Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Specialized pro-resolving mediators in vascular inflammation and atherosclerotic cardiovascular disease

Abstract

Timely resolution of the acute inflammatory response (or inflammation resolution) is an active, highly coordinated process that is essential to optimal health. Inflammation resolution is regulated by specific endogenous signalling molecules that function as ‘stop signals’ to terminate the inflammatory response when it is no longer needed; to actively promote healing, regeneration and tissue repair; and to limit pain. Specialized pro-resolving mediators are a superfamily of signalling molecules that initiate anti-inflammatory and pro-resolving actions. Without an effective and timely resolution response, inflammation can become chronic, a pathological state that is associated with many widely occurring human diseases, including atherosclerotic cardiovascular disease. Uncovering the mechanisms of inflammation resolution failure in cardiovascular diseases and identifying useful biomarkers for non-resolving inflammation are unmet needs. In this Review, we discuss the accumulating evidence that supports the role of non-resolving inflammation in atherosclerosis and the use of specialized pro-resolving mediators as therapeutic tools for the treatment of atherosclerotic cardiovascular disease. We highlight open questions about therapeutic strategies and mechanisms of disease to provide a framework for future studies on the prevention and treatment of atherosclerosis.

Key points

  • The resolution of inflammation is an active biosynthetic process that is regulated, in part, by specialized pro-resolving mediators (SPMs).

  • SPMs are not immunosuppressive in animal models and act to stimulate phagocyte function, promote tissue repair pathways and limit pain.

  • SPMs are protective in animal models of cardiovascular disease including atherosclerosis, myocardial infarction and heart failure.

  • Clinical trials are needed to rigorously test whether increasing SPMs in humans can prevent atherosclerosis progression, reduce cardiovascular risk and promote cardioprotection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Specialized pro-resolving mediator synthesis, receptors and cell targets.
Fig. 2: Role of the activated vascular endothelium in the production of resolvins via transcellular biosynthesis with neutrophils.
Fig. 3: Non-resolving inflammation underpins atherosclerosis.
Fig. 4: Specialized pro-resolving mediators protect against atherosclerosis in experimental models.

Similar content being viewed by others

References

  1. Smith, R. “Let food be thy medicine …”. BMJ 328, 0-g (2004).

    Google Scholar 

  2. Alexis, A. C. Honest nutrition. Can food be medicine? Pros and cons. MedicalNewsToday www.medicalnewstoday.com/articles/can-food-be-medicine-pros-and-cons (2022).

  3. Mente et al. Diet, cardiovascular disease, and mortality in 80 countries. Eur. Heart J. 44, 2560–2579 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sinclair, H. M. Deficiency of essential fatty acids and atherosclerosis, etcetera. Lancet 270, 381–383 (1956).

    CAS  PubMed  Google Scholar 

  5. Harris, W. S., Calder, P. C., Mozaffarian, D. & Serhan, C. N. Bang and Dyerberg’s omega-3 discovery turns fifty. Nat. Food 2, 303–305 (2021).

    Article  PubMed  Google Scholar 

  6. Bang, H. O., Dyerberg, J. & Nielsen, A. B. Plasma lipid and lipoprotein pattern in Greenlandic west-coast Eskimos. Lancet 1, 1143–1145 (1971).

    Article  CAS  PubMed  Google Scholar 

  7. Bracco, U. & Deckelbaum, R. J. Polyunsaturated Fatty Acids in Human Nutrition (Raven Press, 1992).

  8. Serhan, C. N. Pro-resolving lipid mediators are leads for resolution physiology. Nature 510, 92–101 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Metchnikoff, E. Immunity in Infective Diseases (Cambridge University Press, Reprinted 1905); translated by Binnie, F. G.

  10. Metchnikoff, E. Lectures on the Comparative Pathology of Inflammation Delivered at the Pasteur Institute in 1891 Lecture XII (Kegan Paul, Trench, Trübner, 1893); translated from the French by Starling F. A. & Starling E. H. (reprinted by HardPress, 2019).

  11. Libby, P., Tabas, I., Fredman, G. & Fisher, E. A. Inflammation and its resolution as determinants of acute coronary syndromes. Circ. Res. 114, 1867–1879 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ridker, P. M. et al. Inflammation and cholesterol as predictors of cardiovascular events among patients receiving statin therapy: a collaborative analysis of three randomised trials. Lancet 401, 1293–1301 (2023).

    Article  CAS  PubMed  Google Scholar 

  13. Ridker, P. M. et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med. 377, 1119–1131 (2017).

    Article  CAS  PubMed  Google Scholar 

  14. Bonaventura, A. & Abbate, A. Colchicine for cardiovascular prevention: the dawn of a new era has finally come. Eur. Heart J. 44, 3303–3304 (2023).

    Article  PubMed  Google Scholar 

  15. Serhan, C. N. et al. Resolution of inflammation: state of the art, definitions and terms. FASEB J. 21, 325–332 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Serhan, C. N. & Chiang, N. Resolvins and cysteinyl-containing pro-resolving mediators activate resolution of infectious inflammation and tissue regeneration. Prostaglandins Other Lipid Mediat. 166, 106718 (2023).

    Article  CAS  PubMed  Google Scholar 

  17. Serhan, C. N., Libreros, S. & Nshimiyimana, R. E-series resolvin metabolome, biosynthesis and critical role of stereochemistry of specialized pro-resolving mediators (SPMs) in inflammation-resolution: preparing SPMs for long COVID-19, human clinical trials, and targeted precision nutrition. Semin. Immunol. 59, 101597 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Serhan, C. N. & Levy, B. D. Resolvins in inflammation: emergence of the pro-resolving superfamily of mediators. J. Clin. Invest. 128, 2657–2669 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Serhan, C. N. et al. Novel functional sets of lipid-derived mediators with antiinflammatory actions generated from omega-3 fatty acids via cyclooxygenase 2-nonsteroidal antiinflammatory drugs and transcellular processing. J. Exp. Med. 192, 1197–1204 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Serhan, C. N. et al. Resolvins: a family of bioactive products of omega-3 fatty acid transformation circuits initiated by aspirin treatment that counter proinflammation signals. J. Exp. Med. 196, 1025–1037 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Serhan, C. N. & Petasis, N. A. Resolvins and protectins in inflammation resolution. Chem. Rev. 111, 5922–5943 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Serhan, C. N., Dalli, J., Colas, R. A., Winkler, J. W. & Chiang, N. Protectins and maresins: new pro-resolving families of mediators in acute inflammation and resolution bioactive metabolome. Biochim. Biophys. Acta 1851, 397–413 (2015).

    Article  CAS  PubMed  Google Scholar 

  23. Serhan, C. N. et al. Maresins: novel macrophage mediators with potent antiinflammatory and proresolving actions. J. Exp. Med. 206, 15–23 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Werz, O. et al. Human macrophages differentially produce specific resolvin or leukotriene signals that depend on bacterial pathogenicity. Nat. Commun. 9, 59 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Pouliot, M., Clish, C. B., Petasis, N. A., Van Dyke, T. E. & Serhan, C. N. Lipoxin A4 analogues inhibit leukocyte recruitment to Porphyromonas gingivalis: a role for cyclooxygenase-2 and lipoxins in periodontal disease. Biochemistry 39, 4761–4768 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Tabas, I. & Glass, C. K. Anti-inflammatory therapy in chronic disease: challenges and opportunities. Science 339, 166–172 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cotran, R. S. The endothelium and inflammation: new insights. Monogr. Pathol. (23), 18-37 (1982).

  28. Arita, M. et al. Resolvin E1 selectively interacts with leukotriene B4 receptor BLT1 and ChemR23 to regulate inflammation. J. Immunol. 178, 3912–3917 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Arita, M. et al. Stereochemical assignment, antiinflammatory properties, and receptor for the omega-3 lipid mediator resolvin E1. J. Exp. Med. 201, 713–722 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mancini, J. A., O’Neill, G. P., Bayly, C. & Vickers, P. J. Mutation of serine-516 in human prostaglandin G/H synthase-2 to methionine or aspirin acetylation of this residue stimulates 15-R-HETE synthesis. FEBS Lett. 342, 33–37 (1994).

    Article  CAS  PubMed  Google Scholar 

  31. Oh, S. F., Pillai, P. S., Recchiuti, A., Yang, R. & Serhan, C. N. Pro-resolving actions and stereoselective biosynthesis of 18S E-series resolvins in human leukocytes and murine inflammation. J. Clin. Invest. 121, 569–581 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Arita, M. et al. Metabolic inactivation of resolvin E1 and stabilization of its anti-inflammatory actions. J. Biol. Chem. 281, 22847–22854 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Divanovic, S. et al. Contributions of the three CYP1 monooxygenases to pro-inflammatory and inflammation-resolution lipid mediator pathways. J. Immunol. 191, 3347–3357 (2013).

    Article  CAS  PubMed  Google Scholar 

  34. Lee, J. Y. et al. Neuronal SphK1 acetylates COX2 and contributes to pathogenesis in a model of Alzheimer’s Disease. Nat. Commun. 9, 1479 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Lee, J. Y. et al. N-AS-triggered SPMs are direct regulators of microglia in a model of Alzheimer’s disease. Nat. Commun. 11, 2358 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kim, S. F., Huri, D. A. & Snyder, S. H. Inducible nitric oxide synthase binds, S-nitrosylates, and activates cyclooxygenase-2. Science 310, 1966–1970 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Dalli, J., Chiang, N. & Serhan, C. N. Elucidation of novel 13-series resolvins that increase with atorvastatin and clear infections. Nat. Med. 21, 1071–1075 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bannenberg, G. L. et al. Molecular circuits of resolution: formation and actions of resolvins and protectins. J. Immunol. 174, 4345–4355 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Schwab, J. M., Chiang, N., Arita, M. & Serhan, C. N. Resolvin E1 and protectin D1 activate inflammation-resolution programmes. Nature 447, 869–874 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Malawista, S. E., de Boisfleury Chevance, A., van Damme, J. & Serhan, C. N. Tonic inhibition of chemotaxis in human plasma. Proc. Natl Acad. Sci. Usa. 105, 17949–17954 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Levy, B. D., Clish, C. B., Schmidt, B., Gronert, K. & Serhan, C. N. Lipid mediator class switching during acute inflammation: signals in resolution. Nat. Immunol. 2, 612–619 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Fukunaga, K., Kohli, P., Bonnans, C., Fredenburgh, L. E. & Levy, B. D. Cyclooxygenase 2 plays a pivotal role in the resolution of acute lung injury. J. Immunol. 174, 5033–5039 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Ji, R. R. Specialized pro-resolving mediators as resolution pharmacology for the control of pain and itch. Annu. Rev. Pharmacol. Toxicol. 63, 273–293 (2023).

    Article  CAS  PubMed  Google Scholar 

  44. Serhan, C. N. et al. Novel proresolving aspirin-triggered DHA pathway. Chem. Biol. 18, 976–987 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bazan, N. G. Neuroprotectin D1 (NPD1): a DHA-derived mediator that protects brain and retina against cell injury-induced oxidative stress. Brain Pathol. 15, 159–166 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Rodriguez, A. R. & Spur, B. W. First total syntheses of the pro-resolving lipid mediators 7(S),13(R),20(S)-resolvin T1 and 7(S),13(R)-resolvin T4. Tetrahedron Lett. 61, 151473 (2020).

    Article  CAS  PubMed  Google Scholar 

  47. Rodriguez, A. R. & Spur, B. W. First total synthesis of the pro-resolving lipid mediator 7(S),12(R),13(S)-resolvin T2 and its 13(R)-epimer. Tetrahedron Lett. 61, 151857 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chiang, N. et al. Resolvin T-series reduce neutrophil extracellular traps. Blood 139, 1222–1233 (2022).

    Article  CAS  PubMed  Google Scholar 

  49. Middleton, E. A. et al. Neutrophil extracellular traps contribute to immunothrombosis in COVID-19 acute respiratory distress syndrome. Blood 136, 1169–1179 (2020).

    Article  CAS  PubMed  Google Scholar 

  50. Hong, S., Gronert, K., Devchand, P., Moussignac, R.-L. & Serhan, C. N. Novel docosatrienes and 17S-resolvins generated from docosahexaenoic acid in murine brain, human blood and glial cells: autacoids in anti-inflammation. J. Biol. Chem. 278, 14677–14687 (2003).

    Article  CAS  PubMed  Google Scholar 

  51. Dalli, J., Colas, R. A. & Serhan, C. N. Novel n-3 immunoresolvents: structures and actions. Sci. Rep. 3, 1940 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Endo, J. et al. 18-HEPE, an n-3 fatty acid metabolite released by macrophages, prevents pressure overload-induced maladaptive cardiac remodeling. J. Exp. Med. 211, 1673–1687 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kasuga, K. et al. Rapid appearance of resolvin precursors in inflammatory exudates: novel mechanisms in resolution. J. Immunol. 181, 8677–8687 (2008).

    Article  CAS  PubMed  Google Scholar 

  54. Schloss, M. J., Swirski, F. K. & Nahrendorf, M. Modifiable cardiovascular risk, hematopoiesis, and innate immunity. Circ. Res. 126, 1242–1259 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Croasdell, A. et al. Resolvins attenuate inflammation and promote resolution in cigarette smoke-exposed human macrophages. Am. J. Physiol. Lung Cell Mol. Physiol. 309, L888–L901 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hsiao, H. M. et al. A novel anti-inflammatory and pro-resolving role for resolvin D1 in acute cigarette smoke-induced lung inflammation. PLoS ONE 8, e58258 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Thatcher, T. H., Woeller, C. F., McCarthy, C. E. & Sime, P. J. Quenching the fires: pro-resolving mediators, air pollution, and smoking. Pharmacol. Ther. 197, 212–224 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Awji, E. G. et al. Wood smoke enhances cigarette smoke-induced inflammation by inducing the aryl hydrocarbon receptor repressor in airway epithelial cells. Am. J. Respir. Cell Mol. Biol. 52, 377–386 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Dominguez, E. C. et al. Aspirin-triggered resolvin D1 reduces chronic dust-induced lung pathology without altering susceptibility to dust-enhanced carcinogenesis. Cancers 14, 1900 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ramar, M., Yano, N. & Fedulov, A. V. Intra-airway treatment with synthetic lipoxin A4 and resolvin E2 mitigates neonatal asthma triggered by maternal exposure to environmental particles. Int. J. Mol. Sci. 24, 6145 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Bevan, G. H., Al-Kindi, S. G., Brook, R. D., Munzel, T. & Rajagopalan, S. Ambient air pollution and atherosclerosis: insights into dose, time, and mechanisms. Arterioscler. Thromb. Vasc. Biol. 41, 628–637 (2021).

    Article  CAS  PubMed  Google Scholar 

  62. McAlpine, C. S. et al. Sleep modulates haematopoiesis and protects against atherosclerosis. Nature 566, 383–387 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Cappuccio, F. P., Cooper, D., D’Elia, L., Strazzullo, P. & Miller, M. A. Sleep duration predicts cardiovascular outcomes: a systematic review and meta-analysis of prospective studies. Eur. Heart J. 32, 1484–1492 (2011).

    Article  PubMed  Google Scholar 

  64. Engert, L. C., Mullington, J. M. & Haack, M. Prolonged experimental sleep disturbance affects the inflammatory resolution pathways in healthy humans. Brain Behav. Immun. 113, 12–20 (2023).

    Article  PubMed  Google Scholar 

  65. Brezinski, D. A., Nesto, R. W. & Serhan, C. N. Angioplasty triggers intracoronary leukotrienes and lipoxin A4. Impact of aspirin therapy. Circulation 86, 56–63 (1992).

    Article  CAS  PubMed  Google Scholar 

  66. Shen, J. et al. Macrophage-mediated 15-lipoxygenase expression protects against atherosclerosis development. J. Clin. Invest. 98, 2201–2208 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Serhan, C. N. et al. Reduced inflammation and tissue damage in transgenic rabbits overexpressing 15-lipoxygenase and endogenous anti-inflammatory lipid mediators. J. Immunol. 171, 6856–6865 (2003).

    Article  CAS  PubMed  Google Scholar 

  68. Merched, A. J., Ko, K., Gotlinger, K. H., Serhan, C. N. & Chan, L. Atherosclerosis: evidence for impairment of resolution of vascular inflammation governed by specific lipid mediators. FASEB J. 22, 3595–3606 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Merched, A. J., Serhan, C. N. & Chan, L. Nutrigenetic disruption of inflammation-resolution homeostasis and atherogenesis. J. Nutrigenet Nutrigenomics 4, 12–24 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Dwyer, J. H. et al. Arachidonate 5-lipoxygenase promoter genotype, dietary arachidonic acid, and atherosclerosis. N. Engl. J. Med. 350, 29–37 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. Fredman, G. et al. An imbalance between specialized pro-resolving lipid mediators and pro-inflammatory leukotrienes promotes instability of atherosclerotic plaques. Nat. Commun. 7, 12859 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Thul, S., Labat, C., Temmar, M., Benetos, A. & Back, M. Low salivary resolvin D1 to leukotriene B4 ratio predicts carotid intima media thickness: a novel biomarker of non-resolving vascular inflammation. Eur. J. Prev. Cardiol. 24, 903–906 (2017).

    Article  PubMed  Google Scholar 

  73. Bazan, H. A. et al. Circulating inflammation-resolving lipid mediators RvD1 and DHA are decreased in patients with acutely symptomatic carotid disease. Prostaglandins Leukot. Essent. Fat. Acids 125, 43–47 (2017).

    Article  CAS  Google Scholar 

  74. Sun, C. et al. Acute coronary syndrome may be associated with decreased resolvin D1-to-leukotriene B4 ratio. Int. Heart J. 64, 22–27 (2023).

    Article  CAS  PubMed  Google Scholar 

  75. Viola, J. R. et al. Resolving lipid mediators maresin 1 and resolvin D2 prevent atheroprogression in mice. Circ. Res. 119, 1030–1038 (2016).

    Article  CAS  PubMed  Google Scholar 

  76. Decker, C., Sadhu, S. & Fredman, G. Pro-resolving ligands orchestrate phagocytosis. Front. Immunol. 12, 660865 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Thorp, E., Cui, D., Schrijvers, D. M., Kuriakose, G. & Tabas, I. Mertk receptor mutation reduces efferocytosis efficiency and promotes apoptotic cell accumulation and plaque necrosis in atherosclerotic lesions of apoe−/− mice. Arterioscler. Thromb. Vasc. Biol. 28, 1421–1428 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Schrijvers, D. M., De Meyer, G. R., Herman, A. G. & Martinet, W. Phagocytosis in atherosclerosis: molecular mechanisms and implications for plaque progression and stability. Cardiovasc. Res. 73, 470–480 (2007).

    Article  CAS  PubMed  Google Scholar 

  79. Ait-Oufella, H. et al. Defective mer receptor tyrosine kinase signaling in bone marrow cells promotes apoptotic cell accumulation and accelerates atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 28, 1429–1431 (2008).

    Article  CAS  PubMed  Google Scholar 

  80. Kojima, Y. et al. CD47-blocking antibodies restore phagocytosis and prevent atherosclerosis. Nature 536, 86–90 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Tabas, I. Macrophage death and defective inflammation resolution in atherosclerosis. Nat. Rev. Immunol. 10, 36–46 (2010).

    Article  CAS  PubMed  Google Scholar 

  82. Doran, A. C., Yurdagul, A. Jr. & Tabas, I. Efferocytosis in health and disease. Nat. Rev. Immunol. 20, 254–267 (2020).

    Article  CAS  PubMed  Google Scholar 

  83. Cai, B. et al. MerTK cleavage limits proresolving mediator biosynthesis and exacerbates tissue inflammation. Proc. Natl Acad. Sci. USA 113, 6526–6531 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Cai, B. et al. MerTK signaling in macrophages promotes the synthesis of inflammation resolution mediators by suppressing CaMKII activity. Sci. Signal. 11, eaar3721 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Cai, B. et al. MerTK receptor cleavage promotes plaque necrosis and defective resolution in atherosclerosis. J. Clin. Invest. 127, 564–568 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Yurdagul, A. Jr. et al. Macrophage metabolism of apoptotic cell-derived arginine promotes continual efferocytosis and resolution of injury. Cell Metab. 31, 518–533.e10 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ampomah, P. B. et al. Macrophages use apoptotic cell-derived methionine and DNMT3A during efferocytosis to promote tissue resolution. Nat. Metab. 4, 444–457 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Gerlach, B. D. et al. Resolvin D1 promotes the targeting and clearance of necroptotic cells. Cell Death Differ. 41, 1062–1075 (2019).

    Google Scholar 

  89. Jarr, K. U. et al. Effect of CD47 blockade on vascular inflammation. N. Engl. J. Med. 384, 382–383 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Tsuda, S. et al. Novel mechanism of regulation of the 5-lipoxygenase/leukotriene B4 pathway by high-density lipoprotein in macrophages. Sci. Rep. 7, 12989 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Rymut, N. et al. Resolvin D1 promotes efferocytosis in aging by limiting senescent cell-induced MerTK cleavage. FASEB J. 34, 597–609 (2019).

    Article  PubMed  Google Scholar 

  92. Baker, D. J. et al. Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature 479, 232–236 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Childs, B. G. et al. Senescent intimal foam cells are deleterious at all stages of atherosclerosis. Science 354, 472–477 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Rayner, K. J. Cell death in the vessel wall: the good, the bad, the ugly. Arterioscler. Thromb. Vasc. Biol. 37, e75–e81 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Hosseini, Z. et al. Resolvin D1 enhances necroptotic cell clearance through promoting macrophage fatty acid oxidation and oxidative phosphorylation. Arterioscler. Thromb. Vasc. Biol. 41, 1062–1075 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Sharma, M. et al. Regulatory T cells license macrophage pro-resolving functions during atherosclerosis regression. Circ. Res. 127, 335–353 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Salic, K. et al. Resolvin E1 attenuates atherosclerosis in absence of cholesterol-lowering effects and on top of atorvastatin. Atherosclerosis 250, 158–165 (2016).

    Article  CAS  PubMed  Google Scholar 

  98. Petri, M. H. et al. Aspirin-triggered lipoxin inhibits atherosclerosis progression in apolipoprotein E−/− mice. Br. J. Pharmacol. 174, 4043–4054 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Bardin, M. et al. The resolvin D2–GPR18 axis is expressed in human coronary atherosclerosis and transduces atheroprotection in apolipoprotein E deficient mice. Biochem. Pharmacol. 201, 115075 (2022).

    Article  CAS  PubMed  Google Scholar 

  100. Hasturk, H. et al. Resolvin E1 (RvE1) attenuates atherosclerotic plaque formation in diet and inflammation-induced atherogenesis. Arterioscler. Thromb. Vasc. Biol. 35, 1123–1133 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Sadhu, S. et al. Radiation-induced macrophage senescence impairs resolution programs and drives cardiovascular inflammation. J. Immunol. 207, 1812–1823 (2021).

    Article  CAS  PubMed  Google Scholar 

  102. Fuchs, A. et al. Subclinical coronary atherosclerosis and risk for myocardial infarction in a Danish cohort: a prospective observational cohort study. Ann. Intern. Med. 176, 433–442 (2023).

    Article  PubMed  Google Scholar 

  103. Hasturk, H. et al. Safety and preliminary efficacy of a novel host-modulatory therapy for reducing gingival inflammation. Front. Immunol. 12, 704163 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Rahman, K. et al. Inflammatory Ly6Chi monocytes and their conversion to M2 macrophages drive atherosclerosis regression. J. Clin. Invest. 127, 2904–2915 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Williams, K. J., Feig, J. E. & Fisher, E. A. Rapid regression of atherosclerosis: insights from the clinical and experimental literature. Nat. Clin. Pract. Cardiovasc. Med. 5, 91–102 (2008).

    Article  CAS  PubMed  Google Scholar 

  106. Kwan, A. C., Aronis, K. N., Sandfort, V., Blumenthal, R. S. & Bluemke, D. A. Bridging the gap for lipid lowering therapy: plaque regression, coronary computed tomographic angiography, and imaging-guided personalized medicine. Expert. Rev. Cardiovasc. Ther. 15, 547–558 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Welty, F. K. et al. Regression of human coronary artery plaque is associated with a high ratio of (18-hydroxy-eicosapentaenoic acid + resolvin E1) to leukotriene B4. FASEB J. 35, e21448 (2021).

    Article  CAS  PubMed  Google Scholar 

  108. Zheng, J. J., Pena Calderin, E., Hill, B. G., Bhatnagar, A. & Hellmann, J. Exercise promotes resolution of acute inflammation by catecholamine-mediated stimulation of resolvin D1 biosynthesis. J. Immunol. 203, 3013–3022 (2019).

    Article  CAS  PubMed  Google Scholar 

  109. Lamon-Fava, S. et al. Dose- and time-dependent increase in circulating anti-inflammatory and pro-resolving lipid mediators following eicosapentaenoic acid supplementation in patients with major depressive disorder and chronic inflammation. Prostaglandins Leukot. Essent. Fat. Acids 164, 102219 (2021).

    Article  CAS  Google Scholar 

  110. Bhatt, D. L. et al. Cardiovascular risk reduction with icosapent ethyl for hypertriglyceridemia. N. Engl. J. Med. 380, 11–22 (2019).

    Article  CAS  PubMed  Google Scholar 

  111. Budoff, M. J. et al. Effect of icosapent ethyl on progression of coronary atherosclerosis in patients with elevated triglycerides on statin therapy: final results of the EVAPORATE trial. Eur. Heart J. 41, 3925–3932 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Huston, J. et al. A critical review of icosapent ethyl in cardiovascular risk reduction. Am. J. Cardiovasc. Drugs 23, 393–406 (2023).

    Article  CAS  PubMed  Google Scholar 

  113. Nicholls, S. J. et al. Effect of high-dose omega-3 fatty acids vs corn oil on major adverse cardiovascular events in patients at high cardiovascular risk: the STRENGTH randomized clinical trial. JAMA 324, 2268–2280 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Gerster, H. Can adults adequately convert alpha-linolenic acid (18:3n-3) to eicosapentaenoic acid (20:5n-3) and docosahexaenoic acid (22:6n-3)? Int. J. Vitam. Nutr. Res. 68, 159–173 (1998).

    CAS  PubMed  Google Scholar 

  115. Rathod, K. S. et al. Accelerated resolution of inflammation underlies sex differences in inflammatory responses in humans. J. Clin. Invest. 127, 169–182 (2017).

    Article  PubMed  Google Scholar 

  116. Filiberto, A. C. et al. Sex differences in specialized pro-resolving lipid mediators and their receptors in abdominal aortic aneurysms. JVS Vasc. Sci. 4, 100107 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Filiberto, A. C. et al. Resolution of inflammation via RvD1/FPR2 signaling mitigates Nox2 activation and ferroptosis of macrophages in experimental abdominal aortic aneurysms. FASEB J. 36, e22579 (2022).

    Article  CAS  PubMed  Google Scholar 

  118. Spinosa, M. et al. Resolvin D1 decreases abdominal aortic aneurysm formation by inhibiting NETosis in a mouse model. J. Vasc. Surg. 68, 93S–103S (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Pope, N. H. et al. D-series resolvins inhibit murine abdominal aortic aneurysm formation and increase M2 macrophage polarization. FASEB J. 30, 4192–4201 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Wu, B., Mottola, G., Schaller, M., Upchurch, G. R. Jr. & Conte, M. S. Resolution of vascular injury: specialized lipid mediators and their evolving therapeutic implications. Mol. Asp. Med. 58, 72–82 (2017).

    Article  CAS  Google Scholar 

  121. Krishnamoorthy, S. et al. Resolvin D1 binds human phagocytes with evidence for proresolving receptors. Proc. Natl Acad. Sci. USA 107, 1660–1665 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Folco, E. J. et al. Neutrophil extracellular traps induce endothelial cell activation and tissue factor production through interleukin-1α and cathepsin G. Arterioscler. Thromb. Vasc. Biol. 38, 1901–1912 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Yalcinkaya, M. et al. Cholesterol accumulation in macrophages drives NETosis in atherosclerotic plaques via IL-1β secretion. Cardiovasc. Res. 119, 969–981 (2023).

    Article  CAS  PubMed  Google Scholar 

  124. Dona, M. et al. Resolvin E1, an EPA-derived mediator in whole blood, selectively counterregulates leukocytes and platelets. Blood 112, 848–855 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Szymanska, P., Luzak, B., Milowska, K. & Golanski, J. The anti-aggregative potential of resolvin E1 on human platelets. Molecules 28, 5323 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Cherpokova, D. et al. Resolvin D4 attenuates the severity of pathological thrombosis in mice. Blood 134, 1458–1468 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Hiram, R. Resolution-promoting autacoids demonstrate promising cardioprotective effects against heart diseases. Mol. Biol. Rep. 49, 5179–5197 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Tourki, B., Black, L. M., Kain, V. & Halade, G. V. Lipoxygenase inhibitor ML351 dysregulated an innate inflammatory response leading to impaired cardiac repair in acute heart failure. Biomed. Pharmacother. 139, 111574 (2021).

    Article  CAS  PubMed  Google Scholar 

  129. Halade, G. V. et al. Arachidonate 5-lipoxygenase is essential for biosynthesis of specialized pro-resolving mediators and cardiac repair in heart failure. Am. J. Physiol. Heart Circ. Physiol. 323, H721–H737 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Halade, G. V., Kain, V. & Serhan, C. N. Immune responsive resolvin D1 programs myocardial infarction-induced cardiorenal syndrome in heart failure. FASEB J. 32, 3717–3729 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Tourki, B. et al. Lack of resolution sensor drives age-related cardiometabolic and cardiorenal defects and impedes inflammation-resolution in heart failure. Mol. Metab. 31, 138–149 (2020).

    Article  CAS  PubMed  Google Scholar 

  132. Chen, J. et al. Formyl peptide receptor type 2 (FPR2) deficiency in myeloid cells amplifies sepsis-induced cardiac dysfunction. J. Innate Immun. 15, 548–561 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Lau, E. S. et al. Eicosanoid and eicosanoid-related inflammatory mediators and exercise intolerance in heart failure with preserved ejection fraction. Nat. Commun. 14, 7557 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Qintar, M. et al. Noncardiac chest pain after acute myocardial infarction: frequency and association with health status outcomes. Am. Heart J. 186, 1–11 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Gilbert, K., Bernier, J., Godbout, R. & Rousseau, G. Resolvin D1, a metabolite of omega-3 polyunsaturated fatty acid, decreases post-myocardial infarct depression. Mar. Drugs 12, 5396–5407 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Xu, Z. Z. et al. Resolvins RvE1 and RvD1 attenuate inflammatory pain via central and peripheral actions. Nat. Med. 16, 592–597 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Halade, G. V. et al. Race-based and sex-based differences in bioactive lipid mediators after myocardial infarction. Esc. Heart Fail. 7, 1700–1710 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Mozaffarian, D. et al. Heart disease and stroke statistics – 2015 update: a report from the American Heart Association. Circulation 131, e29–e322 (2015).

    PubMed  Google Scholar 

  139. Bibbins-Domingo, K. et al. Racial differences in incident heart failure among young adults. N. Engl. J. Med. 360, 1179–1190 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Serhan, C. N. et al. The atlas of inflammation resolution (AIR). Mol. Asp. Med. 74, 100894 (2020).

    Article  CAS  Google Scholar 

  141. Martin, R. M. et al. Breastfeeding and atherosclerosis: intima-media thickness and plaques at 65-year follow-up of the Boyd Orr cohort. Arterioscler. Thromb. Vasc. Biol. 25, 1482–1488 (2005).

    Article  CAS  PubMed  Google Scholar 

  142. McGill, H. C. Jr. et al. Origin of atherosclerosis in childhood and adolescence. Am. J. Clin. Nutr. 72, 1307S–1315S (2000).

    Article  CAS  PubMed  Google Scholar 

  143. Lopez-Melgar, B. et al. Short-term progression of multiterritorial subclinical atherosclerosis. J. Am. Coll. Cardiol. 75, 1617–1627 (2020).

    Article  PubMed  Google Scholar 

  144. Arnardottir, H., Orr, S. K., Dalli, J. & Serhan, C. N. Human milk proresolving mediators stimulate resolution of acute inflammation. Mucosal Immunol. 9, 757–766 (2016).

    Article  CAS  PubMed  Google Scholar 

  145. Weiss, G. A. et al. High levels of anti-inflammatory and pro-resolving lipid mediators lipoxins and resolvins and declining docosahexaenoic acid levels in human milk during the first month of lactation. Lipids Health Dis. 12, 89 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Robinson, D. T. et al. Long chain fatty acids and related pro-inflammatory, specialized pro-resolving lipid mediators and their intermediates in preterm human milk during the first month of lactation. Prostaglandins Leukot. Essent. Fat. Acids 121, 1–6 (2017).

    Article  CAS  Google Scholar 

  147. Arnardottir, H. H., Dalli, J., Colas, R. A., Shinohara, M. & Serhan, C. N. Aging delays resolution of acute inflammation in mice: reprogramming the host response with novel nano-proresolving medicines. J. Immunol. 193, 4235–4244 (2014).

    Article  CAS  PubMed  Google Scholar 

  148. Doyle, R., Sadlier, D. M. & Godson, C. Pro-resolving lipid mediators: agents of anti-ageing? Semin. Immunol. 40, 36–48 (2018).

    Article  CAS  PubMed  Google Scholar 

  149. Fitzgerald, H. et al. Resolvin D2-GPR18 enhances bone marrow function and limits steatosis and hepatic collagen accumulation in aging. Am. J. Pathol. 193, 1953–1968 (2023).

    Article  CAS  PubMed  Google Scholar 

  150. Libreros, S., Nshimiyimana, R., Lee, B. & Serhan, C. N. Infectious neutrophil deployment is regulated by resolvin D4. Blood 142, 589–606 (2023).

    Article  CAS  PubMed  Google Scholar 

  151. Pirault, J. & Back, M. Lipoxin and resolvin receptors transducing the resolution of inflammation in cardiovascular disease. Front. Pharmacol. 9, 1273 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Spite, M. & Fredman, G. Insights into the role of the resolvin D2-GPR18 signaling axis in cardiovascular physiology and disease. Adv. Pharmacol. 97, 257–281 (2023).

    Article  CAS  PubMed  Google Scholar 

  153. Petri, M. H. et al. The role of the FPR2/ALX receptor in atherosclerosis development and plaque stability. Cardiovasc. Res. 105, 65–74 (2015).

    Article  CAS  PubMed  Google Scholar 

  154. Drechsler, M. et al. Annexin A1 counteracts chemokine-induced arterial myeloid cell recruitment. Circ. Res. 116, 827–835 (2015).

    Article  CAS  PubMed  Google Scholar 

  155. Fredman, G. et al. Targeted nanoparticles containing the proresolving peptide Ac2-26 protect against advanced atherosclerosis in hypercholesterolemic mice. Sci. Transl. Med. 7, 275ra220 (2015).

    Article  Google Scholar 

  156. Arnardottir, H. et al. The resolvin D1 receptor GPR32 transduces inflammation resolution and atheroprotection. J. Clin. Invest. 131, e14288 (2021).

    Article  Google Scholar 

  157. Laguna-Fernandez, A. et al. ERV1/ChemR23 signaling protects against atherosclerosis by modifying oxidized low-density lipoprotein uptake and phagocytosis in macrophages. Circulation 138, 1693–1705 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. van der Vorst, E. P. C. et al. Hematopoietic chemR23 (chemerin receptor 23) fuels atherosclerosis by sustaining an M1 macrophage-phenotype and guidance of plasmacytoid dendritic cells to murine lesions – brief report. Arterioscler. Thromb. Vasc. Biol. 39, 685–693 (2019).

    Article  PubMed  Google Scholar 

  159. Lipscomb, M. et al. Resolvin D2-GPR18 signaling on myeloid cells limits plaque necrosis. Preprint at bioRxiv https://doi.org/10.1101/2023.04.03.535493 (2023).

  160. Moore, F. D. Metabolic Care of the Surgical Patient Section III (Saunders, 1959).

  161. Uzun, G. et al. Can lipid mediators and free fatty acids guide acute coronary syndrome diagnosis and treatment? Lab. Med. 2, lmad042 (2023).

    Google Scholar 

  162. Capó, X. et al. Resolvins as proresolving inflammatory mediators in cardiovascular disease. Eur. J. Med. Chem. 153, 123–130 (2018).

    Article  PubMed  Google Scholar 

  163. Hamilton, J. A., Hasturk, H., Kantarci, A., Serhan, C. N. & Van Dyke, T. Atherosclerosis, periodontal disease, and treatment with resolvins. Curr. Atheroscler. Rep. 19, 57 (2017).

    Article  PubMed  Google Scholar 

  164. Eswarappa, M., Neylan, T. C., Whooley, M. A., Metzler, T. J. & Cohen, B. E. Inflammation as a predictor of disease course in posttraumatic stress disorder and depression: a prospective analysis from the Mind Your Heart Study. Brain. Behav. Immun. 75, 220–227 (2019).

    Article  PubMed  Google Scholar 

  165. Halade, G. V., Norris, P. C., Kain, V., Serhan, C. N. & Ingle, K. A. Splenic leukocytes define the resolution of inflammation in heart failure. Sci. Signal. 11, eaao1818 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Park, J., Langmead, C. J. & Riddy, D. M. New advances in targeting the resolution of inflammation: implications for specialized pro-resolving mediator GPCR drug discovery. ACS Pharmacol. Transl. Sci. 3, 88–106 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Norris, P. C. & Serhan, C. N. Metabololipidomic profiling of functional immunoresolvent clusters and eicosanoids in mammalian tissues. Biochem. Biophys. Res. Commun. 504, 553–561 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Fu, X. et al. High sensitivity and wide linearity LC-MS/MS method for oxylipin quantification in multiple biological samples. J. Lipid Res. 63, 100302 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Hersberger, M. Potential role of the lipoxygenase derived lipid mediators in atherosclerosis: leukotrienes, lipoxins and resolvins. Clin. Chem. Lab. Med. 48, 1063–1073 (2010).

    Article  CAS  PubMed  Google Scholar 

  170. Mas, E., Croft, K. D., Zahra, P., Barden, A. & Mori, T. A. Resolvins D1, D2, and other mediators of self-limited resolution of inflammation in human blood following n-3 fatty acid supplementation. Clin. Chem. 58, 1476–1484 (2012).

    Article  CAS  PubMed  Google Scholar 

  171. Norris, P. C. et al. Identification of specialized pro-resolving mediator clusters from healthy adults after intravenous low-dose endotoxin and omega-3 supplementation: a methodological validation. Sci. Rep. 8, 18050 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Biagini, D. et al. Salivary lipid mediators: key indexes of inflammation regulation in heart failure disease. Free. Radic. Biol. Med. 201, 55–65 (2023).

    Article  CAS  PubMed  Google Scholar 

  173. Keeley, E. C. et al. Specialized proresolving mediators in symptomatic women with coronary microvascular dysfunction (from the Women’s Ischemia Trial to Reduce Events in Nonobstructive CAD [WARRIOR] Trial). Am. J. Cardiol. 162, 1–5 (2022).

    Article  CAS  PubMed  Google Scholar 

  174. Ramirez, J. L. et al. Fish oil increases specialized pro-resolving lipid mediators in PAD (The OMEGA-PAD II Trial). J. Surg. Res. 238, 164–174 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Taylor, H. A. et al. Scientific opportunities in resilience research for cardiovascular health and wellness. Report from a National Heart, Lung, and Blood Institute workshop. FASEB J. 36, e22639 (2022).

    Article  CAS  PubMed  Google Scholar 

  176. Calder, P. C. Eicosapentaenoic and docosahexaenoic acid derived specialised pro-resolving mediators: concentrations in humans and the effects of age, sex, disease and increased omega-3 fatty acid intake. Biochimie 178, 105–123 (2020).

    Article  CAS  PubMed  Google Scholar 

  177. Soehnlein, O. & Libby, P. Targeting inflammation in atherosclerosis–from experimental insights to the clinic. Nat. Rev. Drug. Discov. 20, 589–610 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Fredman, G. & Tabas, I. Boosting inflammation resolution in atherosclerosis: the next frontier for therapy. Am. J. Pathol. 187, 1211–1221 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Serhan, C. N. Resolution phases of inflammation: novel endogenous anti-inflammatory and pro-resolving lipid mediators and pathways. Annu. Rev. Immunol. 25, 101–137 (2007).

    Article  CAS  PubMed  Google Scholar 

  180. Brennan, E. et al. Pro-resolving lipid mediators: regulators of inflammation, metabolism and kidney function. Nat. Rev. Nephrol. 17, 725–739 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Thatcher, T. H., Freeberg, M. A. T., Myo, Y. P. A. & Sime, P. J. Is there a role for specialized pro-resolving mediators in pulmonary fibrosis? Pharmacol. Ther. 247, 108460 (2023).

    Article  CAS  PubMed  Google Scholar 

  182. Spite, M. et al. Resolvin D2 is a potent regulator of leukocytes and controls microbial sepsis. Nature 461, 1287–1291 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Leroy, V. et al. Resolution of post-lung transplant ischemia-reperfusion injury is modulated via Resolvin D1-FPR2 and Maresin 1-LGR6 signaling. J. Heart Lung Transpl. 42, 562–574 (2023).

    Article  Google Scholar 

  184. Shimizu, T. Lipid mediators in health and disease: enzymes and receptors as therapeutic targets for the regulation of immunity and inflammation. Annu. Rev. Pharmacol. Toxicol. 49, 123–150 (2009).

    Article  CAS  PubMed  Google Scholar 

  185. Woodward, D. F., Jones, R. L. & Narumiya, S. International Union of Basic and Clinical Pharmacology. LXXXIII: classification of prostanoid receptors, updating 15 years of progress. Pharmacol. Rev. 63, 471–538 (2011).

    Article  CAS  PubMed  Google Scholar 

  186. Serhan, C. N. et al. Design of lipoxin A4 stable analogs that block transmigration and adhesion of human neutrophils. Biochemistry 34, 14609–14615 (1995).

    Article  CAS  PubMed  Google Scholar 

  187. Sun, Y. P. et al. Anti-inflammatory and pro-resolving properties of benzo-lipoxin A4 analogs. Prostaglandins Leukot. Essent. Fat. Acids 81, 357–366 (2009).

    Article  CAS  Google Scholar 

  188. Orr, S. K., Colas, R. A., Dalli, J., Chiang, N. & Serhan, C. N. Proresolving actions of a new resolvin D1 analog mimetic qualifies as an immunoresolvent. Am. J. Physiol. Lung Cell Mol. Physiol. 308, L904–L911 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Sun, Y. P. et al. Resolvin D1 and its aspirin-triggered 17R epimer. Stereochemical assignments, anti-inflammatory properties, and enzymatic inactivation. J. Biol. Chem. 282, 9323–9334 (2007).

    Article  CAS  PubMed  Google Scholar 

  190. Chiang, N. et al. Identification of chemotype agonists for human resolvin D1 receptor DRV1 with pro-resolving functions. Cell Chem. Biol. 26, 244–254.e4 (2019).

    Article  CAS  PubMed  Google Scholar 

  191. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT00799552 (2010).

  192. OphthalmologyWeb. Resolvyx Pharmaceuticals, Inc. announces positive data from phase 2 clinical trial of the Resolvin RX-10045 in patients with dry eye syndrome. OphthalmologyWeb https://www.ophthalmologyweb.com/1315-News/32687-Resolvyx-Pharmaceuticals-Inc-Announces-Positive-Data-From-Phase-2-Clinical-Trial-Of-The-Resolvin-RX-10045-In-Patients-With-Dry-Eye-Syndrome/ (2009).

  193. Sulciner, M. L. et al. Resolvins suppress tumor growth and enhance cancer therapy. J. Exp. Med. 215, 115–140 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Lance, K. D. et al. Unidirectional and sustained delivery of the proresolving lipid mediator resolvin D1 from a biodegradable thin film device. J. Biomed. Mater. Res. A 105, 31–41 (2017).

    Article  CAS  PubMed  Google Scholar 

  195. Serhan, C. N., Lundberg, U., Weissmann, G. & Samuelsson, B. Formation of leukotrienes and hydroxy acids by human neutrophils and platelets exposed to monosodium urate. Prostaglandins 27, 563–581 (1984).

    Article  CAS  PubMed  Google Scholar 

  196. Vane, J. R. Biomedicine. Back to an aspirin a day? Science 296, 474–475 (2002).

    Article  CAS  PubMed  Google Scholar 

  197. Fishbein, A., Hammock, B. D., Serhan, C. N. & Panigrahy, D. Carcinogenesis: failure of resolution of inflammation? Pharmacol. Ther. 218, 107670 (2021).

    Article  CAS  PubMed  Google Scholar 

  198. Fredman, G., Van Dyke, T. E. & Serhan, C. N. Resolvin E1 regulates adenosine diphosphate activation of human platelets. Arterioscler. Thromb. Vasc. Biol. 30, 2005–2013 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Uno, H. et al. Immunonutrition suppresses acute inflammatory responses through modulation of resolvin E1 in patients undergoing major hepatobiliary resection. Surgery 160, 228–236 (2016).

    Article  PubMed  Google Scholar 

  200. Hartling, I. et al. Quantitative profiling of inflammatory and pro-resolving lipid mediators in human adolescents and mouse plasma using UHPLC-MS/MS. Clin. Chem. Lab. Med. 59, 1811–1823 (2021).

    Article  CAS  PubMed  Google Scholar 

  201. Brennan, E. P. et al. Lipoxins protect against inflammation in diabetes-associated atherosclerosis. Diabetes 67, 2657–2667 (2018).

    Article  PubMed  Google Scholar 

  202. Kamaly, N. et al. Targeted interleukin-10 nanotherapeutics developed with a microfluidic chip enhance resolution of inflammation in advanced atherosclerosis. ACS Nano 10, 5280–5292 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Kusters, D. H. et al. Pharmacological treatment with annexin A1 reduces atherosclerotic plaque burden in LDLR−/− mice on Western Type Diet. PLoS ONE 10, e0130484 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  204. Chiang, N. & Serhan, C. N. Specialized pro-resolving mediator network: an update on production and actions. Essays Biochem. 64, 443–462 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Chiang, N. et al. Infection regulates pro-resolving mediators that lower antibiotic requirements. Nature 484, 524–528 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Elajami, T. K. et al. Specialized proresolving lipid mediators in patients with coronary artery disease and their potential for clot remodeling. FASEB J. 30, 2792–2801 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Hiram, R. et al. An inflammation resolution-promoting intervention prevents atrial fibrillation due to left-ventricular dysfunction. Cardiovasc. Res. https://doi.org/10.1093/cvr/cvad175 (2023).

Download references

Acknowledgements

We dedicate this Review in memory of Hildur Arnardottir, who was promoted to permanent faculty at the Karolinska Institute in Stockholm, Sweden. Arnardottir opened new avenues in resolution of inflammation research with specialized pro-resolving mediators with her findings in ageing, human breast milk and specialized pro-resolving mediator receptors in atherosclerotic cardiovascular disease. We shall always remember Arnardottir’s bright smile, scientific curiosity, rigour, passion for science, insightful discussions and very devoted hard work to contribute to medical sciences. G.F. is supported by NIH/NHLBI R01HL170249 and R01HL153019. C.N.S. is supported by NIH/NIHGMS R35GM139430.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed substantially to all aspects of the article.

Corresponding author

Correspondence to Gabrielle Fredman.

Ethics declarations

Competing interests

G.F. is a member of a scientific advisory board for Esperion Therapeutics. C.N.S. is a co-founder of Nocendra and an inventor on patents on specialized pro-resolving mediators assigned to Brigham and Women’s Hospital that were reviewed by Mass General Brigham.

Peer review

Peer review information

Nature Reviews Cardiology thanks Peter Libby and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Atlas of Inflammation Resolution: air.bio.informatik.uni-rostock.de/using-the-air/structure

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fredman, G., Serhan, C.N. Specialized pro-resolving mediators in vascular inflammation and atherosclerotic cardiovascular disease. Nat Rev Cardiol (2024). https://doi.org/10.1038/s41569-023-00984-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41569-023-00984-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing