Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Iron deficiency and supplementation in heart failure

Abstract

Non-anaemic iron deficiency (NAID) is a strategic target in cardiovascular medicine because of its association with a range of adverse effects in various conditions. Endeavours to tackle NAID in heart failure have yielded mixed results, exposing knowledge gaps in how best to define ‘iron deficiency’ and the handling of iron therapies by the body. To address these gaps, we harness the latest understanding of the mechanisms of iron homeostasis outside the erythron and integrate clinical and preclinical lines of evidence. The emerging picture is that current definitions of iron deficiency do not assimilate the multiple influences at play in patients with heart failure and, consequently, fail to identify those with a truly unmet need for iron. Additionally, current iron supplementation therapies benefit only certain patients with heart failure, reflecting differences in the nature of the unmet need for iron and the modifying effects of anaemia and inflammation on the handling of iron therapies by the body. Building on these insights, we identify untapped opportunities in the management of NAID, including the refinement of current approaches and the development of novel strategies. Lessons learned from NAID in cardiovascular disease could ultimately translate into benefits for patients with other chronic conditions such as chronic kidney disease, chronic obstructive pulmonary disease and cancer.

Key points

  • Non-anaemic iron deficiency (NAID) is a strategic target in cardiovascular medicine because of its high prevalence, adverse effects on a range of outcomes and its role as a precursor to anaemia.

  • In patients with heart failure (HF), variation in iron markers reflects the demographic factors that influence them in the general population as well as the modifying effects of common comorbidities and certain medications.

  • Mechanisms underlying the adverse effects of NAID in HF could include the unmet needs for iron by the myocardium, skeletal muscle or pulmonary vasculature and the role of iron dysregulation in comorbidities.

  • The benefits of oral iron therapies should be re-examined in light of the latest developments in dosing regimens and slow-release formulations.

  • Although intravenous iron therapy benefits some patients with HF, the fate of iron in the body and the long-term safety of repeated dosing remain unknown.

  • Identifying markers of the unmet need for iron by tissues and targeting the iron homeostatic pathways in the body hold the potential to transform the management of NAID.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Vital iron-dependent proteins and their signalling pathways.
Fig. 2: The oxidative states, binding ligands and functional pools of iron in the body.
Fig. 3: Multifactorial influences on serum iron markers in health and disease.
Fig. 4: Potential mechanisms linking ID with poor outcomes in HF.
Fig. 5: The effects of inflammation on the fate of intravenous iron supplementation.

Similar content being viewed by others

References

  1. O’Meara, E. et al. Clinical correlates and consequences of anemia in a broad spectrum of patients with heart failure: results of the Candesartan in Heart Failure: Assessment of Reduction in Mortality and Morbidity (CHARM) program. Circulation 113, 986–994 (2006).

    Article  PubMed  Google Scholar 

  2. Graham, F. J., Friday, J. M., Pellicori, P., Greenlaw, N. & Cleland, J. G. Assessment of haemoglobin and serum markers of iron deficiency in people with cardiovascular disease. Heart 109, 1294–1301 (2023).

    Article  CAS  PubMed  Google Scholar 

  3. Lindberg, F. et al. Iron deficiency in heart failure: screening, prevalence, incidence and outcome data from the Swedish Heart Failure Registry and the Stockholm CREAtinine Measurements collaborative project. Eur. J. Heart Fail. 25, 1270–1280 (2023).

    Article  CAS  PubMed  Google Scholar 

  4. Ilbert, M. & Bonnefoy, V. Insight into the evolution of the iron oxidation pathways. Biochim. Biophys. Acta 1827, 161–175 (2013).

    Article  CAS  PubMed  Google Scholar 

  5. Pierre, J. L. & Fontecave, M. Iron and activated oxygen species in biology: the basic chemistry. Biometals 12, 195–199 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. FAO, IFAD, UNICEF, WFP, WHO. The State of Food Security and Nutrition in the World 2017. Building Resilience for Peace and Food Security 1–109 (FAO, 2017).

  7. von Haehling, S. et al. Prevalence and clinical impact of iron deficiency and anaemia among outpatients with chronic heart failure: the PrEP Registry. Clin. Res. Cardiol. 106, 436–443 (2017).

    Article  Google Scholar 

  8. Klip, I. T. et al. Iron deficiency in chronic heart failure: an international pooled analysis. Am. Heart J. 165, 575–582.e3 (2013).

    Article  CAS  PubMed  Google Scholar 

  9. Nunez, J. et al. Iron deficiency and risk of early readmission following a hospitalization for acute heart failure. Eur. J. Heart Fail. 18, 798–802 (2016).

    Article  CAS  PubMed  Google Scholar 

  10. Martens, P. et al. Impact of iron deficiency on exercise capacity and outcome in heart failure with reduced, mid-range and preserved ejection fraction. Acta Cardiol. 73, 115–123 (2018).

    Article  PubMed  Google Scholar 

  11. Jankowska, E. A. et al. Iron deficiency: an ominous sign in patients with systolic chronic heart failure. Eur. Heart J. 31, 1872–1880 (2010).

    Article  CAS  PubMed  Google Scholar 

  12. Palau, P. et al. Iron deficiency and short-term adverse events in patients with decompensated heart failure. Clin. Res. Cardiol. 110, 1292–1298 (2021).

    Article  CAS  PubMed  Google Scholar 

  13. Weidmann, H. et al. Iron metabolism contributes to prognosis in coronary artery disease: prognostic value of the soluble transferrin receptor within the atherogene study. J. Am. Heart Assoc. 9, e015480 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chen, W., Lin, G., Dai, C. & Xu, K. Predictive value of serum iron on heart failure in patients with acute ST-segment elevation myocardial infarction. Clin. Cardiol. 46, 449–453 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lawen, A. & Lane, D. J. Mammalian iron homeostasis in health and disease: uptake, storage, transport, and molecular mechanisms of action. Antioxid. Redox Signal. 18, 2473–2507 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. Oski, F. A. Iron deficiency in infancy and childhood. N. Engl. J. Med. 329, 190–193 (1993).

    Article  CAS  PubMed  Google Scholar 

  17. Siddappa, A. M., Rao, R., Long, J. D., Widness, J. A. & Georgieff, M. K. The assessment of newborn iron stores at birth: a review of the literature and standards for ferritin concentrations. Neonatology 92, 73–82 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Kohgo, Y., Ikuta, K., Ohtake, T., Torimoto, Y. & Kato, J. Body iron metabolism and pathophysiology of iron overload. Int. J. Hematol. 88, 7–15 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cabantchik, Z. I. Labile iron in cells and body fluids: physiology, pathology, and pharmacology. Front. Pharmacol. 5, 45 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Knutson, M. D. Non-transferrin-bound iron transporters. Free Radic. Biol. Med. 133, 101–111 (2019).

    Article  CAS  PubMed  Google Scholar 

  21. Frazer, D. M. et al. A rapid decrease in the expression of DMT1 and Dcytb but not Ireg1 or hephaestin explains the mucosal block phenomenon of iron absorption. Gut 52, 340–346 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Philpott, C. C. Coming into view: eukaryotic iron chaperones and intracellular iron delivery. J. Biol. Chem. 287, 13518–13523 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rouault, T. & Klausner, R. Regulation of iron metabolism in eukaryotes. Curr. Top. Cell Regul. 35, 1–19 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Arosio, P., Carmona, F., Gozzelino, R., Maccarinelli, F. & Poli, M. The importance of eukaryotic ferritins in iron handling and cytoprotection. Biochem. J. 472, 1–15 (2015).

    Article  CAS  PubMed  Google Scholar 

  25. Shi, R., Hou, W., Wang, Z. Q. & Xu, X. Biogenesis of iron-sulfur clusters and their role in DNA metabolism. Front. Cell Dev. Biol. 9, 735678 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  26. McDonald, R., Hegenauer, J., Sucec, A. & Saltman, P. Effects of iron deficiency and exercise on myoglobin in rats. Eur. J. Appl. Physiol. Occup. Physiol. 52, 414–419 (1984).

    Article  CAS  PubMed  Google Scholar 

  27. Muckenthaler, M. U., Rivella, S., Hentze, M. W. & Galy, B. A red carpet for iron metabolism. Cell 168, 344–361 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kohgo, Y. et al. Serum transferrin receptor as a new index of erythropoiesis. Blood 70, 1955–1958 (1987).

    Article  CAS  PubMed  Google Scholar 

  29. Arezes, J. et al. Erythroferrone inhibits the induction of hepcidin by BMP6. Blood 132, 1473–1477 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kautz, L., Jung, G., Nemeth, E. & Ganz, T. Erythroferrone contributes to recovery from anemia of inflammation. Blood 124, 2569–2574 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bothwell, T. H. et al. In: Iron Metabolism in Man: Clinical Estimation of Body Iron Stores pp 88–93 (eds Bothwell, T. H., Charlton, R., Cook, J. D. & Finch, C. A.) 327–349 (Blackwell Scientific Publications, 1979).

  32. de Swart, L. et al. Second international round robin for the quantification of serum non-transferrin-bound iron and labile plasma iron in patients with iron-overload disorders. Haematologica 101, 38–45 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Fanni, D. et al. Effects of iron and copper overload on the human liver: an ultrastructural study. Curr. Med. Chem. 21, 3768–3774 (2014).

    Article  CAS  PubMed  Google Scholar 

  34. Das, S. K. & Oudit, G. Y. Voltage-gated Ca2+ channels as key mediators of iron-transport and iron-overload cardiomyopathy: L-type vs. T-type Ca+ channels. Eur. J. Haematol. 88, 476–477 (2012).

    Article  CAS  PubMed  Google Scholar 

  35. Lakhal-Littleton, S. et al. Cardiac ferroportin regulates cellular iron homeostasis and is important for cardiac function. Proc. Natl Acad. Sci. USA 112, 3164–3169 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lakhal-Littleton, S. et al. An essential cell-autonomous role for hepcidin in cardiac iron homeostasis. eLife 5, e19804 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Loick, P. et al. Protective role for smooth muscle cell hepcidin in abdominal aortic aneurysm. Arterioscler. Thromb. Vasc. Biol. 43, 713–725 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lakhal-Littleton, S. et al. Intracellular iron deficiency in pulmonary arterial smooth muscle cells induces pulmonary arterial hypertension in mice. Proc. Natl Acad. Sci. USA 116, 13122–13130 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  39. Noetzli, L. J., Papudesi, J., Coates, T. D. & Wood, J. C. Pancreatic iron loading predicts cardiac iron loading in thalassemia major. Blood 114, 4021–4026 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Steinbicker, A. U. & Muckenthaler, M. U. Out of balance-systemic iron homeostasis in iron-related disorders. Nutrients 5, 3034–3061 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Loreal, O. et al. Iron as a therapeutic target in HFE-related hemochromatosis: usual and novel aspects. Pharmaceuticals 11, 131 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Huebers, H. A. & Finch, C. A. The physiology of transferrin and transferrin receptors. Physiol. Rev. 67, 520–582 (1987).

    Article  CAS  PubMed  Google Scholar 

  43. Cohen, L. A. et al. Serum ferritin is derived primarily from macrophages through a nonclassical secretory pathway. Blood 116, 1574–1584 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. Ferring-Appel, D., Hentze, M. W. & Galy, B. Cell-autonomous and systemic context-dependent functions of iron regulatory protein 2 in mammalian iron metabolism. Blood 113, 679–687 (2009).

    Article  CAS  PubMed  Google Scholar 

  45. Watanabe, K. et al. Iron content of rat serum ferritin. J. Vet. Med. Sci. 63, 587–589 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Nemeth, E. & Ganz, T. Hepcidin-ferroportin interaction controls systemic iron homeostasis. Int. J. Mol. Sci. 22, 6493 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ganz, T. Cellular iron: ferroportin is the only way out. Cell Metab. 1, 155–157 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Mohammad, G., Matakidou, A., Robbins, P. A. & Lakhal-Littleton, S. The kidney hepcidin/ferroportin axis controls iron reabsorption and determines the magnitude of kidney and systemic iron overload. Kidney Int. 100, 559–569 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wareing, M., Ferguson, C. J., Green, R., Riccardi, D. & Smith, C. P. In vivo characterization of renal iron transport in the anaesthetized rat. J. Physiol. 524, 581–586 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Napolitano, M. et al. Iron-dependent erythropoiesis in women with excessive menstrual blood losses and women with normal menses. Ann. Hematol. 93, 557–563 (2014).

    Article  CAS  PubMed  Google Scholar 

  51. Hytten, F. E., Cheyne, G. A. & Klopper, A. I. Iron loss at menstruation. J. Obstet. Gynaecol. Br. Commonw. 71, 255–259 (1964).

    Article  CAS  PubMed  Google Scholar 

  52. Sangkhae, V., Fisher, A. L., Ganz, T. & Nemeth, E. Iron homeostasis during pregnancy: maternal, placental, and fetal regulatory mechanisms. Annu. Rev. Nutr. 43, 279–300 (2023).

    Article  CAS  PubMed  Google Scholar 

  53. Lakhal-Littleton, S. Advances in understanding the crosstalk between mother and fetus on iron utilization. Semin. Hematol. 58, 153–160 (2021).

    Article  PubMed  Google Scholar 

  54. Moretti, D. et al. Oral iron supplements increase hepcidin and decrease iron absorption from daily or twice-daily doses in iron-depleted young women. Blood 126, 1981–1989 (2015).

    Article  CAS  PubMed  Google Scholar 

  55. Giordano, G., Napolitano, M., Di Battista, V. & Lucchesi, A. Oral high-dose sucrosomial iron vs intravenous iron in sideropenic anemia patients intolerant/refractory to iron sulfate: a multicentric randomized study. Ann. Hematol. 100, 2173–2179 (2021).

    Article  CAS  PubMed  Google Scholar 

  56. Remacha, A. et al. Guidelines on haemovigilance of post-transfusional iron overload. Blood Transfus. 11, 128–139 (2013).

    PubMed  PubMed Central  Google Scholar 

  57. Garbowski, M. W. et al. Intravenous iron preparations transiently generate non-transferrin-bound iron from two proposed pathways. Haematologica 106, 2885–2896 (2021).

    Article  CAS  PubMed  Google Scholar 

  58. Geisser, P. & Burckhardt, S. The pharmacokinetics and pharmacodynamics of iron preparations. Pharmaceutics 3, 12–33 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Murray, M. J., Murray, A. B., Murray, M. B. & Murray, C. J. The adverse effect of iron repletion on the course of certain infections. BMJ 2, 1113–1115 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bullen, J. J., Spalding, P. B., Ward, C. G. & Gutteridge, J. M. Hemochromatosis, iron and septicemia caused by Vibrio vulnificus. Arch. Intern. Med. 151, 1606–1609 (1991).

    Article  CAS  PubMed  Google Scholar 

  61. Lakhal-Littleton, S. & Robbins, P. A. The interplay between iron and oxygen homeostasis with a particular focus on the heart. J. Appl. Physiol. 123, 967–973 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Cragg, S. J., Wagstaff, M. & Worwood, M. Detection of a glycosylated subunit in human serum ferritin. Biochem. J. 199, 565–571 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lambotte, O. et al. High ferritin and low glycosylated ferritin may also be a marker of excessive macrophage activation. J. Rheumatol. 30, 1027–1028 (2003).

    CAS  PubMed  Google Scholar 

  64. Moris, W., Verhaegh, P., Jonkers, D., Deursen, C. V. & Koek, G. Hyperferritinemia in nonalcoholic fatty liver disease: iron accumulation or inflammation? Semin. Liver Dis. 39, 476–482 (2019).

    Article  CAS  PubMed  Google Scholar 

  65. Yenson, P. R., Yoshida, E. M., Li, C. H., Chung, H. V. & Tsang, P. W. Hyperferritinemia in the Chinese and Asian community: a retrospective review of the University of British Columbia experience. Can. J. Gastroenterol. 22, 37–40 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Konijn, A. M., Carmel, N., Levy, R. & Hershko, C. Ferritin synthesis in inflammation. II. Mechanism increased ferritin synthesis. Br. J. Haematol. 49, 361–370 (1981).

    Article  CAS  PubMed  Google Scholar 

  67. Pietsch, E. C., Chan, J. Y., Torti, F. M. & Torti, S. V. Nrf2 mediates the induction of ferritin H in response to xenobiotics and cancer chemopreventive dithiolethiones. J. Biol. Chem. 278, 2361–2369 (2003).

    Article  CAS  PubMed  Google Scholar 

  68. Kernan, K. F. & Carcillo, J. A. Hyperferritinemia and inflammation. Int. Immunol. 29, 401–409 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Karaboyas, A. et al. Association between serum ferritin and mortality: findings from the USA, Japan and European Dialysis Outcomes and Practice Patterns Study. Nephrol. Dial. Transpl. 33, 2234–2244 (2018).

    Article  CAS  Google Scholar 

  70. Kalantar-Zadeh, K., Don, B. R., Rodriguez, R. A. & Humphreys, M. H. Serum ferritin is a marker of morbidity and mortality in hemodialysis patients. Am. J. Kidney Dis. 37, 564–572 (2001).

    Article  CAS  PubMed  Google Scholar 

  71. Park, K. S. et al. Serum ferritin predicts mortality regardless of inflammatory and nutritional status in patients starting dialysis: a prospective cohort study. Blood Purif. 40, 209–217 (2015).

    Article  CAS  PubMed  Google Scholar 

  72. Ellervik, C., Marott, J. L., Tybjaerg-Hansen, A., Schnohr, P. & Nordestgaard, B. G. Total and cause-specific mortality by moderately and markedly increased ferritin concentrations: general population study and metaanalysis. Clin. Chem. 60, 1419–1428 (2014).

    Article  CAS  PubMed  Google Scholar 

  73. Mikkelsen, L. F., Nordestgaard, B. G., Schnohr, P. & Ellervik, C. Increased ferritin concentration and risk of atrial fibrillation and heart failure in men and women: three studies of the Danish general population including 35799 individuals. Clin. Chem. 65, 180–188 (2019).

    Article  CAS  PubMed  Google Scholar 

  74. Holay, M. P., Choudhary, A. A. & Suryawanshi, S. D. Serum ferritin-a novel risk factor in acute myocardial infarction. Indian Heart J. 64, 173–177 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Brissot, P., Bernard, D. G., Brissot, E., Loreal, O. & Troadec, M. B. Rare anemias due to genetic iron metabolism defects. Mutat. Res. Rev. Mutat. Res. 777, 52–63 (2018).

    Article  CAS  PubMed  Google Scholar 

  76. Yang, Y. et al. Changes of iron metabolism during pregnancy and the establishment of reference intervals for pregnant Chinese women. Ann. Clin. Biochem. 56, 556–563 (2019).

    Article  CAS  PubMed  Google Scholar 

  77. Rolfs, A., Kvietikova, I., Gassmann, M. & Wenger, R. H. Oxygen-regulated transferrin expression is mediated by hypoxia-inducible factor-1. J. Biol. Chem. 272, 20055–20062 (1997).

    Article  CAS  PubMed  Google Scholar 

  78. Baynes, R. D., Meyer, T. E., Bothwell, T. H. & McNamara, L. A screening test for detecting iron overload in population studies. S. Afr. Med. J. 74, 167–169 (1988).

    CAS  PubMed  Google Scholar 

  79. Viveiros, A. et al. Transferrin as a predictor of survival in cirrhosis. Liver Transpl. 24, 343–351 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Bergmann, O. M. et al. Altered expression of iron regulatory genes in cirrhotic human livers: clues to the cause of hemosiderosis? Lab. Invest. 88, 1349–1357 (2008).

    Article  CAS  PubMed  Google Scholar 

  81. Hancock, D. E., Onstad, J. W. & Wolf, P. L. Transferrin loss into the urine with hypochromic, microcytic anemia. Am. J. Clin. Pathol. 65, 73–78 (1976).

    Article  CAS  PubMed  Google Scholar 

  82. Howard, R. L., Buddington, B. & Alfrey, A. C. Urinary albumin, transferrin and iron excretion in diabetic patients. Kidney Int. 40, 923–926 (1991).

    Article  CAS  PubMed  Google Scholar 

  83. Jain, S., Gautam, V. & Naseem, S. Acute-phase proteins: as diagnostic tool. J. Pharm. Bioallied Sci. 3, 118–127 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Fahmy, M. & Young, S. P. Modulation of iron metabolism in monocyte cell line U937 by inflammatory cytokines: changes in transferrin uptake, iron handling and ferritin mRNA. Biochem. J. 296, 175–181 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Gabay, C. & Kushner, I. Acute-phase proteins and other systemic responses to inflammation. N. Engl. J. Med. 340, 448–454 (1999).

    Article  CAS  PubMed  Google Scholar 

  86. Griffiths, J. D. et al. Acute changes in iron metabolism following myocardial infarction. Am. J. Clin. Pathol. 84, 649–654 (1985).

    Article  CAS  PubMed  Google Scholar 

  87. Van der Schouw, Y. T. et al. Iron status in the acute phase and six weeks after myocardial infarction. Free Radic. Biol. Med. 8, 47–53 (1990).

    Article  PubMed  Google Scholar 

  88. Ridefelt, P., Larsson, A., Rehman, J. U. & Axelsson, J. Influences of sleep and the circadian rhythm on iron-status indices. Clin. Biochem. 43, 1323–1328 (2010).

    Article  CAS  PubMed  Google Scholar 

  89. Smith, K. D. Iron metabolism at the host pathogen interface: lipocalin 2 and the pathogen-associated iroA gene cluster. Int. J. Biochem. Cell Biol. 39, 1776–1780 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Nemeth, E. et al. Hepcidin, a putative mediator of anemia of inflammation, is a type II acute-phase protein. Blood 101, 2461–2463 (2003).

    Article  CAS  PubMed  Google Scholar 

  91. Sangkhae, V. & Nemeth, E. Regulation of the iron homeostatic hormone hepcidin. Adv. Nutr. 8, 126–136 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Schwartz, A. J. et al. Hepatic hepcidin/intestinal HIF-2α axis maintains iron absorption during iron deficiency and overload. J. Clin. Invest. 129, 336–348 (2019).

    Article  PubMed  Google Scholar 

  93. Goetze, O. et al. Adaptation of iron transport and metabolism to acute high-altitude hypoxia in mountaineers. Hepatology 58, 2153–2162 (2013).

    Article  CAS  PubMed  Google Scholar 

  94. Pfeiffer, C. M. & Looker, A. C. Laboratory methodologies for indicators of iron status: strengths, limitations, and analytical challenges. Am. J. Clin. Nutr. 106, 1606S–1614S (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Chitambar, C. R., Loebel, A. L. & Noble, N. A. Shedding of transferrin receptor from rat reticulocytes during maturation in vitro: soluble transferrin receptor is derived from receptor shed in vesicles. Blood 78, 2444–2450 (1991).

    Article  CAS  PubMed  Google Scholar 

  96. Pan, B. T. & Johnstone, R. M. Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor. Cell 33, 967–978 (1983).

    Article  CAS  PubMed  Google Scholar 

  97. Daschner, M., Mehls, O. & Schaefer, F. Soluble transferrin receptor is correlated with erythropoietin sensitivity in dialysis patients. Clin. Nephrol. 52, 246–252 (1999).

    CAS  PubMed  Google Scholar 

  98. Demir, A., Yarali, N., Fisgin, T., Duru, F. & Kara, A. Serum transferrin receptor levels in beta-thalassemia trait. J. Trop. Pediatr. 50, 369–371 (2004).

    Article  PubMed  Google Scholar 

  99. Birkeland, K. I. et al. Effect of rhEPO administration on serum levels of sTfR and cycling performance. Med. Sci. Sports Exerc. 32, 1238–1243 (2000).

    Article  CAS  PubMed  Google Scholar 

  100. Pasricha, S. R., Rooney, P. & Schneider, H. Soluble transferrin receptor and depth of bone marrow suppression following high dose chemotherapy. Support. Care Cancer 17, 847–850 (2009).

    Article  PubMed  Google Scholar 

  101. Gupta, S., Uppal, B. & Pawar, B. Is soluble transferrin receptor a good marker of iron deficiency anemia in chronic kidney disease patients? Indian J. Nephrol. 19, 96–100 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Schmidt, P. J., Toran, P. T., Giannetti, A. M., Bjorkman, P. J. & Andrews, N. C. The transferrin receptor modulates Hfe-dependent regulation of hepcidin expression. Cell Metab. 7, 205–214 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Infusino, I., Braga, F., Dolci, A. & Panteghini, M. Soluble transferrin receptor (sTfR) and sTfR/log ferritin index for the diagnosis of iron-deficiency anemia. A meta-analysis. Am. J. Clin. Pathol. 138, 642–649 (2012).

    Article  PubMed  Google Scholar 

  104. Tussing-Humphreys, L. M. et al. Elevated systemic hepcidin and iron depletion in obese premenopausal females. Obesity 18, 1449–14569 (2010).

    Article  CAS  PubMed  Google Scholar 

  105. Verga Falzacappa, M. V. et al. STAT3 mediates hepatic hepcidin expression and its inflammatory stimulation. Blood 109, 353–358 (2007).

    Article  PubMed  Google Scholar 

  106. Oliveira, S. J. et al. ER stress-inducible factor CHOP affects the expression of hepcidin by modulating C/EBPalpha activity. PLoS One 4, e6618 (2009).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  107. Krause, A. et al. LEAP-1, a novel highly disulfide-bonded human peptide, exhibits antimicrobial activity. FEBS Lett. 480, 147–150 (2000).

    Article  CAS  PubMed  Google Scholar 

  108. Kautz, L. et al. Identification of erythroferrone as an erythroid regulator of iron metabolism. Nat. Genet. 46, 678–684 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Kautz, L. et al. Erythroferrone contributes to hepcidin suppression and iron overload in a mouse model of β-thalassemia. Blood 126, 2031–2037 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Zaman, B. A., Rasool, S. O. & Abdo, J. M. The effect of erythroferrone suppression by transfusion on the erythropoietin-erythroferrone-hepcidin axis in transfusion-dependent thalassaemia: a pre-post cohort study. Br. J. Haematol. 201, 547–551 (2023).

    Article  CAS  PubMed  Google Scholar 

  111. Stoffel, N. U. et al. The opposing effects of acute inflammation and iron deficiency anemia on serum hepcidin and iron absorption in young women. Haematologica 104, 1143–1149 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Silvestri, L., Pagani, A. & Camaschella, C. Furin-mediated release of soluble hemojuvelin: a new link between hypoxia and iron homeostasis. Blood 111, 924–931 (2008).

    Article  CAS  PubMed  Google Scholar 

  113. Lakhal, S. et al. Regulation of type II transmembrane serine proteinase TMPRSS6 by hypoxia-inducible factors: new link between hypoxia signaling and iron homeostasis. J. Biol. Chem. 286, 4090–4097 (2011).

    Article  CAS  PubMed  Google Scholar 

  114. Liu, W. et al. Lactate modulates iron metabolism by binding soluble adenylyl cyclase. Cell Metab. 35, 1597–1612.e6 (2023).

    Article  CAS  PubMed  Google Scholar 

  115. Troutt, J. S., Butterfield, A. M. & Konrad, R. J. Hepcidin-25 concentrations are markedly increased in patients with chronic kidney disease and are inversely correlated with estimated glomerular filtration rates. J. Clin. Lab. Anal. 27, 504–510 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Washida, N. et al. Impact of switching from darbepoetin alfa to epoetin beta pegol on iron utilization and blood pressure in peritoneal dialysis patients. Ther. Apher. Dial. 19, 450–456 (2015).

    Article  CAS  PubMed  Google Scholar 

  117. Paliege, A. et al. Hypoxia-inducible factor-2α-expressing interstitial fibroblasts are the only renal cells that express erythropoietin under hypoxia-inducible factor stabilization. Kidney Int. 77, 312–318 (2010).

    Article  CAS  PubMed  Google Scholar 

  118. Rezvani, A. et al. Serum levels of erythropoietin in patients with chronic obstructive pulmonary disease and anemia. Sci. Rep. 13, 6990 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  119. Ren, X., Dorrington, K. L., Maxwell, P. H. & Robbins, P. A. Effects of desferrioxamine on serum erythropoietin and ventilatory sensitivity to hypoxia in humans. J. Appl. Physiol. 89, 680–686 (2000).

    Article  CAS  PubMed  Google Scholar 

  120. Wilkinson, N. & Pantopoulos, K. IRP1 regulates erythropoiesis and systemic iron homeostasis by controlling HIF2α mRNA translation. Blood 122, 1658–1668 (2013).

    Article  CAS  PubMed  Google Scholar 

  121. Ghosh, M. C. et al. Deletion of iron regulatory protein 1 causes polycythemia and pulmonary hypertension in mice through translational derepression of HIF2α. Cell Metab. 17, 271–281 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  122. Pang, Y. et al. A novel splicing site IRP1 somatic mutation in a patient with pheochromocytoma and JAK2V617F positive polycythemia vera: a case report. BMC Cancer 18, 286 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Paulson, R. F., Ruan, B., Hao, S. & Chen, Y. Stress erythropoiesis is a key inflammatory response. Cells 9, 634 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Kim, A. et al. A mouse model of anemia of inflammation: complex pathogenesis with partial dependence on hepcidin. Blood 123, 1129–1136 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Hao, S. et al. Gdf15 regulates murine stress erythroid progenitor proliferation and the development of the stress erythropoiesis niche. Blood Adv. 3, 2205–2217 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. World Health Organization. WHO Guideline on Use of Ferritin Concentrations to Assess Iron Status in Individuals and Populations WHO Guidelines Approved by the Guidelines Review Committee (WHO, 2020).

  127. Pavord, S. et al. UK guidelines on the management of iron deficiency in pregnancy. Br. J. Haematol. 188, 819–830 (2020).

    Article  PubMed  Google Scholar 

  128. Batchelor, E. K., Kapitsinou, P., Pergola, P. E., Kovesdy, C. P. & Jalal, D. I. Iron deficiency in chronic kidney disease: updates on pathophysiology, diagnosis, and treatment. J. Am. Soc. Nephrol. 31, 456–468 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. McDonagh, T. A. et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: developed by the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. Heart J. 42, 3599–3726 (2021).

    Article  CAS  PubMed  Google Scholar 

  130. Snook, J. et al. British Society of Gastroenterology guidelines for the management of iron deficiency anaemia in adults. Gut 70, 2030–2051 (2021).

    Article  CAS  PubMed  Google Scholar 

  131. Yancy, C. W. et al. 2017 ACC/AHA/HFSA focused update of the 2013 ACCF/AHA Guideline for the Management of Heart Failure: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America. Circulation 136, e137–e161 (2017).

    Article  PubMed  Google Scholar 

  132. Fletcher, A., Forbes, A., Svenson, N. & Wayne Thomas, D.; A British Society for Haematology Good Practice Paper. Guideline for the laboratory diagnosis of iron deficiency in adults (excluding pregnancy) and children. Br. J. Haematol. 196, 523–529 (2022).

    Article  PubMed  Google Scholar 

  133. Moscheo, C. et al. New insights into iron deficiency anemia in children: a practical review. Metabolites 12, 289 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Ghio, A. J. & Hilborn, E. D. Indices of iron homeostasis correlate with airway obstruction in an NHANES III cohort. Int. J. Chron. Obstruct. Pulmon. Dis. 12, 2075–2084 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Benyamin, B. et al. Variants in TF and HFE explain approximately 40% of genetic variation in serum-transferrin levels. Am. J. Hum. Genet. 84, 60–65 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Tanaka, T. et al. A genome-wide association analysis of serum iron concentrations. Blood 115, 94–96 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Masini, G. et al. Criteria for iron deficiency in patients with heart failure. J. Am. Coll. Cardiol. 79, 341–351 (2022).

    Article  CAS  PubMed  Google Scholar 

  138. Harrison, A. V., Lorenzo, F. R. & McClain, D. A. Iron and the pathophysiology of diabetes. Annu. Rev. Physiol. 85, 339–362 (2023).

    Article  CAS  PubMed  Google Scholar 

  139. Packer, M. Potential interactions when prescribing SGLT2 inhibitors and intravenous iron in combination in heart failure. JACC Heart Fail. 11, 106–114 (2023).

    Article  PubMed  Google Scholar 

  140. Sirbu, O. et al. The influence of cardiovascular medications on iron metabolism in patients with heart failure. Medicina 55, 329 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Vlahakos, V. et al. The paradigm shift from polycythemia to anemia in COPD: the critical role of the renin-angiotensin system inhibitors. Expert Rev. Respir. Med. 16, 391–398 (2022).

    CAS  PubMed  Google Scholar 

  142. Docherty, K. F. et al. Iron deficiency in heart failure and effect of dapagliflozin: findings from DAPA-HF. Circulation 146, 980–994 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Zhao, B. et al. The relationship and clinical significance of Hepc-20, LpPLA2, PTX3, and acute myocardial infarction in patients with varying degrees of coronary artery disease. Altern. Ther. Health Med. 29, 316–321 (2023).

    PubMed  Google Scholar 

  144. George, M. J. et al. Novel insights into the effects of interleukin 6 antagonism in non-ST-segment-elevation myocardial infarction employing the SOMAscan proteomics platform. J. Am. Heart Assoc. 9, e015628 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Bulluck, H. et al. Residual myocardial iron following intramyocardial hemorrhage during the convalescent phase of reperfused ST-segment-elevation myocardial infarction and adverse left ventricular remodeling. Circ. Cardiovasc. Imaging 9, e004940 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Cleland, J. G. et al. Prevalence and outcomes of anemia and hematinic deficiencies in patients with chronic heart failure. JAMA Cardiol. 1, 539–547 (2016).

    Article  PubMed  Google Scholar 

  147. Matsumoto, M. et al. Iron regulatory hormone hepcidin decreases in chronic heart failure patients with anemia. Circ. J. 74, 301–306 (2010).

    Article  CAS  PubMed  Google Scholar 

  148. Jankowska, E. A. et al. Iron status in patients with chronic heart failure. Eur. Heart J. 34, 827–834 (2013).

    Article  CAS  PubMed  Google Scholar 

  149. Grote Beverborg, N. et al. Definition of iron deficiency based on the gold standard of bone marrow iron staining in heart failure patients. Circ. Heart Fail. 11, e004519 (2018).

    Article  CAS  PubMed  Google Scholar 

  150. Nagai, T. et al. Prognostic significance of endogenous erythropoietin in long-term outcome of patients with acute decompensated heart failure. Eur. J. Heart Fail. 18, 803–813 (2016).

    Article  CAS  PubMed  Google Scholar 

  151. Carrilho, P. Intravenous iron in heart failure and chronic kidney disease. Nefrologia 41, 403–411 (2021).

    Article  PubMed  Google Scholar 

  152. Xiao, L. et al. Macrophage iron retention aggravates atherosclerosis: evidence for the role of autocrine formation of hepcidin in plaque macrophages. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1865, 158531 (2020).

    Article  CAS  PubMed  Google Scholar 

  153. Sullivan, J. L. Iron and the sex difference in heart disease risk. Lancet 1, 1293–1294 (1981).

    Article  CAS  PubMed  Google Scholar 

  154. Ekblom, K. et al. Iron stores and HFE genotypes are not related to increased risk of first-time myocardial infarction: a prospective nested case-referent study. Int. J. Cardiol. 150, 169–172 (2011).

    Article  PubMed  Google Scholar 

  155. Kautz, L. et al. Testing the iron hypothesis in a mouse model of atherosclerosis. Cell Rep. 5, 1436–1442 (2013).

    Article  CAS  PubMed  Google Scholar 

  156. Gutierrez-Bedmar, M. et al. Low serum iron levels and risk of cardiovascular disease in high risk elderly population: nested case-control study in the PREvencion con DIeta MEDiterranea (PREDIMED) trial. Clin. Nutr. 40, 496–504 (2021).

    Article  CAS  PubMed  Google Scholar 

  157. Morrison, H. I., Semenciw, R. M., Mao, Y. & Wigle, D. T. Serum iron and risk of fatal acute myocardial infarction. Epidemiology 5, 243–246 (1994).

    Article  CAS  PubMed  Google Scholar 

  158. Marniemi, J. et al. Dietary and serum vitamins and minerals as predictors of myocardial infarction and stroke in elderly subjects. Nutr. Metab. Cardiovasc. Dis. 15, 188–197 (2005).

    Article  PubMed  Google Scholar 

  159. Liao, Y., Cooper, R. S. & McGee, D. L. Iron status and coronary heart disease: negative findings from the NHANES I epidemiologic follow-up study. Am. J. Epidemiol. 139, 704–712 (1994).

    Article  CAS  PubMed  Google Scholar 

  160. Nordestgaard, B. G. et al. Risk factors for near-term myocardial infarction in apparently healthy men and women. Clin. Chem. 56, 559–567 (2010).

    Article  CAS  PubMed  Google Scholar 

  161. Hunnicutt, J., He, K. & Xun, P. Dietary iron intake and body iron stores are associated with risk of coronary heart disease in a meta-analysis of prospective cohort studies. J. Nutr. 144, 359–366 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Zeller, T. et al. Prognostic value of iron-homeostasis regulating peptide hepcidin in coronary heart disease-evidence from the large atherogene study. Biomolecules 8, 43 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Jankowska, E. A. et al. Iron deficiency defined as depleted iron stores accompanied by unmet cellular iron requirements identifies patients at the highest risk of death after an episode of acute heart failure. Eur. Heart J. 35, 2468–2476 (2014).

    Article  CAS  PubMed  Google Scholar 

  164. Morkedal, B., Laugsand, L. E., Romundstad, P. R. & Vatten, L. J. Mortality from ischaemic heart disease: sex-specific effects of transferrin saturation, serum iron, and total iron binding capacity. The HUNT study. Eur. J. Cardiovasc. Prev. Rehabil. 18, 687–694 (2011).

    Article  PubMed  Google Scholar 

  165. Pereira, G. A. R., Foppa, M., Eifer, D. A. & Beck-da-Silva, L. Myocardial iron content by T2 star cardiac magnetic resonance and serum markers of iron metabolism in patients with heart failure. J. Cardiovasc. Med. 23, e33–e35 (2022).

    Article  CAS  Google Scholar 

  166. Gertler, C. et al. Magnetic resonance imaging of organ iron before and after correction of iron deficiency in patients with heart failure. Esc. Heart Fail. 10, 1847–1859 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Maeder, M. T., Khammy, O., dos Remedios, C. & Kaye, D. M. Myocardial and systemic iron depletion in heart failure implications for anemia accompanying heart failure. J. Am. Coll. Cardiol. 58, 474–480 (2011).

    Article  CAS  PubMed  Google Scholar 

  168. Melenovsky, V. et al. Myocardial iron content and mitochondrial function in human heart failure: a direct tissue analysis. Eur. J. Heart Fail. 19, 522–530 (2017).

    Article  CAS  PubMed  Google Scholar 

  169. Zhang, H. et al. Myocardial iron deficiency and mitochondrial dysfunction in advanced heart failure in humans. J. Am. Heart Assoc. 11, e022853 (2022).

    Article  MathSciNet  PubMed  PubMed Central  Google Scholar 

  170. Chung, B. et al. Pre-emptive iron supplementation prevents myocardial iron deficiency and attenuates adverse remodelling after myocardial infarction. Cardiovasc. Res. 119, 1969–1980 (2023).

    Article  CAS  PubMed  Google Scholar 

  171. Cabrera, C. et al. Relationship between iron deficiency and expression of genes involved in iron metabolism in human myocardium and skeletal muscle. Int. J. Cardiol. 379, 82–88 (2023).

    Article  CAS  PubMed  Google Scholar 

  172. Xu, W. et al. Lethal cardiomyopathy in mice lacking transferrin receptor in the heart. Cell Rep. 13, 533–545 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Gevaert, A. B. et al. Iron deficiency impacts diastolic function, aerobic exercise capacity, and patient phenotyping in heart failure with preserved ejection fraction: a subanalysis of the OptimEx-Clin study. Front. Physiol. 12, 757268 (2021).

    Article  PubMed  Google Scholar 

  174. Amaechi, U. M. et al. Clinical and echocardiographic correlates of iron status in chronic heart failure patients: a cross-sectional descriptive study. Cureus 15, e39998 (2023).

    PubMed  PubMed Central  Google Scholar 

  175. Blayney, L., Bailey-Wood, R., Jacobs, A., Henderson, A. & Muir, J. The effects of iron deficiency on the respiratory function and cytochrome content of rat heart mitochondria. Circ. Res. 39, 744–748 (1976).

    Article  CAS  PubMed  Google Scholar 

  176. Watson, W. D. et al. Retained metabolic flexibility of the failing human heart. Circulation 148, 109–123 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Ross, K. L. & Eisenstein, R. S. Iron deficiency decreases mitochondrial aconitase abundance and citrate concentration without affecting tricarboxylic acid cycle capacity in rat liver. J. Nutr. 132, 643–651 (2002).

    Article  CAS  PubMed  Google Scholar 

  178. Fischer, C. et al. Mitochondrial respiration in response to iron deficiency anemia: comparison of peripheral blood mononuclear cells and liver. Metabolites 12, 270 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Chung, Y. J. et al. Iron-deficiency anemia results in transcriptional and metabolic remodeling in the heart toward a glycolytic phenotype. Front. Cardiovasc. Med. 7, 616920 (2020).

    Article  CAS  PubMed  Google Scholar 

  180. Chung, Y. J. et al. Iron-deficiency anemia reduces cardiac contraction by downregulating RyR2 channels and suppressing SERCA pump activity. JCI Insight 4, e125618 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Souza, J. S., Brunetto, E. L. & Nunes, M. T. Iron restriction increases myoglobin gene and protein expression in soleus muscle of rats. Acad. Bras. Cienc. 88, 2277–2290 (2016).

    Article  Google Scholar 

  182. Hagler, L. et al. Influence of dietary iron deficiency on hemoglobin, myoglobin, their respective reductases, and skeletal muscle mitochondrial respiration. Am. J. Clin. Nutr. 34, 2169–2177 (1981).

    Article  CAS  PubMed  Google Scholar 

  183. Jankowska, E. A. et al. Iron deficiency predicts impaired exercise capacity in patients with systolic chronic heart failure. J. Card. Fail. 17, 899–906 (2011).

    Article  CAS  PubMed  Google Scholar 

  184. Tkaczyszyn, M. et al. Iron status, catabolic/anabolic balance, and skeletal muscle performance in men with heart failure with reduced ejection fraction. Cardiol. J. 28, 391–401 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Leermakers, P. A. et al. Iron deficiency-induced loss of skeletal muscle mitochondrial proteins and respiratory capacity; the role of mitophagy and secretion of mitochondria-containing vesicles. FASEB J. 34, 6703–6717 (2020).

    Article  CAS  PubMed  Google Scholar 

  186. Perez-Peiro, M. et al. Iron depletion in systemic and muscle compartments defines a specific phenotype of severe COPD in female and male patients: implications in exercise tolerance. Nutrients 14, 3929 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Finch, C. A. et al. Iron deficiency in the rat. Physiological and biochemical studies of muscle dysfunction. J. Clin. Invest. 58, 447–453 (1976).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Beard, J., Green, W., Miller, L. & Finch, C. Effect of iron-deficiency anemia on hormone levels and thermoregulation during cold exposure. Am. J. Physiol. 247, R114–R119 (1984).

    CAS  PubMed  Google Scholar 

  189. McKay, R. H., Higuchi, D. A., Winder, W. W., Fell, R. D. & Brown, E. B. Tissue effects of iron deficiency in the rat. Biochim. Biophys. Acta 757, 352–358 (1983).

    Article  CAS  PubMed  Google Scholar 

  190. Iversen, K. K. et al. Chronic obstructive pulmonary disease in patients admitted with heart failure. J. Intern. Med. 264, 361–369 (2008).

    Article  CAS  PubMed  Google Scholar 

  191. Mooney, L. et al. Impact of chronic obstructive pulmonary disease in patients with heart failure with preserved ejection fraction: insights from PARAGON-HF. J. Am. Heart Assoc. 10, e021494 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Nickol, A. H. et al. A cross-sectional study of the prevalence and associations of iron deficiency in a cohort of patients with chronic obstructive pulmonary disease. BMJ Open 5, e007911 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  193. Silverberg, D. S. et al. Anemia and iron deficiency in COPD patients: prevalence and the effects of correction of the anemia with erythropoiesis stimulating agents and intravenous iron. BMC Pulm. Med. 14, 24 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  194. Cloonan, S. M. et al. The “Iron”-y of iron overload and iron deficiency in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 196, 1103–1112 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Perez, E. et al. Hepcidin is essential for alveolar macrophage function and is disrupted by smoke in a murine chronic obstructive pulmonary disease model. J. Immunol. 205, 2489–2498 (2020).

    Article  CAS  PubMed  Google Scholar 

  196. Santer, P. et al. Intravenous iron and chronic obstructive pulmonary disease: a randomised controlled trial. BMJ Open Respir. Res. 7, e000577 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Mumby, S., Saito, J., Adcock, I. M., Chung, K. F. & Quinlan, G. J. Decreased breath excretion of redox active iron in COPD: a protective failure? Eur. Respir. J. 47, 1267–1270 (2016).

    Article  CAS  PubMed  Google Scholar 

  198. Zhang, J. et al. Secondary polycythemia in chronic obstructive pulmonary disease: prevalence and risk factors. BMC Pulm. Med. 21, 235 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  199. Shah, A. M. et al. Cardiac structure and function in heart failure with preserved ejection fraction: baseline findings from the echocardiographic study of the Treatment of Preserved Cardiac Function Heart Failure with an Aldosterone Antagonist trial. Circ. Heart Fail. 7, 104–115 (2014).

    Article  CAS  PubMed  Google Scholar 

  200. Lam, C. S. et al. Pulmonary hypertension in heart failure with preserved ejection fraction: a community-based study. J. Am. Coll. Cardiol. 53, 1119–1126 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  201. Leung, C. C., Moondra, V., Catherwood, E. & Andrus, B. W. Prevalence and risk factors of pulmonary hypertension in patients with elevated pulmonary venous pressure and preserved ejection fraction. Am. J. Cardiol. 106, 284–286 (2010).

    Article  PubMed  Google Scholar 

  202. Chaouat, A., Naeije, R. & Weitzenblum, E. Pulmonary hypertension in COPD. Eur. Respir. J. 32, 1371–1385 (2008).

    Article  CAS  PubMed  Google Scholar 

  203. Vonk-Noordegraaf, A. et al. Right heart adaptation to pulmonary arterial hypertension: physiology and pathobiology. J. Am. Coll. Cardiol. 62, D22–D33 (2013).

    Article  PubMed  Google Scholar 

  204. Oswald-Mammosser, M. et al. Prognostic factors in COPD patients receiving long-term oxygen therapy. Importance of pulmonary artery pressure. Chest 107, 1193–1198 (1995).

    Article  CAS  PubMed  Google Scholar 

  205. van Empel, V. P., Lee, J., Williams, T. J. & Kaye, D. M. Iron deficiency in patients with idiopathic pulmonary arterial hypertension. Heart Lung Circ. 23, 287–292 (2014).

    Article  PubMed  Google Scholar 

  206. Rhodes, C. J. et al. Iron deficiency and raised hepcidin in idiopathic pulmonary arterial hypertension: clinical prevalence, outcomes, and mechanistic insights. J. Am. Coll. Cardiol. 58, 300–309 (2011).

    Article  CAS  PubMed  Google Scholar 

  207. Martens, P. et al. Iron deficiency in pulmonary vascular disease: pathophysiological and clinical implications. Eur. Heart J. 44, 1979–1991 (2023).

    Article  CAS  PubMed  Google Scholar 

  208. Saluja, P. et al. Influence of iron deficiency on clinical and haemodynamic parameters in pulmonary arterial hypertension cohorts. Heart Lung Circ. 31, 1594–1603 (2022).

    Article  PubMed  Google Scholar 

  209. Bart, N. K. et al. Elevation of iron storage in humans attenuates the pulmonary vascular response to hypoxia. J. Appl. Physiol. 121, 537–544 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Talbot, N. P. et al. Contrasting effects of ascorbate and iron on the pulmonary vascular response to hypoxia in humans. Physiol. Rep. 2, e12220 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  211. Smith, T. G. et al. The increase in pulmonary arterial pressure caused by hypoxia depends on iron status. J. Physiol. 586, 5999–6005 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Balanos, G. M., Dorrington, K. L. & Robbins, P. A. Desferrioxamine elevates pulmonary vascular resistance in humans: potential for involvement of HIF-1. J. Appl. Physiol. 92, 2501–2507 (2002).

    Article  CAS  PubMed  Google Scholar 

  213. Frise, M. C. et al. Clinical iron deficiency disturbs normal human responses to hypoxia. J. Clin. Invest. 126, 2139–2150 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  214. Howard, L. et al. Supplementation with iron in pulmonary arterial hypertension. Two randomized crossover trials. Ann. Am. Thorac. Soc. 18, 981–988 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  215. Cancelo-Hidalgo, M. J. et al. Tolerability of different oral iron supplements: a systematic review. Curr. Med. Res. Opin. 29, 291–303 (2013).

    Article  CAS  PubMed  Google Scholar 

  216. Low, M. S., Speedy, J., Styles, C. E., De-Regil, L. M. & Pasricha, S. R. Daily iron supplementation for improving anaemia, iron status and health in menstruating women. Cochrane Database Syst. Rev. 4, CD009747 (2016).

    PubMed  Google Scholar 

  217. Schumann, K., Solomons, N. W., Orozco, M., Romero-Abal, M. E. & Weiss, G. Differences in circulating non-transferrin-bound iron after oral administration of ferrous sulfate, sodium iron EDTA, or iron polymaltose in women with marginal iron stores. Food Nutr. Bull. 34, 185–193 (2013).

    Article  PubMed  Google Scholar 

  218. Gomez-Ramirez, S., Brilli, E., Tarantino, G. & Munoz, M. Sucrosomial® iron: a new generation iron for improving oral supplementation. Pharmaceuticals 11, 97 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Asperti, M. et al. Sucrosomial((R)) iron supplementation in mice: effects on blood parameters, hepcidin, and inflammation. Nutrients 10, 1349 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  220. Asperti, M. et al. Iron distribution in different tissues of homozygous Mask (msk/msk) mice and the effects of oral iron treatments. Am. J. Hematol. 96, 1253–1263 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Barni, S. 5th International multidisciplinary course on iron anemia, 31st March–1 April 2017, Florence, Italy. Expert Rev. Hematol. 10, 1–40 (2017).

    Article  CAS  PubMed  Google Scholar 

  222. Ucan, A., Kaya, Z. I., Yilmaz, E. O., Vasi, I. & Ozgeyik, M. O. Comparing therapeutic effects of alternate day versus daily oral iron in women with iron deficiency anemia: a retrospective cohort study. Medicine 102, e34421 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Schaap, C. C. et al. Diurnal rhythm rather than dietary iron mediates daily hepcidin variations. Clin. Chem. 59, 527–535 (2013).

    Article  CAS  PubMed  Google Scholar 

  224. Troutt, J. S. et al. Circulating human hepcidin-25 concentrations display a diurnal rhythm, increase with prolonged fasting, and are reduced by growth hormone administration. Clin. Chem. 58, 1225–1232 (2012).

    Article  CAS  PubMed  Google Scholar 

  225. Kreutz, J. M., Heynen, L. & Vreugdenhil, A. C. E. Nutrient deficiencies in children with celiac disease during long term follow-up. Clin. Nutr. 42, 1175–1180 (2023).

    Article  CAS  PubMed  Google Scholar 

  226. Stefanelli, G., Viscido, A., Longo, S., Magistroni, M. & Latella, G. Persistent iron deficiency anemia in patients with celiac disease despite a gluten-free diet. Nutrients 12, 2176 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Crosby, L., Palarski, V. A., Cottington, E. & Cmolik, B. Iron supplementation for acute blood loss anemia after coronary artery bypass surgery: a randomized, placebo-controlled study. Heart Lung 23, 493–499 (1994).

    CAS  PubMed  Google Scholar 

  228. Beck-da-Silva, L. et al. IRON-HF study: a randomized trial to assess the effects of iron in heart failure patients with anemia. Int. J. Cardiol. 168, 3439–3442 (2013).

    Article  PubMed  Google Scholar 

  229. Clevenger, B. et al. Systematic review and meta-analysis of iron therapy in anaemic adults without chronic kidney disease: updated and abridged Cochrane review. Eur. J. Heart Fail. 18, 774–785 (2016).

    Article  CAS  PubMed  Google Scholar 

  230. Lewis, G. D. et al. Effect of oral iron repletion on exercise capacity in patients with heart failure with reduced ejection fraction and iron deficiency: the IRONOUT HF randomized clinical trial. JAMA 317, 1958–1966 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Ambrosy, A. P. et al. Identifying responders to oral iron supplementation in heart failure with a reduced ejection fraction: a post-hoc analysis of the IRONOUT-HF trial. J. Cardiovasc. Med. 20, 223–225 (2019).

    Article  CAS  Google Scholar 

  232. Zdravkovic, S. C. et al. Effects of 6-months of oral ferrous and ferric supplement therapy in patients who were hospitalized for decompensated chronic heart failure. J. Int. Med. Res. 47, 3179–3189 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Karavidas, A. et al. Oral sucrosomial iron improves exercise capacity and quality of life in heart failure with reduced ejection fraction and iron deficiency: a non-randomized, open-label, proof-of-concept study. Eur. J. Heart Fail. 23, 593–597 (2021).

    Article  CAS  PubMed  Google Scholar 

  234. Suryani, L. D. et al. Oral ferrous sulphate improves functional capacity on heart failure patients with iron deficiency anemia. Glob. Heart 17, 81 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  235. Garrido-Martin, P. et al. The effect of intravenous and oral iron administration on perioperative anaemia and transfusion requirements in patients undergoing elective cardiac surgery: a randomized clinical trial. Interact. Cardiovasc. Thorac. Surg. 15, 1013–1018 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  236. Dong, Z. et al. Comparison of oral and parenteral iron administration on iron homeostasis, oxidative and immune status in anemic neonatal pigs. Biol. Trace Elem. Res. 195, 117–124 (2020).

    Article  CAS  PubMed  Google Scholar 

  237. Funk, F., Fluhmann, B. & Barton, A. E. Criticality of surface characteristics of intravenous iron-carbohydrate nanoparticle complexes: implications for pharmacokinetics and pharmacodynamics. Int. J. Mol. Sci. 23, 2140 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. MacDonald, B. J., Virani, S. A., Zieroth, S. & Turgeon, R. Heart failure management in 2023: a pharmacotherapy- and lifestyle-focused comparison of current international guidelines. CJC Open 5, 629–640 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  239. Pezel, T. et al. Diagnosis and treatment of iron deficiency in heart failure: OFICSel study by the French Heart Failure Working Group. ESC Heart Fail. 8, 1509–1521 (2021).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  240. Becher, P. M. et al. Phenotyping heart failure patients for iron deficiency and use of intravenous iron therapy: data from the Swedish Heart Failure Registry. Eur. J. Heart Fail. 23, 1844–1854 (2021).

    Article  CAS  PubMed  Google Scholar 

  241. Henry, J. A. et al. 139 Cost effectiveness of IV iron in patients admitted with heart failure. Heart 109, A161–A162 (2023).

    Google Scholar 

  242. Gonzalez-Costello, J. et al. Use of intravenous iron in patients with iron deficiency and chronic heart failure: real-world evidence. Eur. J. Intern. Med. 80, 91–98 (2020).

    Article  CAS  PubMed  Google Scholar 

  243. Toblli, J. E., Lombrana, A., Duarte, P. & Di Gennaro, F. Intravenous iron reduces NT-pro-brain natriuretic peptide in anemic patients with chronic heart failure and renal insufficiency. J. Am. Coll. Cardiol. 50, 1657–1665 (2007).

    Article  CAS  PubMed  Google Scholar 

  244. Okonko, D. O. et al. Effect of intravenous iron sucrose on exercise tolerance in anemic and nonanemic patients with symptomatic chronic heart failure and iron deficiency FERRIC-HF: a randomized, controlled, observer-blinded trial. J. Am. Coll. Cardiol. 51, 103–112 (2008).

    Article  CAS  PubMed  Google Scholar 

  245. Anker, S. D. et al. Ferric carboxymaltose in patients with heart failure and iron deficiency. N. Engl. J. Med. 361, 2436–2448 (2009).

    Article  CAS  PubMed  Google Scholar 

  246. Ponikowski, P. et al. The impact of intravenous ferric carboxymaltose on renal function: an analysis of the FAIR-HF study. Eur. J. Heart Fail. 17, 329–339 (2015).

    Article  CAS  PubMed  Google Scholar 

  247. Ponikowski, P. et al. Beneficial effects of long-term intravenous iron therapy with ferric carboxymaltose in patients with symptomatic heart failure and iron deficiency. Eur. Heart J. 36, 657–668 (2015).

    Article  CAS  PubMed  Google Scholar 

  248. van Veldhuisen, D. J. et al. Effect of ferric carboxymaltose on exercise capacity in patients with chronic heart failure and iron deficiency. Circulation 136, 1374–1383 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  249. Anker, S. D. et al. Effects of ferric carboxymaltose on hospitalisations and mortality rates in iron-deficient heart failure patients: an individual patient data meta-analysis. Eur. J. Heart Fail. 20, 125–133 (2018).

    Article  CAS  PubMed  Google Scholar 

  250. Dhoot, S. et al. Effect of ferric-carboxy maltose on oxygen kinetics and functional status in heart failure patients with iron deficiency. Future Sci. OA 6, FSO467 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Ponikowski, P. et al. Ferric carboxymaltose for iron deficiency at discharge after acute heart failure: a multicentre, double-blind, randomised, controlled trial. Lancet 396, 1895–1904 (2020).

    Article  CAS  PubMed  Google Scholar 

  252. Kalra, P. R. et al. Intravenous ferric derisomaltose in patients with heart failure and iron deficiency in the UK (IRONMAN): an investigator-initiated, prospective, randomised, open-label, blinded-endpoint trial. Lancet 400, 2199–2209 (2022).

    Article  CAS  PubMed  Google Scholar 

  253. Mollace, A. et al. Effect of ferric carboxymaltose supplementation in patients with heart failure with preserved ejection fraction: role of attenuated oxidative stress and improved endothelial function. Nutrients 14, 5057 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Graham, F. J. et al. Intravenous iron in patients with heart failure and iron deficiency: an updated meta-analysis. Eur. J. Heart Fail. 25, 528–537 (2023).

    Article  CAS  PubMed  Google Scholar 

  255. Mentz, R. J. et al. Ferric carboxymaltose in heart failure with iron deficiency. N. Engl. J. Med. 389, 975–986 (2023).

    Article  CAS  PubMed  Google Scholar 

  256. Kurz, K. et al. Anaemia, iron status, and gender predict the outcome in patients with chronic heart failure. Esc. Heart Fail. 7, 1880–1890 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  257. Campodonico, J. et al. Prognostic role of transferrin saturation in heart failure patients. Eur. J. Prev. Cardiol. 28, 1639–1646 (2021).

    Article  PubMed  Google Scholar 

  258. Brautaset Englund, K. V. et al. Iron homeostasis in heart transplant recipients randomized to ferric derisomaltose or placebo. Clin. Transpl. 36, e14695 (2022).

    Article  CAS  Google Scholar 

  259. Brautaset Englund, K. V. et al. Intravenous iron supplement for iron deficiency in cardiac transplant recipients (IronIC): a randomized clinical trial. J. Heart Lung Transpl. 40, 359–367 (2021).

    Article  Google Scholar 

  260. Martens, P. et al. The effect of intravenous ferric carboxymaltose on cardiac reverse remodelling following cardiac resynchronization therapy-the IRON-CRT trial. Eur. Heart J. 42, 4905–4914 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Mirdamadi, A., Arefeh, A., Garakyaraghi, M. & Pourmoghadas, A. Beneficial effects of the treatment of iron deficiency on clinical condition, left ventricular function, and quality of life in patients with chronic heart failure. Acta Biomed. 89, 214–218 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  262. Toblli, J. E., Di Gennaro, F. & Rivas, C. Changes in echocardiographic parameters in iron deficiency patients with heart failure and chronic kidney disease treated with intravenous iron. Heart Lung Circ. 24, 686–695 (2015).

    Article  PubMed  Google Scholar 

  263. Nunez, J. et al. Noninvasive imaging estimation of myocardial iron repletion following administration of intravenous iron: the myocardial-IRON trial. J. Am. Heart Assoc. 9, e014254 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Charles-Edwards, G. et al. Effect of iron isomaltoside on skeletal muscle energetics in patients with chronic heart failure and iron deficiency. Circulation 139, 2386–2398 (2019).

    Article  CAS  PubMed  Google Scholar 

  265. Caravita, S. et al. Intravenous iron therapy improves the hypercapnic ventilatory response and sleep disordered breathing in chronic heart failure. Eur. J. Heart Fail. 24, 1940–1949 (2022).

    Article  CAS  PubMed  Google Scholar 

  266. Okonko, D. O. et al. Effect of ferric carboxymaltose on calculated plasma volume status and clinical congestion: a FAIR-HF substudy. ESC Heart Fail. 6, 621–628 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  267. Abdula, G. et al. Ferric carboxymaltose has a higher distribution into myocardium than gadobutrol — a quantitative T1 mapping study in healthy volunteers. Preprint at medRxiv https://doi.org/10.1101/2023.03.01.23285660 (2023).

  268. Span, K. et al. The use of magnetic resonance imaging for non-invasive assessment of venofer® biodistribution in rats. Pharm. Res. 35, 88 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  269. Rostoker, G. et al. Differential pharmacokinetics of liver tropism for iron sucrose, ferric carboxymaltose, and iron isomaltoside: a clue to their safety for dialysis patients. Pharmaceutics 14, 1408 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. De Souza, L. V. et al. Comparative analysis of oral and intravenous iron therapy in rat models of inflammatory anemia and iron deficiency. Haematologica 108, 135–149 (2023).

    Article  PubMed  Google Scholar 

  271. Bailie, G. R. et al. Data from the Dialysis Outcomes and Practice Patterns Study validate an association between high intravenous iron doses and mortality. Kidney Int. 87, 162–168 (2015).

    Article  CAS  PubMed  Google Scholar 

  272. Kalantar-Zadeh, K., Regidor, D. L., McAllister, C. J., Michael, B. & Warnock, D. G. Time-dependent associations between iron and mortality in hemodialysis patients. J. Am. Soc. Nephrol. 16, 3070–3080 (2005).

    Article  CAS  PubMed  Google Scholar 

  273. Oudit, G. Y. et al. L-type Ca2+ channels provide a major pathway for iron entry into cardiomyocytes in iron-overload cardiomyopathy. Nat. Med. 9, 1187–1194 (2003).

    Article  CAS  PubMed  Google Scholar 

  274. Udani, K. et al. Cardiovascular manifestations in hospitalized patients with hemochromatosis in the United States. Int. J. Cardiol. 342, 117–124 (2021).

    Article  PubMed  Google Scholar 

  275. Schouten, B. J., Hunt, P. J., Livesey, J. H., Frampton, C. M. & Soule, S. G. FGF23 elevation and hypophosphatemia after intravenous iron polymaltose: a prospective study. J. Clin. Endocrinol. Metab. 94, 2332–2337 (2009).

    Article  CAS  PubMed  Google Scholar 

  276. Yang, F., Wang, W., Zhang, Y., Nong, J. & Zhang, L. Effects of ferroptosis in myocardial ischemia/reperfusion model of rat and its association with Sestrin 1. Adv. Clin. Exp. Med. 32, 219–231 (2023).

    Article  PubMed  Google Scholar 

  277. Miyamoto, H. D. et al. Iron overload via heme degradation in the endoplasmic reticulum triggers ferroptosis in myocardial ischemia-reperfusion injury. JACC Basic Transl. Sci. 7, 800–819 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  278. Cosentino, N. et al. Iron deficiency in patients with ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention. Int. J. Cardiol. 300, 14–19 (2020).

    Article  PubMed  Google Scholar 

  279. Roghi, A. et al. Role of non-transferrin-bound iron in the pathogenesis of cardiotoxicity in patients with ST-elevation myocardial infarction assessed by cardiac magnetic resonance imaging. Int. J. Cardiol. 199, 326–332 (2015).

    Article  PubMed  Google Scholar 

  280. Paraskevaidis, I. A. et al. Deferoxamine infusion during coronary artery bypass grafting ameliorates lipid peroxidation and protects the myocardium against reperfusion injury: immediate and long-term significance. Eur. Heart J. 26, 263–270 (2005).

    Article  CAS  PubMed  Google Scholar 

  281. Haddad, S. et al. Iron-regulatory proteins secure iron availability in cardiomyocytes to prevent heart failure. Eur. Heart J. 38, 362–372 (2017).

    CAS  PubMed  Google Scholar 

  282. Florian, A. et al. Positive effect of intravenous iron-oxide administration on left ventricular remodelling in patients with acute ST-elevation myocardial infarction — a cardiovascular magnetic resonance (CMR) study. Int. J. Cardiol. 173, 184–189 (2014).

    Article  PubMed  Google Scholar 

  283. Wischmann, P. et al. Safety and efficacy of iron supplementation after myocardial infarction in mice with moderate blood loss anaemia. Esc. Heart Fail. 8, 5445–5455 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  284. Theidel, U. et al. Budget impact of intravenous iron therapy with ferric carboxymaltose in patients with chronic heart failure and iron deficiency in Germany. ESC Heart Fail. 4, 274–281 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  285. Shokri, H. & Ali, I. Intravenous iron supplementation treats anemia and reduces blood transfusion requirements in patients undergoing coronary artery bypass grafting — a prospective randomized trial. Ann. Card. Anaesth. 25, 141–147 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  286. Kim, H. H., Park, E. H., Lee, S. H., Yoo, K. J. & Youn, Y. N. Effect of preoperative administration of intravenous ferric carboxymaltose in patients with iron deficiency anemia after off-pump coronary artery bypass grafting: a randomized controlled trial. J. Clin. Med. 12, 1737 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  287. Johansson, P. I., Rasmussen, A. S. & Thomsen, L. L. Intravenous iron isomaltoside 1000 (Monofer®) reduces postoperative anaemia in preoperatively non-anaemic patients undergoing elective or subacute coronary artery bypass graft, valve replacement or a combination thereof: a randomized double-blind placebo-controlled clinical trial (the PROTECT trial). Vox Sang. 109, 257–266 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  288. Wang, T., Cheng, J. & Wang, Y. Genetic support of a causal relationship between iron status and atrial fibrillation: a Mendelian randomization study. Genes Nutr. 17, 8 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  289. Zacharski, L. R. et al. Remission of paroxysmal atrial fibrillation with iron reduction in haemophilia A. Haemophilia 16, 726–730 (2010).

    Article  CAS  PubMed  Google Scholar 

  290. Jackson, I. et al. Retrospective analyses of factors influencing arrhythmias and the impact of arrhythmias on inpatient outcomes among hospitalized patients with hemochromatosis. Int. J. Cardiol. 352, 56–60 (2022).

    Article  PubMed  Google Scholar 

  291. Abou Yassine, A. et al. The evolution of iron-related comorbidities and hospitalization in patients with hemochromatosis: an analysis of the nationwide inpatient sample. Blood Sci. 5, 131–135 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  292. Dai, C. et al. Inhibition of ferroptosis reduces susceptibility to frequent excessive alcohol consumption-induced atrial fibrillation. Toxicology 465, 153055 (2022).

    Article  CAS  PubMed  Google Scholar 

  293. Rose, R. A. et al. Iron overload decreases CaV1.3-dependent L-type Ca2+ currents leading to bradycardia, altered electrical conduction, and atrial fibrillation. Circ. Arrhythm. Electrophysiol. 4, 733–742 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  294. Kumfu, S., Chattipakorn, S., Chinda, K., Fucharoen, S. & Chattipakorn, N. T-type calcium channel blockade improves survival and cardiovascular function in thalassemic mice. Eur. J. Haematol. 88, 535–548 (2012).

    Article  CAS  PubMed  Google Scholar 

  295. Tu, S. J. et al. Rationale and design of the IRON-AF study: a double-blind, randomised, placebo-controlled study to assess the effect of intravenous ferric carboxymaltose in patients with atrial fibrillation and iron deficiency. BMJ Open. 11, e047642 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  296. Galetti, V. et al. Threshold ferritin and hepcidin concentrations indicating early iron deficiency in young women based on upregulation of iron absorption. EClinicalMedicine 39, 101052 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  297. Jankowska, E. A. et al. Bone marrow iron depletion is common in patients with coronary artery disease. Int. J. Cardiol. 182, 517–522 (2015).

    Article  PubMed  Google Scholar 

  298. Everett, B. M. et al. Anti-inflammatory therapy with canakinumab for the prevention of hospitalization for heart failure. Circulation 139, 1289–1299 (2019).

    Article  CAS  PubMed  Google Scholar 

  299. Ridker, P. M. et al. Anti-inflammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med. 377, 1119–1131 (2017).

    Article  CAS  PubMed  Google Scholar 

  300. Breenfeldt Andersen, A. et al. Effects of altitude and recombinant human erythropoietin on iron metabolism: a randomized controlled trial. Am. J. Physiol. Regul. Integr. Comp. Physiol. 321, R152–R161 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  301. Robach, P. et al. Induction of erythroferrone in healthy humans by micro-dose recombinant erythropoietin or high-altitude exposure. Haematologica 106, 384–390 (2021).

    Article  CAS  PubMed  Google Scholar 

  302. Palazzuoli, A. et al. Erythropoietin improves anemia exercise tolerance and renal function and reduces B-type natriuretic peptide and hospitalization in patients with heart failure and anemia. Am. Heart J. 152, 1096.e9-15 (2006).

    Article  PubMed  Google Scholar 

  303. Silverberg, D. S. et al. The effect of correction of mild anemia in severe, resistant congestive heart failure using subcutaneous erythropoietin and intravenous iron: a randomized controlled study. J. Am. Coll. Cardiol. 37, 1775–1780 (2001).

    Article  CAS  PubMed  Google Scholar 

  304. Singh, A. K. et al. Correction of anemia with epoetin alfa in chronic kidney disease. N. Engl. J. Med. 355, 2085–2098 (2006).

    Article  CAS  PubMed  Google Scholar 

  305. Akizawa, T. et al. Iron regulation by molidustat, a daily oral hypoxia-inducible factor prolyl hydroxylase inhibitor, in patients with chronic kidney disease. Nephron 143, 243–254 (2019).

    Article  CAS  PubMed  Google Scholar 

  306. Renders, L. et al. First-in-human phase I studies of PRS-080#22, a hepcidin antagonist, in healthy volunteers and patients with chronic kidney disease undergoing hemodialysis. PLoS One 14, e0212023 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  307. Hohlbaum, A. M. et al. Sustained plasma hepcidin suppression and iron elevation by anticalin-derived hepcidin antagonist in cynomolgus monkey. Br. J. Pharmacol. 175, 1054–1065 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

S.L.-L. is funded by MR/V009567/1/ from the Medical Research Council, UK, and by HSR00031 from the British Heart Foundation, UK.

Author information

Authors and Affiliations

Authors

Contributions

S.L.-L. researched data for the article and wrote the manuscript. Both authors reviewed/edited the manuscript before submission.

Corresponding author

Correspondence to Samira Lakhal-Littleton.

Ethics declarations

Competing interests

S.L.-L. reports receipt of previous research funding from Vifor Pharma, personal honoraria for a lecture from Pharmacosmos, and consultancy fees from Disc Medicine and ScholarRock. J.G.F.C. reports personal honoraria for lectures and advisory boards from Amgen, AstraZeneca, Bayer, Novartis, Pharmacosmos, Servier and Vifor Pharma.

Peer review

Peer review information

Nature Reviews Cardiology thanks Gavin Oudit, Gianluigi Savarese and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lakhal-Littleton, S., Cleland, J.G.F. Iron deficiency and supplementation in heart failure. Nat Rev Cardiol (2024). https://doi.org/10.1038/s41569-024-00988-1

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41569-024-00988-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing