Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Tessellated multiporous two-dimensional covalent organic frameworks

Abstract

In the past decade, covalent organic frameworks (COFs) have emerged as a new class of highly ordered crystalline organic porous polymers. They have attracted tremendous research interest because of their unique structures and potential applications in gas storage and separation, energy storage, catalysis and optoelectronic materials development. Although the skeletons and pore structures of COFs are customizable through judicious selection of chemical building blocks, COF materials have been mainly limited to uniform pore structures with homogeneous pore environments. Two-dimensional COFs with complex multipore structures are largely unexplored, perhaps owing to the challenges that are inherent in designing selective syntheses. Simple tessellation has been remarkably successful in the preparation of regular 2D COFs, but building multiporous systems requires the aid of mathematical design. In this Perspective, we discuss four different approaches to tessellated 2D COFS with a focus on the mathematical rules for their application. A comparison of these strategies should provide guidance to those designing new applications of COF materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Regular and semi-regular tessellations.
Figure 2: The desymmetrized-vertex design strategy.
Figure 3: The orthogonal reaction strategy.
Figure 4: The angle-specific vertex design strategy.
Figure 5: Shape-persistent-patch design.
Figure 6: Framework construction using hexatopic building blocks.
Figure 7: The mixed-component design strategy.
Figure 8: Mixed-component design using pre-linked vertices.

Similar content being viewed by others

References

  1. Doonan, C. J., Tranchemontagne, D. J., Glover, T. G., Hunt, J. R. & Yaghi, O. M. Exceptional ammonia uptake by a covalent organic framework. Nat. Chem. 2, 235–238 (2010).

    Article  CAS  Google Scholar 

  2. Furukawa, H. & Yaghi, O. M. Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications. J. Am. Chem. Soc. 131, 8875–8883 (2009).

    Article  CAS  Google Scholar 

  3. Han, S. S., Furukawa, H., Yaghi, O. M. & Goddard, W. A. Covalent organic frameworks as exceptional hydrogen storage materials. J. Am. Chem. Soc. 130, 11580–11581 (2008).

    Article  CAS  Google Scholar 

  4. Lin, S. et al. Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water. Science 349, 1208–1213 (2015).

    Article  CAS  Google Scholar 

  5. Xu, H., Gao, J. & Jiang, D. L. Stable, crystalline, porous, covalent organic frameworks as a platform for chiral organocatalysts. Nat. Chem. 7, 905–912 (2015).

    Article  CAS  Google Scholar 

  6. Ding, S. Y. et al. Construction of covalent organic framework for catalysis: Pd/COF-LZU1 in Suzuki–Miyaura coupling reaction. J. Am. Chem. Soc. 133, 19816–19822 (2011).

    Article  CAS  Google Scholar 

  7. Dogru, M. et al. A photoconductive thienothiophene-based covalent organic framework showing charge transfer towards included fullerene. Angew. Chem. Int. Ed. 52, 2920–2924 (2013).

    Article  CAS  Google Scholar 

  8. Colson, J. C. et al. Oriented 2D covalent organic framework thin films on single-layer graphene. Science 332, 228–231 (2011).

    Article  CAS  Google Scholar 

  9. Wan, S., Guo, J., Kim, J., Ihee, H. & Jiang, D. L. A belt-shaped, blue luminescent, and semiconducting covalent organic framework. Angew. Chem. Int. Ed. 47, 8826–8830 (2008).

    Article  CAS  Google Scholar 

  10. Ma, H. P. et al. Cationic covalent organic frameworks: a simple platform of anionic exchange for porosity tuning and proton conduction. J. Am. Chem. Soc. 138, 5897–5903 (2016).

    Article  CAS  Google Scholar 

  11. Xu, H. & Jiang, D. L. Covalent organic frameworks: crossing the channel. Nat. Chem. 6, 564–566 (2014).

    Article  CAS  Google Scholar 

  12. Chandra, S. et al. Phosphoric acid loaded azo (-N=N-) based covalent organic framework for proton conduction. J. Am. Chem. Soc. 136, 6570–6573 (2014).

    Article  CAS  Google Scholar 

  13. Côté, A. P. et al. Porous, crystalline, covalent organic frameworks. Science 310, 1166–1170 (2005).

    Article  Google Scholar 

  14. Huang, N., Wang, P. & Jiang, D. L. Covalent organic frameworks: a materials platform for structural and functional designs. Nat. Rev. Mater. 1, 16068 (2016).

    Article  CAS  Google Scholar 

  15. Ding, S. Y. & Wang, W. Covalent organic frameworks (COFs): from design to applications. Chem. Soc. Rev. 42, 548–568 (2013).

    Article  CAS  Google Scholar 

  16. Colson, J. W. & Dichtel, W. R. Rationally synthesized two-dimensional polymers. Nat. Chem. 5, 453–465 (2013).

    Article  CAS  Google Scholar 

  17. Feng, X., Ding, X. & Jiang, D. Covalent organic frameworks. Chem. Soc. Rev. 41, 6010–6022 (2012).

    Article  CAS  Google Scholar 

  18. Uribe-Romo, F. J. & Dichtel, W. R. Two-dimensional materials polymers stripped down. Nat. Chem. 4, 244–245 (2012).

    Article  CAS  Google Scholar 

  19. Ohmori, O., Kawano, M. & Fujita, M. A two-in-one crystal: uptake of two different guests into two distinct channels of a biporous coordination network. Angew. Chem. Int. Ed. 44, 1962–1964 (2005).

    Article  CAS  Google Scholar 

  20. Seo, M., Kim, S., Oh, J., Kim, S. J. & Hillmyer, M. A. Hierarchically porous polymers from hyper-cross-linked block polymer precursors. J. Am. Chem. Soc. 137, 600–603 (2015).

    Article  CAS  Google Scholar 

  21. Sun, Q., Dai, Z. F., Meng, X. J. & Xiao, F. S. Porous polymer catalysts with hierarchical structures. Chem. Soc. Rev. 44, 6018–6034 (2015).

    Article  CAS  Google Scholar 

  22. Sai, H. et al. Hierarchical porous polymer scaffolds from block copolymers. Science 341, 530–534 (2013).

    Article  CAS  Google Scholar 

  23. Furukawa, H., Muller, U. & Yaghi, O. M. “Heterogeneity within order” in metal–organic frameworks. Angew. Chem. Int. Ed. 54, 3417–3430 (2015).

    Article  CAS  Google Scholar 

  24. Fang, Z. L., Bueken, B., De Vos, D. E. & Fischer, R. A. Defect-engineered metal–organic frameworks. Angew. Chem. Int. Ed. 54, 7234–7254 (2015).

    Article  CAS  Google Scholar 

  25. Wong-Foy, A. G., Lebel, O. & Matzger, A. J. Porous crystal derived from a tricarboxylate linker with two distinct binding motifs. J. Am. Chem. Soc. 129, 15740–15741 (2007).

    Article  CAS  Google Scholar 

  26. Schnobrich, J. K. et al. Linker-directed vertex desymmetrization for the production of coordination polymers with high porosity. J. Am. Chem. Soc. 132, 13941–13948 (2010).

    Article  CAS  Google Scholar 

  27. Choi, K. M., Jeon, H. J., Kang, J. K. & Yaghi, O. M. Heterogeneity within order in crystals of a porous metal–organic framework. J. Am. Chem. Soc. 133, 11920–11923 (2011).

    Article  CAS  Google Scholar 

  28. Cliffe, M. J. et al. Correlated defect nanoregions in a metal–organic framework. Nat. Commun. 5, 4176 (2014).

    Article  CAS  Google Scholar 

  29. Xie, Y. B. et al. Unusual preservation of polyhedral molecular building units in a metal–organic framework with evident desymmetrization in ligand design. Chem. Commun. 50, 563–565 (2014).

    Article  CAS  Google Scholar 

  30. Zhu, Y., Wan, S., Jin, Y. & Zhang, W. Desymmetrized vertex design for the synthesis of covalent organic frameworks with periodically heterogeneous pore structures. J. Am. Chem. Soc. 137, 13772–13775 (2015).

    Article  CAS  Google Scholar 

  31. Wilson, A., Gasparini, G. & Matile, S. Functional systems with orthogonal dynamic covalent bonds. Chem. Soc. Rev. 43, 1948–1962 (2014).

    Article  CAS  Google Scholar 

  32. Jin, Y., Wang, Q., Taynton, P. & Zhang, W. Dynamic covalent chemistry approaches toward macrocycles, molecular cages, and polymers. Acc. Chem. Res. 47, 1575–1586 (2014).

    Article  CAS  Google Scholar 

  33. Chen, X. et al. Designed synthesis of double-stage two-dimensional covalent organic frameworks. Sci. Rep. 5, 14650 (2015).

    Article  Google Scholar 

  34. Zeng, Y. F. et al. Covalent organic frameworks formed with two types of covalent bonds based on orthogonal reactions. J. Am. Chem. Soc. 137, 1020–1023 (2015).

    Article  CAS  Google Scholar 

  35. Nguyen, H. L. et al. A titanium–organic framework as an exemplar of combining the chemistry of metal– and covalent–organic frameworks. J. Am. Chem. Soc. 138, 4330–4333 (2016).

    Article  CAS  Google Scholar 

  36. Zhou, T.-Y., Xu, S.-Q., Wen, Q., Pang, Z.-F. & Zhao, X. One-step construction of two different kinds of pores in a 2D covalent organic framework. J. Am. Chem. Soc. 136, 15885–15888 (2014).

    Article  CAS  Google Scholar 

  37. Dalapati, S., Jin, E., Addicoat, M., Heine, T. & Jiang, D. Highly emissive covalent organic frameworks. J. Am. Chem. Soc. 138, 5797–5800 (2016).

    Article  CAS  Google Scholar 

  38. Ascherl, L. et al. Molecular docking sites designed for the generation of highly crystalline covalent organic frameworks. Nat. Chem. 8, 310–316 (2016).

    Article  CAS  Google Scholar 

  39. Pang, Z.-F., Zhou, T.-Y., Liang, R.-R., Qi, Q.-Y. & Zhao, X. Regulating the topology of 2D covalent organic frameworks by the rational introduction of substituents. Chem. Sci. 8, 3866–3870 (2017).

    Article  CAS  Google Scholar 

  40. Smith, B. J. & Dichtel, W. R. Mechanistic studies of two-dimensional covalent organic frameworks rapidly polymerized from initially homogenous conditions. J. Am. Chem. Soc. 136, 8783–8789 (2014).

    Article  CAS  Google Scholar 

  41. Smith, B. J., Hwang, N., Chavez, A. D., Novotney, J. L. & Dichtel, W. R. Growth rates and water stability of 2D boronate ester covalent organic frameworks. Chem. Commun. 51, 7532–7535 (2015).

    Article  CAS  Google Scholar 

  42. Smith, B. J., Overholts, A. C., Hwang, N. & Dichtel, W. R. Insight into the crystallization of amorphous imine-linked polymer networks to 2D covalent organic frameworks. Chem. Commun. 52, 3690–3693 (2016).

    Article  CAS  Google Scholar 

  43. Feng, X., Dong, Y. & Jiang, D. Star-shaped two-dimensional covalent organic frameworks. CrystEngComm 15, 1508–1511 (2013).

    Article  CAS  Google Scholar 

  44. Baldwin, L. A., Crowe, J. W., Shannon, M. D., Jaroniec, C. P. & McGrier, P. L. 2D covalent organic frameworks with alternating triangular and hexagonal pores. Chem. Mater. 27, 6169–6172 (2015).

    Article  CAS  Google Scholar 

  45. Yang, H. S. et al. Mesoporous 2D covalent organic frameworks based on shape-persistent arylene–ethynylene macrocycles. Chem. Sci. 6, 4049–4053 (2015).

    Article  CAS  Google Scholar 

  46. Du, Y. et al. Ionic covalent organic frameworks with spiroborate linkage. Angew. Chem. Int. Ed. 55, 1737–1741 (2016).

    Article  CAS  Google Scholar 

  47. Hisaki, I., Nakagawa, S., Tohnai, N. & Miyata, M. A. C3-symmetric macrocycle-based, hydrogen-bonded, multiporous hexagonal network as a motif of porous molecular crystals. Angew. Chem. Int. Ed. 54, 3008–3012 (2015).

    Article  CAS  Google Scholar 

  48. Xu, S. Q., Zhan, T. G., Wen, Q., Pang, Z. F. & Zhao, X. Diversity of covalent organic frameworks (COFs): a 2D COF containing two kinds of triangular micropores of different sizes. ACS Macro Lett. 5, 99–102 (2016).

    Article  CAS  Google Scholar 

  49. Xu, S. Q., Liang, R. R., Zhan, T. G., Qi, Q. Y. & Zhao, X. Construction of 2D covalent organic frameworks by taking advantage of the variable orientation of imine bonds. Chem. Commun. 53, 2431–2434 (2017).

    Article  CAS  Google Scholar 

  50. Zhang, W. & Moore, J. S. Shape-persistent macrocycles: structures and synthetic approaches from arylene and ethynylene building blocks. Angew. Chem. Int. Ed. 45, 4416–4439 (2006).

    Article  CAS  Google Scholar 

  51. Iyoda, M., Yamakawa, J. & Rahman, M. J. Conjugated macrocycles: concepts and applications. Angew. Chem. Int. Ed. 50, 10522–10553 (2011).

    Article  CAS  Google Scholar 

  52. Grave, C. & Schlüter, A. D. Shape-persistent, nano-sized macrocycles. Eur. J. Org. Chem. 2002, 3075–3098 (2002).

    Article  Google Scholar 

  53. Yang, H., Liu, Z. & Zhang, W. Multidentate triphenolsilane-based alkyne metathesis catalysts. Adv. Synth. Catal. 355, 885–890 (2013).

    Article  CAS  Google Scholar 

  54. Zhang, W. & Moore, J. S. Arylene ethynylene macrocycles prepared by precipitation-driven alkyne metathesis. J. Am. Chem. Soc. 126, 12796–12796 (2004).

    Article  CAS  Google Scholar 

  55. Deng, H. X. et al. Multiple functional groups of varying ratios in metal–organic frameworks. Science 327, 846–850 (2010).

    Article  CAS  Google Scholar 

  56. Kong, X. Q. et al. Mapping of functional groups in metal–organic frameworks. Science 341, 882–885 (2013).

    Article  CAS  Google Scholar 

  57. Bunck, D. N. & Dichtel, W. R. Mixed linker strategies for organic framework functionalization. Chem. Eur. J. 19, 818–827 (2013).

    Article  CAS  Google Scholar 

  58. Crowe, J. W., Baldwin, L. A. & McGrier, P. L. Luminescent covalent organic frameworks containing a homogeneous and heterogeneous distribution of dehydrobenzoannulene vertex units. J. Am. Chem. Soc. 138, 10120–10123 (2016).

    Article  CAS  Google Scholar 

  59. Pang, Z.-F. et al. Construction of covalent organic frameworks bearing three different kinds of pores through the heterostructural mixed linker strategy. J. Am. Chem. Soc. 138, 4710–4713 (2016).

    Article  CAS  Google Scholar 

  60. Huang, N. et al. Multiple-component covalent organic frameworks. Nat. Commun. 7, 12325 (2016).

    Article  Google Scholar 

  61. Tian, Y. et al. Two-dimensional dual-pore covalent organic frameworks obtained from the combination of two D2h symmetrical building blocks. Chem. Commun. 52, 11704–11707 (2016).

    Article  CAS  Google Scholar 

  62. Yin, Z.-J. et al. Ultrahigh volatile iodine uptake by hollow microspheres formed from a heteropore covalent organic framework. Chem. Commun.http://dx.doi.org/10.1039/C7CC01045A (2017).

  63. Qian, C., Xu, S. Q., Jiang, G. F., Zhan, T. G. & Zhao, X. Precision construction of 2D heteropore covalent organic frameworks by a multiple-linking-site strategy. Chem. Eur. J. 22, 17784–17789 (2016).

    Article  CAS  Google Scholar 

  64. Keith, C. T., Borisy, A. A. & Stockwell, B. R. Multicomponent therapeutics for networked systems. Nat. Rev. Drug Discov. 4, 71–78 (2005).

    Article  CAS  Google Scholar 

  65. Elliott, E. L., Hartley, C. S. & Moore, J. S. Covalent ladder formation becomes kinetically trapped beyond four rungs. Chem. Commun. 47, 5028–5030 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the University of Colorado Boulder and the K. C. Wong Education Foundation for funding support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, Y., Hu, Y. & Zhang, W. Tessellated multiporous two-dimensional covalent organic frameworks. Nat Rev Chem 1, 0056 (2017). https://doi.org/10.1038/s41570-017-0056

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/s41570-017-0056

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing