIREs Nanomed. Nanobiotechnol. 1, 111–127 (2009).

    CAS  Article  Google Scholar 

  85. 85

    Siegel, S. J. et al. Effect of drug type on the degradation rate of PLGA matrices. Eur. J. Pharm. Biopharm. 64, 287–293 (2006).

    CAS  PubMed  Article  Google Scholar 

  86. 86

    Bader, H., Ringsdorf, H. & Schmidt, B. Watersoluble polymers in medicine. Angew. Makromol. Chem. 123, 457–485 (1984).

    Article  Google Scholar 

  87. 87

    Kataoka, K., Harada, A. & Nagasaki, Y. Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv. Drug Deliv. Rev. 47, 113–131 (2001).

    CAS  PubMed  Article  Google Scholar 

  88. 88

    Nishiyama, N. & Kataoka, K. Current state achievements and future prospects of polymeric micelles as nanocarriers for drug and gene delivery. Pharmacol. Ther. 112, 630–648 (2006).

    CAS  PubMed  Article  Google Scholar 

  89. 89

    Kwon, G. S. Polymeric micelles for delivery of poorly water-soluble compounds. Crit. Rev. Ther. Drug Carrier Systems 20, 357–403 (2003).

    CAS  Article  Google Scholar 

  90. 90

    Riess, G. Micellization of block-copolymers. Prog. Polym. Sci. 28, 1107–1170 (2003).

    CAS  Article  Google Scholar 

  91. 91

    Matyjaszewski, K. & Müller A. H. E. (eds) Controlled and Living Polymerizations: From Mechanisms to Applications (Wiley, 2009).

    Google Scholar 

  92. 92

    Venkataraman, S. et al. The effects of polymeric nanostructure shape on drug delivery. Adv. Drug Deliv. Rev. 63, 1228–1246 (2011).

    CAS  PubMed  Article  Google Scholar 

  93. 93

    Zhang, N., Guo, S. R., Li, H. Q., Li, Z. H. & Gu, J. R. Synthesis of three types of amphiphilic poly(ethyleneglycol)-block-poly(sebacic anhydride) copolymers and studies of their micellar solutions. Macromol. Chem. Phys. 207, 1359–1367 (2006).

    CAS  Article  Google Scholar 

  94. 94

    Chang, Y. C. & Chu, I. M. Methoxy poly(ethylene glycol)-b-poly(valerolactone) diblock polymeric micelles for enhanced encapsulation and protection of camptothecin. Eur. Pol. J. 44, 3922–3930 (2008).

    CAS  Article  Google Scholar 

  95. 95

    Trivedi, R. & Kompella, U. B. Nanomicellar formulations for sustained drug delivery: strategies and underlying principles. Nanomedicine 5, 484–505 (2010).

    Article  Google Scholar 

  96. 96

    Yang, X. et al. Interactions between an anticancer drug and polymeric micelles based on biodegradable polyesters. Macromol. Biosci. 8, 1116–1125 (2008).

    CAS  PubMed  Article  Google Scholar 

  97. 97

    Hoffman, A. S. Stimuli-responsive polymers: biomedical applications and challenges for clinical translation. Adv. Drug Deliv. Rev. 65, 10–16 (2013).

    CAS  PubMed  Article  Google Scholar 

  98. 98

    Schattling, P., Jochum, F. D. & Theato, P. Multi-stimuli responsive polymers — the all-in-one talents. Polym. Chem. 5, 25–36 (2014).

    CAS  Article  Google Scholar 

  99. 99

    Jochum, F. D. & Theato, P. Temperature and light-responsive smart polymer materials. Chem. Soc. Rev. 42, 7468–7483 (2013).

    CAS  PubMed  Article  Google Scholar 

  100. 100

    Sant, V. P., Smith, D. & Leroux, J.-C. Novel pH-sensitive supramolecular assemblies for oral delivery of poorly water soluble drugs: preparation and characterization. J. Control. Release 97, 310–312 (2004).

    Article  CAS  Google Scholar 

  101. 101

    Kim, S., Kim, Y., Huh, K. M., Acharya, G. & Park, K. Hydrotropic polymer micelles containing acrylic acid moieties for oral delivery of paclitaxel. J. Control. Release 132, 222–229 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  102. 102

    Lee, E. S., Na, K. & Bae, Y. H. Super pH sensitive multifunctional polymeric micelle. Nano Lett. 5, 325–329 (2005).

    CAS  PubMed  Article  Google Scholar 

  103. 103

    Alexandridis, P., Holzwarth, J. F. & Hatton, T. A. Micellization of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymers in aqueous solutions: thermodynamics of copolymer association. Macromolecules 27, 2414–2425 (1994).

    CAS  Article  Google Scholar 

  104. 104

    Bergueiro, J. & Calderon, M. Thermoresponsive nanodevices in biomedical applications. Macromol. Biosci. 15, 183–199 (2015).

    CAS  PubMed  Article  Google Scholar 

  105. 105

    Alakhova, D. Y., Zhao, Y., Li, S. & Kabnov, A. V. Effect of doxorubicin/pluronic SP1049C on tumorigenicity, aggressiveness, DNA methylation and stem cell markers in murine leukemia. PLoS ONE 8, e72238 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  106. 106

    Qin, S., Geng, Y., Discher, D. E. & Yang, S. Temperature-controlled assembly and release from polymer vesicles of poly(ethylene oxide)-block-poly(N-isopropylacrylamide). Adv. Mater. 18, 2905–2909 (2006).

    CAS  Article  Google Scholar 

  107. 107

    Yang, M. et al. Novel thermosensitive polymeric micelles for docetaxel delivery. J. Biomed. Mater. Res. A 81, 847–858 (2007).

    PubMed  Article  CAS  Google Scholar 

  108. 108

    Cheng, C., Wei, H., Zhang, X. Z., Cheng, S. X. & Zhuo, R. X. Thermo-triggered and biotinylated biotin-P(NIPAAm-co-HMAAm)-b-PMMA micelles for controlled drug release. J. Biomed. Mater. Res. A 88, 814–822 (2009).

    PubMed  Article  CAS  Google Scholar 

  109. 109

    Nakayama, M. et al. Molecular design of biodegradable polymeric micelles for temperature-responsive drug release. J. Control. Release 115, 46–56 (2006).

    CAS  PubMed  Article  Google Scholar 

  110. 110

    Kopecek, J. Polymer–drug conjugates: origins, progress to date and future directions. Adv. Drug Deliv. Rev. 65, 49–59 (2013).

    CAS  PubMed  Article  Google Scholar 

  111. 111

    Ringsdorf, H. Structure and properties of pharmacologically active polymers. J. Polym. Sci. 51, 135–153 (1975).

    CAS  Google Scholar 

  112. 112

    Greenwald, R. B., Choe, Y. H., McGuire, J. & Conover, C. D. Effective drug delivery by PEGylated drug conjugates. Adv. Drug Deliv. Rev. 55, 217–250 (2003).

    CAS  PubMed  Article  Google Scholar 

  113. 113

    Khandare, J. & Minko, T. Polymer–drug conjugates: progress in polymeric prodrugs. Prog. Polym. Sci. 31, 359–397 (2006).

    CAS  Article  Google Scholar 

  114. 114

    Zou, J. et al. pH-Sensitive brush polymer–drug conjugates by ring opening metathesis co-polymerization. Chem. Commun. 47, 4493–4495 (2011).

    CAS  Article  Google Scholar 

  115. 115

    Hein, C. D., Liu, X.-M. & Wang, D. Click chemistry, a powerful tool for pharmaceutical sciences. Pharm. Res. 25, 2216–2230 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  116. 116

    Pola, R., Braunova, A., Laga, R., Pechar, M. & Ulbrich, K. Click chemistry as a powerful and chemoselective tool for the attachment of targeting ligands to polymer drug carriers. Polym. Chem. 5, 1340–1350 (2014).

    CAS  Article  Google Scholar 

  117. 117

    Kolishetti, N. et al. Engineering of self-assembled nanoparticle platform for precisely controlled combination drug therapy. Proc. Natl Acad. Sci. USA 107, 17939–17944 (2010).

    CAS  PubMed  Article  Google Scholar 

  118. 118

    Wessig, V., Pettinger, T. K. & Murdock, N. Nanopharmaceuticals (part 1): products on the market. Int. J. Nanomed. 9, 4357–4373 (2014).

    Article  CAS  Google Scholar 

  119. 119

    Min, Y., Caster, J. M., Eblan, M. J. & Wang, A. Z. Clinical translation of nanomedicine. Chem. Rev. 115, 11147–11190 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  120. 120

    Pillai, G. Nanomedicine for cancer therapy: an update of FDA approved and those under various stages of development. SOJ Pharm. Pharm. Sci. 1, 1–13 (2014).

    Article  Google Scholar 

  121. 121

    Bamrungsap, S. et al. Nanotechnology in therapeutics. Nanomedicine 7, 1253–1271 (2012).

    CAS  PubMed  Article  Google Scholar 

  122. 122

    Shi, J., Kantoff, P. W., Wooster, R. & Farokhzad, O. C. Cancer nanomedicine: progress, challenges and opportunities. Nat. Rev. Cancer 17, 20–37 (2017).

    CAS  PubMed  Article  Google Scholar 

  123. 123

    Ferrari, M. Frontiers in cancer nanomedicine, directing mass transport through biological barriers. Trends Biotechnol. 28, 181–188 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  124. 124

    De Souza, R., Spence, T., Huang, H. & Allen, C. Preclinical imaging and translational animal models of cancer for accelerated clinical implementation of nanotechnologies and macromolecular agents. J. Control. Release 219, 313–330 (2015).

    CAS  PubMed  Article  Google Scholar 

  125. 125

    Bertrand, N., Wu, J., Xu, X., Kamaly, N. & Farokhzad, O. C. Cancer nanotechnology: the impact of passive and active targeting in the area of modern cancer biology. Adv. Drug Delivery Rev. 66, 2–25 (2014).

    CAS  Article  Google Scholar 

  126. 126

    Miller, M. A. et al. Tumor-associated macrophages act as a slow release reservoir of nano-therapeutic Pt(iv) pro-drug. Nat. Commun. 6, 8696 (2015).

    Article  CAS  Google Scholar 

  127. 127

    Knudsen, K. B. et al. Differential toxicological response to positively and negatively charged nanoparticles in the rat brain. Nanotoxicology 8, 764–774 (2014).

    CAS  PubMed  Google Scholar 

  128. 128

    Etheridge, M. L. et al. The big picture on nanomedicine: the state of investigational and approved nanomedicine products. Nanomedicine 9, 1–14 (2013).

    CAS  PubMed  Article  Google Scholar 

  129. 129

    Truong, N. P., Whittaker, M. R., Mak, C. W. & Davis, T. P. The importance of nanoparticle shape in cancer drug delivery. Expert Opin. Drug Delivery 12, 129–142 (2015).

    CAS  Article  Google Scholar 

  130. 130

    Nguyen, K. C. & Zhao, Y. Engineered hybrid nanoparticles for on-demand diagnostics and therapeutics. Acc. Chem. Res. 48, 3016–3025 (2015).

    CAS  PubMed  Article  Google Scholar 

  131. 131

    Vicent, M. J., Movellan, J. & Duro-Castano, A. S. Smart branched polymer drug conjugates as nano-sized drug delivery systems. Biomater. Sci. 3, 1321–1334 (2015).

    PubMed  Article  Google Scholar 

  132. 132

    Wang, D., Zhao, T., Zhu, X., Yan, D. & Wang, W. Bioapplications of hyperbranched polymers. Chem. Soc. Rev. 44, 4023–4071 (2015).

    CAS  PubMed  Article  Google Scholar 

  133. 133

    Wu, W., Wang, W. & Li, J. Star polymers: advances in biomedical applications. Prog. Polym. Sci. 46, 55–85 (2015).

    CAS  Article  Google Scholar 

  134. 134

    Khan, O. & Anderson, D. Dendrimer-inspired nanomaterials for the in vivo delivery of siRNA to lung vasculature. Nano Lett. 15, 3008–3016 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  135. 135

    Svenson, S. The dendrimer paradox — high medical expectations but poor clinical translation. Chem. Soc. Rev. 44, 4131–4144 (2015).

    CAS  PubMed  Article  Google Scholar 

  136. 136

    Wong, C.-H. & Zimmerman, S. C. Orthogonality in organic, polymer, and supramolecular chemistry: from Merrifield to click chemistry. Chem. Commun. 49, 1679–1695 (2013).

    CAS  Article  Google Scholar 

  137. 137

    Garcia-Gallego, S., Hult, D., Olsson, J. V. & Malkoch, M. Fluoride-promoted esterification with imidazolide-activated compounds: a modular and sustainable approach to dendrimers. Angew. Chem. Int. Ed. 54, 2416–2419 (2015).

    CAS  Article  Google Scholar 

  138. 138

    Hadjichristidis, N., Iatrou, H., Pitsikalis, M., Pispas, S. & Avgeropoulo, A. Linear and non-linear tri-block terpolymers. Synthesis, self-assembly in selective solvents and in bulk. Prog. Polym. Sci. 30, 725–782 (2005).

    CAS  Article  Google Scholar 

  139. 139

    Khanna, K., Varshney, S. & Kakkar, A. K. Miktoarm star polymers: advances in synthesis, self-assembly, and applications. Polym. Chem. 1, 1171–1185 (2010).

    CAS  Article  Google Scholar 

  140. 140

    Polymeropoulos, G. et al. 50th Anniversary perspective: polymers with complex architectures. Macromolecules 50, 1253–1290 (2017).

    CAS  Article  Google Scholar 

  141. 141

    Kong, W., Li, B., Jin, Q., Ding, D. & Shi, A. C. Helical vesicles, segmented semi-vesicles and noncircular bilayer sheets from solution state self-assembly of ABC miktoarm star terpolymers. J. Am. Chem. Soc. 131, 8503–8512 (2009).

    CAS  PubMed  Article  Google Scholar 

  142. 142

    Li, Z., Hillmyer, M. A. & Lodge, T. P. Morphologies of multicompartment micelles formed by ABC miktoarm star terpolymers. Langmuir 22, 9409–9417 (2006).

    CAS  PubMed  Article  Google Scholar 

  143. 143

    Li, Z., Kesselman, E., Talmon, Y., Hillmyer, M. A. & Lodge, T. P. Multicompartment micelles from ABC Miktoarm stars in water. Science 306, 98–101 (2004).

    CAS  PubMed  Article  Google Scholar 

  144. 144

    Yin, H., Kang, H. C., Huh, K. M. & Bae, Y. H. Biocompatible, pH-sensitive AB2 miktoarm polymer-based polymersomes: preparation, characterization, and acidic pH-activated nanostructural transformation. J. Mater. Chem. 22, 19168–19178 (2012).

    CAS  Article  Google Scholar 

  145. 145

    Alizadeh, R. & Ghaemy, M. pH-Responsive ABC type miktoarm star terpolymers: synthesis via combination of click reaction and SET-LRP, characterization, self-assembly and controlled drug release. Polymer 66, 179–191 (2015).

    CAS  Article  Google Scholar 

  146. 146

    Soliman, G. M. et al. Tailoring the efficacy of nimodipine drug delivery using nanocarriers based on A2B miktoarm star polymers. Biomaterials 31, 8382–8392 (2010).

    CAS  PubMed  Article  Google Scholar 

  147. 147

    Sharma, A. et al. Asymmetric AB3 miktoarm star polymers: synthesis, self-assembly and study of micelle stability using AF4 for efficient and sustained drug delivery. Macromol. Biosci. 15, 1744–1754 (2015).

    PubMed  Article  CAS  Google Scholar 

  148. 148

    Soliman, G. M. et al. Miktoarm star micelles containing curcumin reduce cell viability of sensitized glioblastoma. J. Nanomed. Biother. Discov. 4, 1000124 (2014).

    Article  Google Scholar 

  149. 149

    Sharma, A. et al. Selective delivery of coenzyme Q10 to mitochondria using multifunctional nanocarriers. Biomacromolecules 13, 239–252 (2012).

    CAS  PubMed  Article  Google Scholar 

  150. 150

    Lin, W. et al. Amphiphilic miktoarm star copolymer (PCL)3-(PDEAEMA-b-PPEGMA)3 as pH-sensitive micelles in the delivery of anticancer drug. J. Mater. Chem. B. 2, 4008–4020 (2014).

    CAS  Article  Google Scholar 

  151. 151

    Blasco, E., Schmidt, B. V. K. J., Barner-Kowollik, C., Pinol, M. & Oriol, L. Dual thermo- and photo-responsive micelles based on miktoarm star polymers. Polym. Chem. 4, 4506–4514 (2013).

    CAS  Article  Google Scholar 

  152. 152

    McKenzie, T. G. et al. Highly efficient and versatile formation of biocompatible star polymers in pure water and their stimuli-responsive self-assembly. Macromolecules 47, 7869–7877 (2014).

    CAS  Article  Google Scholar 

  153. 153

    Gou, P.-F., Zhou, W.-P., Xu, N. & Shen, Z. Q. Synthesis, self-assembly, and drug-loading capacity of well-defined drug-conjugated amphiphilic A2B2 type miktoarm star copolymers based on poly(ε-caprolactone) and poly(ethylene glycol). J. Polym. Sci. A 47, 6962–6976 (2009).

    CAS  Article  Google Scholar 

  154. 154

    Tomalia, D. A., Christensen, J. B. & Boas, U. (eds) Dendrimers, Dendrons and Dendritic Polymers (Cambridge Univ. Press, 2012).

    Book  Google Scholar 

  155. 155

    Lee, C. C., Mackay, J. A., Frechet, J. M. & Szoka, F. C. Designing dendrimers for biological applications. Nat. Biotechnol. 23, 1517–1526 (2005).

    CAS  PubMed  Article  Google Scholar 

  156. 156

    Jevprasesphant, R., Penny, J., Attwood, D., D’Emanuele, A. Transport of dendrimer nanocarriers through epithelial cells via the transcellular route. J. Control. Release 97, 259–267 (2004).

    CAS  PubMed  Article  Google Scholar 

  157. 157

    Kurniasih, I. N., Keilitz, J. & Haag, R. Dendritic nanocarriers based on hyperbranched polymer. Chem. Soc. Rev. 44, 4145–4264 (2015).

    CAS  PubMed  Article  Google Scholar 

  158. 158

    Sun, H.-J., Zhang, S. & Percec, V. From structure to function via complex supramolecular dendrimer systems. Chem. Soc. Rev. 44, 3900–3923 (2015).

    CAS  PubMed  Article  Google Scholar 

  159. 159

    Menjoge, A. R., Kannan, R. M. & Tomalia, D. A. Dendrimer-based drug and imaging conjugates: design considerations for nanomedical applications. Drug Discov. Today 15, 171–185 (2010).

    CAS  PubMed  Article  Google Scholar 

  160. 160

    Jansen, J. F. G. A., de Brabander-van den Berg, E. M. M. & Meijer, E. W. Encapsulation of guest molecules into a dendritic box. Science 266, 1226–1229 (1994).

    CAS  PubMed  Article  Google Scholar 

  161. 161

    Liu, M., Kono, K. & Fréchet, J. M. J. Water-soluble dendritic unimolecular micelles: their potential as drug delivery agents. J. Control. Release 65, 121–131 (2000).

    CAS  PubMed  Article  Google Scholar 

  162. 162

    Patri, A. K., Kukowska-Latallo, J. F. & Baker, J. R. Jr. Targeted drug delivery with dendrimers: comparison of the release kinetics of covalently conjugated drug and non-covalent drug inclusion complex. Adv. Drug Deliv. Rev. 15, 2203–2214 (2005).

    Article  CAS  Google Scholar 

  163. 163

    Rolland, O., Turrin, C.-O., Caminade, A.-M. & Majoral, J.-P. Dendrimers and nanomedicine: multivalency in action. New J. Chem. 33, 1809–1824 (2009).

    CAS  Article  Google Scholar 

  164. 164

    Carlmark, A., Malmstrom, E. & Malkoch, M. Dendritic architectures based on bis-MPA: functional polymeric scaffolds for application-driven research. Chem. Soc. Rev. 42, 5858–5879 (2013).

    CAS  PubMed  Article  Google Scholar 

  165. 165

    Enciso, A. E., Abid, Z. M. & Simanek, E. E. Rapid, semi-automated convergent synthesis of low generation triazine dendrimers using microwave assisted reactions. Polym. Chem. 5, 4635–4640 (2014).

    CAS  Article  Google Scholar 

  166. 166

    Thirumurugan, P., Matosiuk, D. & Jozwia, K. Click chemistry for drug development and diverse chemical-biology applications. Chem. Rev. 113, 4905–4979 (2013).

    CAS  PubMed  Article  Google Scholar 

  167. 167

    Hourani, R. & Kakkar, A. Advances in the elegance of chemistry in designing dendrimers. Macromol. Rapid Commun. 31, 947–974 (2010).

    CAS  PubMed  Article  Google Scholar 

  168. 168

    Lim, J. et al. The role of the size and number of polyethylene glycol chains in the biodistribution and tumor localization of triazine dendrimers. Mol. Pharmaceut. 5, 540–547 (2008).

    CAS  Article  Google Scholar 

  169. 169

    Hourani, R., Jain, M., Maysinger, D. & Kakkar, A. Multi-tasking with single scaffold dendrimers for targeting sub-cellular microenvironments. Chem. Eur. J. 16, 6164–6168 (2010).

    CAS  PubMed  Article  Google Scholar 

  170. 170

    Ornelas, C. & Weck, M. Construction of well-defined multifunctional dendrimers using a trifunctional core. Chem. Commun. 57, 5710–5712 (2009).

    Article  CAS  Google Scholar 

  171. 171

    Sharma, A. et al. Facile construction of multifunctional nanocarriers using sequential click chemistry for applications in biology. Macromolecules 44, 521–529 (2011).

    CAS  Article  Google Scholar 

  172. 172

    Ornelas, C. Brief timelapse on dendrimer chemistry: advances, limitations and expectations. Macromol. Chem. Phys. 217, 149–174 (2016).

    CAS  Article  Google Scholar 

  173. 173

    Wurm, F. & Frey, H. Linear–dendritic block copolymers: the state of the art and exciting perspectives. Prog. Polym. Sci. 36, 1–52 (2011).

    CAS  Article  Google Scholar 

  174. 174

    Dong, C.-M. & Liu, G. Linear–dendritic biodegradable block-copolymers: from synthesis to application in bionanotechnology. Polym. Chem. 4, 46–52 (2013).

    CAS  Article  Google Scholar 

  175. 175

    Poon, Z. et al. Ligand-clustered “patchy” nanoparticles for modulated cellular uptake and in vivo tumor targeting. Angew. Chem. Int. Ed. 49, 7266–7270 (2010).

    CAS  Article  Google Scholar 

  176. 176

    Yang, Y., Hua, C. & Dong, C. M. Synthesis, self-assembly, and in vitro doxorubicin release behavior of dendron-like/linear/dendron-like poly(ε-caprolactone)-b-poly(ethylene glycol)-b-poly(ε-caprolactone) triblock copolymers. Biomacromolecules 10, 2310–2318 (2009).

    CAS  PubMed  Article  Google Scholar 

  177. 177

    Lundberg, P. et al. Linear dendritic polymeric amphiphiles with intrinsic biocompatibility: synthesis and characterization to fabrication of micelles and honeycomb membranes. Polym. Chem. 2, 394–402 (2011).

    CAS  Article  Google Scholar 

  178. 178

    Zhou, Z. et al. Linear–dendritic drug conjugates forming long-circulating nanorods for cancer-drug delivery. Biomaterials 34, 5722–5735 (2013).

    CAS  PubMed  Article  Google Scholar 

  179. 179

    Blasco, E., Pinol, M. & Oriol, L. Responsive linear-dendritic block copolymers. Macromol. Rapid Commun. 35, 1090–1115 (2014).

    CAS  PubMed  Article  Google Scholar 

  180. 180

    Shi, C. et al. A drug-specific nanocarrier design for efficient therapy. Nat. Commun. 6, 7449–7462 (2015).

    PubMed  Article  PubMed Central  Google Scholar 

  181. 181

    Chu, T.-W. & Kopecek, J. Drug-free macromolecular therapeutics — a new paradigm in polymeric nanomedicines. Biomater. Sci. 3, 908–922 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  182. 182

    Avti, P. & Kakkar, A. K. Dendrimers as anti-inflammatory agents. Braz. J. Pharm. Sci. 49, 57–65 (2013).

    CAS  Article  Google Scholar 

  183. 183

    Chen, F. et al. The development of drug-free therapy for prevention of dental caries. Pharm. Res. 31, 3031–3037 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  184. 184

    Wu, K., Liu, J., Johnson, R. N., Yang, J. & Kopecˇek, J. Drug-free macromolecular therapeutics: induction of apoptosis by coiled-coil-mediated cross-linking of antigens on the cell surface. Angew. Chem. Int. Ed. 49, 1451–1455 (2010).

    CAS  Article  Google Scholar 

  185. 185

    Lynn, G. M. et al. In vivo characterization of the physicochemical properties of polymer-linked TLR agonists that enhance vaccine immunogenicity. Nat. Biotechnol. 33, 1201–1210 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  186. 186

    Chauhan, A. S., Diwan, P. V., Jain, N. K. & Tomalia, D. A. Unexpected in vivo anti-inflammatory activity observed for simple, surface functionalized poly(amidoamine) dendrimers. Biomacromolecules 10, 1195–1202 (2009).

    CAS  PubMed  Article  Google Scholar 

  187. 187

    Neibert, K. et al. Click dendrimers as anti-inflammatory agents: with insights into their binding from molecular modeling studies. Mol. Pharm. 10, 2502–2508 (2013).

    CAS  PubMed  Article  Google Scholar 

  188. 188

    Yoshimatsu, K., Koide, H., Hoshino, Y. & Shea, K. J. Preparation of abiotic polymer nanoparticles for sequesteration and neutralization of a target peptide toxin. Nat. Protocols 10, 595–604 (2015).

    CAS  PubMed  Article  Google Scholar 

  189. 189

    Weisman, A., Chen, Y. A., Hoshino, Y., Zhang, H. & Shea, K. J. Engineering nanoparticle antitoxins utilizing aromatic interactions. Biomacromolecules 15, 3290–3295 (2014).

    CAS  PubMed  Article  Google Scholar 

  190. 190

    Hu, C., Fang, R., Copp, J., Luk, B. & Zhang, L. A biomimetic nanosponge that absorbs pore-forming toxins. Nat. Nanotechnol. 8, 336–340 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  191. 191

    Prabhakar, U. et al. Challenges and key considerations of the enhanced permeability and retention (EPR) effect for nanomedicine drug delivery in oncology. Cancer Res. 73, 2412–2417 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  192. 192

    Lee, H., Shin, T. H., Cheon, J. & Weissleder, R. Recent developments in magnetic diagnostic systems. Chem. Rev. 115, 10690–10724 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  193. 193

    Miller, M. A. et al. Predicting therapeutic nanomedicine efficacy using a companion magnetic resonance imaging nanoparticle. Sci. Transl. Med. 7, 314ra183 (2015).

    PubMed  Article  PubMed Central  Google Scholar 

  194. 194

    Miller, M. A. et al. Radiation therapy primes tumors for nanotherapeutic delivery via macrophage-mediated vascular bursts. Sci. Transl. Med. 9, eaal0225 (2017).

    PubMed  Article  Google Scholar 

  195. 195

    Wang, A. Z. EPR or no EPR? The billion-dollar question. Sci. Transl. Med. 7, 294ec112 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Prostate Cancer Foundation, National Cancer Institute (NIH Grant No. 1U54CA151884), and Natural Sciences and Engineering Research Council of Canada (A.K.) for financial support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Robert Langer.

Ethics declarations

Competing interests

O.C.F. and R.L. declare competing interests in Selecta Biosciences and Tarveda Therapeutics.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kakkar, A., Traverso, G., Farokhzad, O. et al. Evolution of macromolecular complexity in drug delivery systems. Nat Rev Chem 1, 0063 (2017). https://doi.org/10.1038/s41570-017-0063

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing