Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cardiovascular autonomic dysfunction in post-COVID-19 syndrome: a major health-care burden

Abstract

Cardiovascular autonomic dysfunction (CVAD) is a malfunction of the cardiovascular system caused by deranged autonomic control of circulatory homeostasis. CVAD is an important component of post-COVID-19 syndrome, also termed long COVID, and might affect one-third of highly symptomatic patients with COVID-19. The effects of CVAD can be seen at both the whole-body level, with impairment of heart rate and blood pressure control, and in specific body regions, typically manifesting as microvascular dysfunction. Many severely affected patients with long COVID meet the diagnostic criteria for two common presentations of CVAD: postural orthostatic tachycardia syndrome and inappropriate sinus tachycardia. CVAD can also manifest as disorders associated with hypotension, such as orthostatic or postprandial hypotension, and recurrent reflex syncope. Advances in research, accelerated by the COVID-19 pandemic, have identified new potential pathophysiological mechanisms, diagnostic methods and therapeutic targets in CVAD. For clinicians who daily see patients with CVAD, knowledge of its symptomatology, detection and appropriate management is more important than ever. In this Review, we define CVAD and its major forms that are encountered in post-COVID-19 syndrome, describe possible CVAD aetiologies, and discuss how CVAD, as a component of post-COVID-19 syndrome, can be diagnosed and managed. Moreover, we outline directions for future research to discover more efficient ways to cope with this prevalent and long-lasting condition.

Key points

  • Cardiovascular autonomic dysfunction (CVAD), in particular postural orthostatic tachycardia syndrome and inappropriate sinus tachycardia, are among the most frequent and distinct phenotypes of post-COVID-19 syndrome; one-third of highly symptomatic patients can be affected.

  • CVAD arises from a malfunction of the autonomic control of the circulation, and can involve failure or inadequate or excessive activation of the sympathetic and parasympathetic components of the autonomic nervous system.

  • As well as global circulatory disturbances, CVAD in post-COVID-19 syndrome can manifest as microvascular and endothelial dysfunction, with local symptoms such as headache, brain fog, chest pain, dyspnoea and peripheral circulatory symptoms, including skin discolouration, oedema, Raynaud-like phenomena, and heat and cold intolerance.

  • A structured diagnostic work-up based on a detailed patient history, cardiovascular autonomic testing, long-term electrocardiogram and blood-pressure monitoring, and ancillary cardiac and peripheral vascular tests will lead to an appropriate diagnosis.

  • Management of CVAD in post-COVID-19 syndrome should involve a correct diagnosis, patient education, and both non-pharmacological and pharmacological methods; a tailored exercise training programme, blood volume expansion and compression garments are especially effective.

  • Pharmacological approaches target heart rate control, blood volume expansion, promotion of vasoconstriction and venoconstriction, and reduction of hyperadrenergic drive.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Global and local manifestations of cardiovascular autonomic dysfunction.
Fig. 2: Typical tilt table test and 24-h ECG manifestations of cardiovascular autonomic dysfunction in post-COVID-19 syndrome.
Fig. 3: Typical 24-h ABPM manifestations of cardiovascular autonomic dysfunction in post-COVID-19 syndrome.
Fig. 4: Diagnostic work-up of suspected CVAD in patients with post-COVID-19 syndrome.

Similar content being viewed by others

References

  1. Davis, H. E., McCorkell, L., Vogel, J. M. & Topol, E. J. Long COVID: major findings, mechanisms and recommendations. Nat. Rev. Microbiol. 21, 133–146 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Soriano, J. B. et al. A clinical case definition of post COVID-19 condition by a Delphi consensus. Lancet Infect. Dis. 22, e102–e107 (2022).

    Article  CAS  PubMed  Google Scholar 

  3. Gyongyosi, M. et al. Long COVID and the cardiovascular system – elucidating causes and cellular mechanisms in order to develop targeted diagnostic and therapeutic strategies: a joint Scientific Statement of the ESC Working Groups on Cellular Biology of the Heart and Myocardial and Pericardial Diseases. Cardiovasc. Res. 119, 336–356 (2023).

    Article  PubMed  Google Scholar 

  4. Xie, Y., Choi, T. & Al-Aly, Z. Association of treatment with nirmatrelvir and the risk of post-COVID-19 condition. JAMA Intern. Med. 183, 554–564 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Raman, B., Bluemke, D. A., Luscher, T. F. & Neubauer, S. Long COVID: post-acute sequelae of COVID-19 with a cardiovascular focus. Eur. Heart J. 43, 1157–1172 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rathmann, W., Kuss, O. & Kostev, K. Incidence of newly diagnosed diabetes after Covid-19. Diabetologia 65, 949–954 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kwan, A. C. et al. Association of COVID-19 vaccination with risk for incident diabetes after COVID-19 infection. JAMA Netw. Open. 6, e2255965 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Spallone, V. et al. Cardiovascular autonomic neuropathy in diabetes: clinical impact, assessment, diagnosis, and management. Diabetes Metab. Res. Rev. 27, 639–653 (2011).

    Article  PubMed  Google Scholar 

  9. Choutka, J., Jansari, V., Hornig, M. & Iwasaki, A. Unexplained post-acute infection syndromes. Nat. Med. 28, 911–923 (2022).

    Article  CAS  PubMed  Google Scholar 

  10. Honigsbaum, M. & Krishnan, L. Taking pandemic sequelae seriously: from the Russian influenza to COVID-19 long-haulers. Lancet 396, 1389–1391 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Komaroff, A. L. & Lipkin, W. I. ME/CFS and long COVID share similar symptoms and biological abnormalities: road map to the literature. Front. Med. 10, 1187163 (2023).

    Article  Google Scholar 

  12. Vernino, S. et al. Postural orthostatic tachycardia syndrome (POTS): state of the science and clinical care from a 2019 National Institutes of Health Expert Consensus Meeting – Part 1. Auton. Neurosci. 235, 102828 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Byambasuren, O., Stehlik, P., Clark, J., Alcorn, K. & Glasziou, P. Effect of covid-19 vaccination on long covid: systematic review. BMJ Med. 2, e000385 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Richard, S. A. et al. Persistent COVID-19 symptoms at 6 months after onset and the role of vaccination before or after SARS-CoV-2 infection. JAMA Netw. Open. 6, e2251360 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kwan, A. C. et al. Apparent risks of postural orthostatic tachycardia syndrome diagnoses after COVID-19 vaccination and SARS-Cov-2 infection. Nat. Cardiovasc. Res. 1, 1187–1194 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Eldokla, A. M. & Numan, M. T. Postural orthostatic tachycardia syndrome after mRNA COVID-19 vaccine. Clin. Auton. Res. 32, 307–311 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Reiner, M. F. et al. Case report of long-term postural tachycardia syndrome in a patient after messenger RNA coronavirus disease-19 vaccination with mRNA-1273. Eur. Heart J. Case Rep. 7, ytad390 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Blitshteyn, S. & Fedorowski, A. The risks of POTS after COVID-19 vaccination and SARS-CoV-2 infection: more studies are needed. Nat. Cardiovasc. Res. 1, 1119–1120 (2022).

    Article  Google Scholar 

  19. Mizrahi, B. et al. Long covid outcomes at one year after mild SARS-CoV-2 infection: nationwide cohort study. BMJ 380, e072529 (2023).

    Article  PubMed  Google Scholar 

  20. Johansson, M. et al. Long-haul post-COVID-19 symptoms presenting as a variant of postural orthostatic tachycardia syndrome: the Swedish experience. JACC Case Rep. 3, 573–580 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Stahlberg, M. et al. Post-COVID-19 tachycardia syndrome: a distinct phenotype of post-acute COVID-19 syndrome. Am. J. Med. 134, 1451–1456 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ormiston, C. K., Swiatkiewicz, I. & Taub, P. R. Postural orthostatic tachycardia syndrome as a sequela of COVID-19. Heart Rhythm. 19, 1880–1889 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Aranyo, J. et al. Inappropriate sinus tachycardia in post-COVID-19 syndrome. Sci. Rep. 12, 298 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Schondorf, R. & Low, P. A. Idiopathic postural orthostatic tachycardia syndrome: an attenuated form of acute pandysautonomia? Neurology 43, 132–137 (1993).

    Article  CAS  PubMed  Google Scholar 

  25. Fedorowski, A. Postural orthostatic tachycardia syndrome: clinical presentation, aetiology and management. J. Intern. Med. 285, 352–366 (2019).

    Article  CAS  PubMed  Google Scholar 

  26. Olshansky, B. & Sullivan, R. M. Inappropriate sinus tachycardia. Europace 21, 194–207 (2019).

    Article  PubMed  Google Scholar 

  27. Williams, B. et al. 2018 ESC/ESH guidelines for the management of arterial hypertension. Eur. Heart J. 39, 3021–3104 (2018).

    Article  PubMed  Google Scholar 

  28. Brignole, M. et al. 2018 ESC guidelines for the diagnosis and management of syncope. Eur. Heart J. 39, 1883–1948 (2018).

    Article  PubMed  Google Scholar 

  29. Freeman, R. et al. Consensus statement on the definition of orthostatic hypotension, neurally mediated syncope and the postural tachycardia syndrome. Auton. Neurosci. 161, 46–48 (2011).

    Article  PubMed  Google Scholar 

  30. Fedorowski, A. et al. Orthostatic hypotension: management of a complex, but common, medical problem. Circ. Arrhythm. Electrophysiol. 15, e010573 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  31. van Wijnen, V. K. et al. Initial orthostatic hypotension in teenagers and young adults. Clin. Auton. Res. 26, 441–449 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Jordan, J. et al. Consensus statement on the definition of orthostatic hypertension endorsed by the American Autonomic Society and the Japanese Society of Hypertension. Hypertens. Res. 46, 291–294 (2023).

    Article  PubMed  Google Scholar 

  33. Parati, G. & Schumacher, H. Blood pressure variability over 24 h: prognostic implications and treatment perspectives. An assessment using the smoothness index with telmisartan-amlodipine monotherapy and combination. Hypertens. Res. 37, 187–193 (2014).

    Article  CAS  PubMed  Google Scholar 

  34. Lodhi, H. A. et al. Usefulness of blood pressure variability indices derived from 24-hour ambulatory blood pressure monitoring in detecting autonomic failure. J. Am. Heart Assoc. 8, e010161 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Owens, P. E., Lyons, S. P. & O’Brien, E. T. Arterial hypotension: prevalence of low blood pressure in the general population using ambulatory blood pressure monitoring. J. Hum. Hypertens. 14, 243–247 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Brignole, M. et al. Tests for the identification of reflex syncope mechanism. Expert. Rev. Med. Devices 20, 109–119 (2023).

    Article  CAS  PubMed  Google Scholar 

  37. Rivasi, G. et al. Association between hypotension during 24 h ambulatory blood pressure monitoring and reflex syncope: the SynABPM 1 study. Eur. Heart J. 43, 3765–3776 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Sharad, B. et al. Twenty-four-hour ambulatory blood pressure profile in patients with reflex syncope and matched controls. J. Am. Heart Assoc. 12, e028704 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Brubaker, P. H. & Kitzman, D. W. Chronotropic incompetence: causes, consequences, and management. Circulation 123, 1010–1020 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Kadish, A. H. et al. ACC/AHA clinical competence statement on electrocardiography and ambulatory electrocardiography: a report of the ACC/AHA/ACP-ASIM task force on clinical competence (ACC/AHA Committee to develop a clinical competence statement on electrocardiography and ambulatory electrocardiography) endorsed by the International Society for Holter and noninvasive electrocardiology. Circulation 104, 3169–3178 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Feigofsky, S. & Fedorowski, A. Defining cardiac dysautonomia – different types, overlap syndromes; case-based presentations. J. Atr. Fibrillation 13, 2403 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Reis Carneiro, D. et al. Clinical presentation and management strategies of cardiovascular autonomic dysfunction following a COVID-19 infection – a systematic review. Eur. J. Neurol. 30, 1528–1539 (2023).

    Article  PubMed  Google Scholar 

  43. Fedorowski, A. & Sutton, R. Autonomic dysfunction and postural orthostatic tachycardia syndrome in post-acute COVID-19 syndrome. Nat. Rev. Cardiol. 20, 281–282 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Stahlberg, M. & Fedorowski, A. Cardiovascular autonomic abnormalities in patients with post-acute sequelae of COVID-19: don’t miss that target! Can. J. Cardiol. 39, 776–778 (2023).

    Article  PubMed  Google Scholar 

  45. Goldstein, D. S., Robertson, D., Esler, M., Straus, S. E. & Eisenhofer, G. Dysautonomias: clinical disorders of the autonomic nervous system. Ann. Intern. Med. 137, 753–763 (2002).

    Article  PubMed  Google Scholar 

  46. Hall, J. E. & Hall, M. E. Guyton and Hall Textbook of Medical Physiology 14th edn Ch. XVIII, 204–215 (Elsevier, 2020).

  47. Biaggoni, I. et al. Primer on the Autonomic Nervous System 4th edn (Academic Press, 2023).

  48. Cannon, W. B. The Wisdom of the Body (W. W. Norton and Company, 1932).

  49. Kaufmann, H., Norcliffe-Kaufmann, L. & Palma, J. A. Baroreflex dysfunction. N. Engl. J. Med. 382, 163–178 (2020).

    Article  CAS  PubMed  Google Scholar 

  50. Ricci, F., De Caterina, R. & Fedorowski, A. Orthostatic hypotension: epidemiology, prognosis, and treatment. J. Am. Coll. Cardiol. 66, 848–860 (2015).

    Article  PubMed  Google Scholar 

  51. Torabi, P. et al. Impact of cardiovascular neurohormones on onset of vasovagal syncope induced by head-up tilt. J. Am. Heart Assoc. 8, e012559 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Mayuga, K. A. et al. Sinus tachycardia: a multidisciplinary expert focused review. Circ. Arrhythm. Electrophysiol. 15, e007960 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Camici, P. G., d’Amati, G. & Rimoldi, O. Coronary microvascular dysfunction: mechanisms and functional assessment. Nat. Rev. Cardiol. 12, 48–62 (2015).

    Article  PubMed  Google Scholar 

  54. Young, A. et al. Impaired peripheral microvascular function and risk of major adverse cardiovascular events in patients with coronary artery disease. Arterioscler. Thromb. Vasc. Biol. 41, 1801–1809 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Berry, C. et al. Small-vessel disease in the heart and brain: current knowledge, unmet therapeutic need, and future directions. J. Am. Heart Assoc. 8, e011104 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Taqueti, V. R. & Di Carli, M. F. Coronary microvascular disease pathogenic mechanisms and therapeutic options: JACC state-of-the-art review. J. Am. Coll. Cardiol. 72, 2625–2641 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Masi, S. et al. Assessment and pathophysiology of microvascular disease: recent progress and clinical implications. Eur. Heart J. 42, 2590–2604 (2021).

    Article  CAS  PubMed  Google Scholar 

  58. Alexander, Y. et al. Endothelial function in cardiovascular medicine: a consensus paper of the European Society of Cardiology Working Groups on Atherosclerosis and Vascular Biology, Aorta and Peripheral Vascular Diseases, Coronary Pathophysiology and Microcirculation, and Thrombosis. Cardiovasc. Res. 117, 29–42 (2021).

    Article  CAS  PubMed  Google Scholar 

  59. Cutolo, M. & Smith, V. Detection of microvascular changes in systemic sclerosis and other rheumatic diseases. Nat. Rev. Rheumatol. 17, 665–677 (2021).

    Article  PubMed  Google Scholar 

  60. Ong, P. et al. International standardization of diagnostic criteria for microvascular angina. Int. J. Cardiol. 250, 16–20 (2018).

    Article  PubMed  Google Scholar 

  61. Brignole, M. et al. Pacemaker therapy in patients with neurally mediated syncope and documented asystole: third International Study on Syncope of Uncertain Etiology (ISSUE-3): a randomized trial. Circulation 125, 2566–2571 (2012).

    Article  PubMed  Google Scholar 

  62. Sheldon, R. et al. Midodrine for the prevention of vasovagal syncope: a randomized clinical trial. Ann. Intern. Med. 174, 1349–1356 (2021).

    Article  PubMed  Google Scholar 

  63. Brignole, M. et al. Low-blood pressure phenotype underpins the tendency to reflex syncope. J. Hypertens. 39, 1319–1325 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Fanciulli, A. et al. Impact of the COVID-19 pandemic on clinical autonomic practice in Europe: a survey of the European Academy of Neurology and the European Federation of Autonomic Societies. Eur. J. Neurol. 30, 1712–1726 (2023).

    Article  Google Scholar 

  65. Hira, R. et al. Objective hemodynamic cardiovascular autonomic abnormalities in post-acute sequelae of COVID-19. Can. J. Cardiol. 39, 767–775 (2023).

    Article  PubMed  Google Scholar 

  66. Jamal, S. M. et al. Prospective evaluation of autonomic dysfunction in post-acute sequela of COVID-19. J. Am. Coll. Cardiol. 79, 2325–2330 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Shouman, K. et al. Autonomic dysfunction following COVID-19 infection: an early experience. Clin. Auton. Res. 31, 385–394 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Mouram, S. et al. Incidence and predictors of cardiac arrhythmias in patients with COVID-19. Front. Cardiovasc. Med. 9, 908177 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Bailey, J. et al. Multidisciplinary center care for long covid syndrome – a retrospective cohort study. Am. J. Med. https://doi.org/10.1016/j.amjmed.2023.05.002 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Rivasi, G., Rafanelli, M., Mossello, E., Brignole, M. & Ungar, A. Drug-related orthostatic hypotension: beyond anti-hypertensive medications. Drugs Aging 37, 725–738 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Ricci, F. et al. Cardiovascular morbidity and mortality related to orthostatic hypotension: a meta-analysis of prospective observational studies. Eur. Heart J. 36, 1609–1617 (2015).

    Article  PubMed  Google Scholar 

  72. Elkholey, K. et al. Post-COVID-19 afferent baroreflex failure. Hypertension 80, 895–900 (2023).

    Article  CAS  PubMed  Google Scholar 

  73. Durstenfeld, M. S. et al. Reduced exercise capacity, chronotropic incompetence, and early systemic inflammation in cardiopulmonary phenotype long COVID. J. Infect. Dis. 228, 542–554 (2023).

    Article  PubMed  Google Scholar 

  74. Jimeno-Almazan, A., Pallares, J. G., Buendia-Romero, A., Martinez-Cava, A. & Courel-Ibanez, J. Chronotropic incompetence in non-hospitalized patients with post-COVID-19 syndrome. J. Clin. Med. 10, 5434 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Thaweethai, T. et al. Development of a definition of postacute sequelae of SARS-CoV-2 infection. JAMA 329, 1934–1946 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Marshall, M. Long COVID: answers emerge on how many people get better. Nature 619, 20 (2023).

    Article  CAS  PubMed  Google Scholar 

  77. Brignole, M. et al. Practical instructions for the 2018 ESC guidelines for the diagnosis and management of syncope. Eur. Heart J. 39, e43–e80 (2018).

    Article  PubMed  Google Scholar 

  78. Ganzeboom, K. S. et al. Lifetime cumulative incidence of syncope in the general population: a study of 549 Dutch subjects aged 35-60 years. J. Cardiovasc. Electrophysiol. 17, 1172–1176 (2006).

    Article  PubMed  Google Scholar 

  79. Soteriades, E. S. et al. Incidence and prognosis of syncope. N. Engl. J. Med. 347, 878–885 (2002).

    Article  PubMed  Google Scholar 

  80. Chou, S. H. et al. Global incidence of neurological manifestations among patients hospitalized with COVID-19 – a report for the GCS-NeuroCOVID Consortium and the ENERGY Consortium. JAMA Netw. Open. 4, e2112131 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Oikonomou, E. et al. Endothelial dysfunction in acute and long standing COVID-19: a prospective cohort study. Vasc. Pharmacol. 144, 106975 (2022).

    Article  CAS  Google Scholar 

  82. Mahdi, A. et al. Microvascular dysfunction and reduced cardiac stress reactivity in postural orthostatic tachycardia associated with postacute COVID-19. Circ. Arrhythm. Electrophysiol. 16, 413–414 (2023).

    Article  PubMed  Google Scholar 

  83. Iftekhar, N. & Sivan, M. Venous insufficiency and acrocyanosis in long COVID: dysautonomia. Lancet 402, e9 (2023).

    Article  PubMed  Google Scholar 

  84. Olshansky, B. et al. Postural orthostatic tachycardia syndrome (POTS): a critical assessment. Prog. Cardiovasc. Dis. 63, 263–270 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Fedorowski, A. et al. Antiadrenergic autoimmunity in postural tachycardia syndrome. Europace 19, 1211–1219 (2017).

    Article  PubMed  Google Scholar 

  86. Yu, X. et al. Angiotensin II type 1 receptor autoantibodies in postural tachycardia syndrome. J. Am. Heart Assoc. 7, e008351 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Kharraziha, I. et al. Serum activity against G protein-coupled receptors and severity of orthostatic symptoms in postural orthostatic tachycardia syndrome. J. Am. Heart Assoc. 9, e015989 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Hall, J. et al. Detection of G protein-coupled receptor autoantibodies in postural orthostatic tachycardia syndrome using standard methodology. Circulation 146, 613–622 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Fedorowski, A. et al. Cardiorespiratory dysautonomia in post-COVID-19 condition: manifestations, mechanisms and management. J. Intern. Med. 294, 548–562 (2023).

    Article  PubMed  Google Scholar 

  90. El-Rhermoul, F. Z. et al. Autoimmunity in Long Covid and POTS. Oxf. Open. Immunol. 4, iqad002 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Asarcikli, L. D. et al. Heart rate variability and cardiac autonomic functions in post-COVID period. J. Interv. Card. Electrophysiol. 63, 715–721 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Menezes Junior, A. D. S., Schroder, A. A., Botelho, S. M. & Resende, A. L. Cardiac autonomic function in long COVID-19 using heart rate variability: an observational cross-sectional study. J. Clin. Med. 12, 100 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Jacob, G. et al. Vagal and sympathetic function in neuropathic postural tachycardia syndrome. Hypertension 73, 1087–1096 (2019).

    Article  CAS  PubMed  Google Scholar 

  94. Chu, H. et al. Comparative tropism, replication kinetics, and cell damage profiling of SARS-CoV-2 and SARS-CoV with implications for clinical manifestations, transmissibility, and laboratory studies of COVID-19: an observational study. Lancet Microbe 1, e14–e23 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Aghagoli, G. et al. Neurological involvement in COVID-19 and potential mechanisms: a review. Neurocrit Care 34, 1062–1071 (2021).

    Article  CAS  PubMed  Google Scholar 

  96. Franca, R. A., Ugga, L., Guadagno, E., Russo, D. & Del Basso De Caro, M. Neuroinvasive potential of SARS-CoV2 with neuroradiological and neuropathological findings: is the brain a target or a victim? APMIS 129, 37–54 (2021).

    Article  CAS  PubMed  Google Scholar 

  97. Baig, A. M., Khaleeq, A., Ali, U. & Syeda, H. Evidence of the COVID-19 virus targeting the CNS: tissue distribution, host-virus interaction, and proposed neurotropic mechanisms. ACS Chem. Neurosci. 11, 995–998 (2020).

    Article  CAS  PubMed  Google Scholar 

  98. Lukiw, W. J., Pogue, A. & Hill, J. M. SARS-CoV-2 infectivity and neurological targets in the brain. Cell Mol. Neurobiol. 42, 217–224 (2022).

    Article  CAS  PubMed  Google Scholar 

  99. Xu, Z. et al. Angiotensin II induces kidney inflammatory injury and fibrosis through binding to myeloid differentiation protein-2 (MD2). Sci. Rep. 7, 44911 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Pavlov, V. A. et al. Central muscarinic cholinergic regulation of the systemic inflammatory response during endotoxemia. Proc. Natl Acad. Sci. USA 103, 5219–5223 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Schultheiss, C. et al. The IL-1β, IL-6, and TNF cytokine triad is associated with post-acute sequelae of COVID-19. Cell Rep. Med. 3, 100663 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Gamboa, A. et al. Autonomic blockade reverses endothelial dysfunction in obesity-associated hypertension. Hypertension 68, 1004–1010 (2016).

    Article  CAS  PubMed  Google Scholar 

  103. Chopoorian, A. H. et al. Impaired endothelial function in patients with postural tachycardia syndrome. Hypertension 77, 1001–1009 (2021).

    Article  CAS  PubMed  Google Scholar 

  104. Mina, Y. et al. Deep phenotyping of neurologic postacute sequelae of SARS-CoV-2 infection. Neurol. Neuroimmunol. Neuroinflamm 10, e200097 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Oaklander, A. L. et al. Peripheral neuropathy evaluations of patients with prolonged long COVID. Neurol. Neuroimmunol. Neuroinflamm 9, e1146 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Pretorius, E. et al. Prevalence of symptoms, comorbidities, fibrin amyloid microclots and platelet pathology in individuals with long COVID/post-acute sequelae of COVID-19 (PASC). Cardiovasc. Diabetol. 21, 148 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Goldstein, D. S. The possible association between COVID-19 and postural tachycardia syndrome. Heart Rhythm. 18, 508–509 (2021).

    Article  PubMed  Google Scholar 

  108. Goldstein, D. S. et al. Sympathoadrenal imbalance before neurocardiogenic syncope. Am. J. Cardiol. 91, 53–58 (2003).

    Article  PubMed  Google Scholar 

  109. Novak, P. et al. Multisystem involvement in post-acute sequelae of coronavirus disease 19. Ann. Neurol. 91, 367–379 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Goldstein, D. S. & Cheshire, W. P. Jr. The autonomic medical history. Clin. Auton. Res. 27, 223–233 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Blitshteyn, S. et al. Multi-disciplinary collaborative consensus guidance statement on the assessment and treatment of autonomic dysfunction in patients with post-acute sequelae of SARS-CoV-2 infection (PASC). P. M. R. 14, 1270–1291 (2022).

    Article  Google Scholar 

  112. Sletten, D. M., Suarez, G. A., Low, P. A., Mandrekar, J. & Singer, W. COMPASS 31: a refined and abbreviated composite autonomic symptom score. Mayo Clin. Proc. 87, 1196–1201 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Kaufmann, H., Malamut, R., Norcliffe-Kaufmann, L., Rosa, K. & Freeman, R. The Orthostatic Hypotension Questionnaire (OHQ): validation of a novel symptom assessment scale. Clin. Auton. Res. 22, 79–90 (2012).

    Article  PubMed  Google Scholar 

  114. Spahic, J. M. et al. Malmo POTS symptom score: assessing symptom burden in postural orthostatic tachycardia syndrome. J. Intern. Med. 293, 91–99 (2023).

    Article  PubMed  Google Scholar 

  115. Beghi, E. et al. Comparative features and outcomes of major neurological complications of COVID-19. Eur. J. Neurol. 30, 413–433 (2023).

    Article  PubMed  Google Scholar 

  116. Rass, V. et al. Neurological outcomes 1 year after COVID-19 diagnosis: a prospective longitudinal cohort study. Eur. J. Neurol. 29, 1685–1696 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Hufner, K. et al. Persistent somatic symptoms are key to individual illness perception at one year after COVID-19 in a cross-sectional analysis of a prospective cohort study. J. Psychosom. Res. 169, 111234 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Campese, N., Leys, F., Wenning, G. K. & Fanciulli, A. Bedside assessment of autonomic dysfunction in multiple system atrophy. J. Parkinsons Dis. 12, 2277–2281 (2022).

    Article  PubMed  Google Scholar 

  119. Mathias, C. J. et al. Postural tachycardia syndrome – current experience and concepts. Nat. Rev. Neurol. 8, 22–34 (2012).

    Article  CAS  Google Scholar 

  120. Terkelsen, A. J. et al. The diagnostic challenge of small fibre neuropathy: clinical presentations, evaluations, and causes. Lancet Neurol. 16, 934–944 (2017).

    Article  PubMed  Google Scholar 

  121. Williams, B. et al. 2018 ESC/ESH guidelines for the management of arterial hypertension: the task force for the management of arterial hypertension of the European Society of Cardiology and the European Society of Hypertension: the task force for the management of arterial hypertension of the European Society of Cardiology and the European Society of Hypertension. J. Hypertens. 36, 1953–2041 (2018).

    Article  CAS  PubMed  Google Scholar 

  122. Fanciulli, A., Campese, N. & Wenning, G. K. The Schellong test: detecting orthostatic blood pressure and heart rate changes in German-speaking countries. Clin. Auton. Res. 29, 363–366 (2019).

    Article  PubMed  Google Scholar 

  123. Gibbons, C. H. et al. The recommendations of a consensus panel for the screening, diagnosis, and treatment of neurogenic orthostatic hypotension and associated supine hypertension. J. Neurol. 264, 1567–1582 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Cooke, J. et al. Sitting and standing blood pressure measurements are not accurate for the diagnosis of orthostatic hypotension. QJM 102, 335–339 (2009).

    Article  CAS  PubMed  Google Scholar 

  125. Shaw, B. H. et al. Optimal diagnostic thresholds for diagnosis of orthostatic hypotension with a ‘sit-to-stand test’. J. Hypertens. 35, 1019–1025 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Norcliffe-Kaufmann, L. et al. Orthostatic heart rate changes in patients with autonomic failure caused by neurodegenerative synucleinopathies. Ann. Neurol. 83, 522–531 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Fanciulli, A. et al. Validation of the neurogenic orthostatic hypotension ratio with active standing. Ann. Neurol. 88, 643–645 (2020).

    Article  PubMed  Google Scholar 

  128. Gibbons, C. H. & Freeman, R. Delayed orthostatic hypotension: a frequent cause of orthostatic intolerance. Neurology 67, 28–32 (2006).

    Article  PubMed  Google Scholar 

  129. Torabi, P., Ricci, F., Hamrefors, V., Sutton, R. & Fedorowski, A. Classical and delayed orthostatic hypotension in patients with unexplained syncope and severe orthostatic intolerance. Front. Cardiovasc. Med. 7, 21 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Fanciulli, A. et al. Consensus statement on the definition of neurogenic supine hypertension in cardiovascular autonomic failure by the American Autonomic Society (AAS) and the European Federation of Autonomic Societies (EFAS): endorsed by the European Academy of Neurology (EAN) and the European Society of Hypertension (ESH). Clin. Auton. Res. 28, 355–362 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Sutton, R. et al. Tilt testing remains a valuable asset. Eur. Heart J. 42, 1654–1660 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Russo, V. et al. Short-duration head-up tilt test potentiated with sublingual nitroglycerin in suspected vasovagal syncope: the fast Italian protocol. Eur. Heart J. 44, 2473–2479 (2023).

    Article  CAS  PubMed  Google Scholar 

  133. Fedorowski, A., Sheldon, R. & Sutton, R. Tilt testing evolves: faster and still accurate. Eur. Heart J. 44, 2480–2482 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Finucane, C. et al. A practical guide to active stand testing and analysis using continuous beat-to-beat non-invasive blood pressure monitoring. Clin. Auton. Res. 29, 427–441 (2019).

    Article  PubMed  Google Scholar 

  135. Finucane, C. et al. Age-related normative changes in phasic orthostatic blood pressure in a large population study: findings from The Irish Longitudinal Study on Ageing (TILDA). Circulation 130, 1780–1789 (2014).

    Article  PubMed  Google Scholar 

  136. Romero-Ortuno, R., Cogan, L., Foran, T., Kenny, R. A. & Fan, C. W. Continuous noninvasive orthostatic blood pressure measurements and their relationship with orthostatic intolerance, falls, and frailty in older people. J. Am. Geriat Soc. 59, 655–665 (2011).

    Article  PubMed  Google Scholar 

  137. Fanciulli, A. et al. Association of transient orthostatic hypotension with falls and syncope in patients with Parkinson disease. Neurology 95, e2854–e2865 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Kawasaki, T. et al. Chronotropic incompetence and autonomic dysfunction in patients without structural heart disease. Europace 12, 561–566 (2010).

    Article  PubMed  Google Scholar 

  139. Sheldon, R. S. et al. 2015 Heart Rhythm Society expert consensus statement on the diagnosis and treatment of postural tachycardia syndrome, inappropriate sinus tachycardia, and vasovagal syncope. Heart Rhythm. 12, e41–e63 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Carrington, M. et al. Clinical applications of heart rhythm monitoring tools in symptomatic patients and for screening in high-risk groups. Europace 24, 1721–1729 (2022).

    Article  PubMed  Google Scholar 

  141. Svennberg, E. et al. How to use digital devices to detect and manage arrhythmias: an EHRA practical guide. Europace 24, 979–1005 (2022).

    Article  PubMed  Google Scholar 

  142. Jordan, J. et al. Management of supine hypertension in patients with neurogenic orthostatic hypotension: scientific statement of the American Autonomic Society, European Federation of Autonomic Societies, and the European Society of Hypertension. J. Hypertens. 37, 1541–1546 (2019).

    Article  CAS  PubMed  Google Scholar 

  143. Lei, L. Y., Raj, S. R. & Sheldon, R. S. Midodrine for the prevention of vasovagal syncope: a systematic review and meta-analysis. Europace 24, 1171–1178 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Leys, F. & Fanciulli, A. The extended role of 24 h ambulatory blood pressure monitoring for reflex syncope. Eur. Heart J. 43, 3777–3780 (2022).

    Article  PubMed  Google Scholar 

  145. Rosenberry, R. & Nelson, M. D. Reactive hyperemia: a review of methods, mechanisms, and considerations. Am. J. Physiol. Regul. Integr. Comp. Physiol. 318, R605–R618 (2020).

    Article  PubMed  Google Scholar 

  146. Thijssen, D. H. J. et al. Expert consensus and evidence-based recommendations for the assessment of flow-mediated dilation in humans. Eur. Heart J. 40, 2534–2547 (2019).

    Article  PubMed  Google Scholar 

  147. Vincent, S. et al. Clinical assessment of norepinephrine transporter blockade through biochemical and pharmacological profiles. Circulation 109, 3202–3207 (2004).

    Article  CAS  PubMed  Google Scholar 

  148. Schroeder, C. et al. Selective norepinephrine reuptake inhibition as a human model of orthostatic intolerance. Circulation 105, 347–353 (2002).

    Article  CAS  PubMed  Google Scholar 

  149. Green, E. A. et al. Effects of norepinephrine reuptake inhibition on postural tachycardia syndrome. J. Am. Heart Assoc. 2, e000395 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Masuki, S. et al. Reduced stroke volume during exercise in postural tachycardia syndrome. J. Appl. Physiol. 103, 1128–1135 (2007).

    Article  PubMed  Google Scholar 

  151. Bourne, K. M. et al. Compression garment reduces orthostatic tachycardia and symptoms in patients with postural orthostatic tachycardia syndrome. J. Am. Coll. Cardiol. 77, 285–296 (2021).

    Article  PubMed  Google Scholar 

  152. Raj, S. R. et al. Canadian Cardiovascular Society position statement on Postural Orthostatic Tachycardia Syndrome (POTS) and related disorders of chronic orthostatic intolerance. Can. J. Cardiol. 36, 357–372 (2020).

    Article  PubMed  Google Scholar 

  153. Raj, S. R., Fedorowski, A. & Sheldon, R. S. Diagnosis and management of postural orthostatic tachycardia syndrome. CMAJ 194, E378–E385 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Garland, E. M. et al. Effect of high dietary sodium intake in patients with postural tachycardia syndrome. J. Am. Coll. Cardiol. 77, 2174–2184 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Fu, Q. et al. Cardiac origins of the postural orthostatic tachycardia syndrome. J. Am. Coll. Cardiol. 55, 2858–2868 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Shibata, S. et al. Short-term exercise training improves the cardiovascular response to exercise in the postural orthostatic tachycardia syndrome. J. Physiol. 590, 3495–3505 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Raj, S. R. Row, row, row your way to treating postural tachycardia syndrome. Heart Rhythm. 13, 951–952 (2016).

    Article  PubMed  Google Scholar 

  158. White, P. D. et al. Comparison of adaptive pacing therapy, cognitive behaviour therapy, graded exercise therapy, and specialist medical care for chronic fatigue syndrome (PACE): a randomised trial. Lancet 377, 823–836 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Trahair, L. G., Horowitz, M. & Jones, K. L. Postprandial hypotension: a systematic review. J. Am. Med. Dir. Assoc. 15, 394–409 (2014).

    Article  PubMed  Google Scholar 

  160. Ruzieh, M., Dasa, O., Pacenta, A., Karabin, B. & Grubb, B. Droxidopa in the treatment of postural orthostatic tachycardia syndrome. Am. J. Ther. 24, e157–e161 (2017).

    Article  PubMed  Google Scholar 

  161. Jordan, J. et al. Water potentiates the pressor effect of ephedra alkaloids. Circulation 109, 1823–1825 (2004).

    Article  CAS  PubMed  Google Scholar 

  162. Raj, S. R. et al. Propranolol decreases tachycardia and improves symptoms in the postural tachycardia syndrome: less is more. Circulation 120, 725–734 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Arnold, A. C. et al. Low-dose propranolol and exercise capacity in postural tachycardia syndrome: a randomized study. Neurology 80, 1927–1933 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Moon, J. et al. Efficacy of propranolol, bisoprolol, and pyridostigmine for postural tachycardia syndrome: a randomized clinical trial. Neurotherapeutics 15, 785–795 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Taub, P. R. et al. Randomized trial of ivabradine in patients with hyperadrenergic postural orthostatic tachycardia syndrome. J. Am. Coll. Cardiol. 77, 861–871 (2021).

    Article  CAS  PubMed  Google Scholar 

  166. Raj, S. R., Black, B. K., Biaggioni, I., Harris, P. A. & Robertson, D. Acetylcholinesterase inhibition improves tachycardia in postural tachycardia syndrome. Circulation 111, 2734–2740 (2005).

    Article  CAS  PubMed  Google Scholar 

  167. Kanjwal, K. et al. Pyridostigmine in the treatment of postural orthostatic tachycardia: a single-center experience. Pacing Clin. Electrophysiol. 34, 750–755 (2011).

    Article  PubMed  Google Scholar 

  168. Sheldon, R. et al. Fludrocortisone for the prevention of vasovagal syncope: a randomized, placebo-controlled trial. J. Am. Coll. Cardiol. 68, 1–9 (2016).

    Article  CAS  PubMed  Google Scholar 

  169. Freitas, J. et al. Clinical improvement in patients with orthostatic intolerance after treatment with bisoprolol and fludrocortisone. Clin. Auton. Res. 10, 293–299 (2000).

    Article  CAS  PubMed  Google Scholar 

  170. Coffin, S. T. et al. Desmopressin acutely decreases tachycardia and improves symptoms in the postural tachycardia syndrome. Heart Rhythm. 9, 1484–1490 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Jacob, G. et al. Effects of volume loading and pressor agents in idiopathic orthostatic tachycardia. Circulation 96, 575–580 (1997).

    Article  CAS  PubMed  Google Scholar 

  172. Annamaria, M. et al. Treatment of inappropriate sinus tachycardia with ivabradine. J. Interv. Card. Electrophysiol. 46, 47–53 (2016).

    Article  PubMed  Google Scholar 

  173. Shabtaie, S. A., Witt, C. M. & Asirvatham, S. J. Efficacy of medical and ablation therapy for inappropriate sinus tachycardia: a single-center experience. J. Cardiovasc. Electrophysiol. 32, 1053–1061 (2021).

    Article  PubMed  Google Scholar 

  174. Sheldon, R. et al. Prevention of Syncope Trial (POST): a randomized, placebo-controlled study of metoprolol in the prevention of vasovagal syncope. Circulation 113, 1164–1170 (2006).

    Article  PubMed  Google Scholar 

  175. Brignole, M., Sutton, R. & Fedorowski, A. Are convictions more dangerous enemies of truth than lies? Eur. Heart J. 42, 1711–1712 (2021).

    Article  PubMed  Google Scholar 

  176. Brignole, M. et al. Cardiac pacing in severe recurrent reflex syncope and tilt-induced asystole. Eur. Heart J. 42, 508–516 (2021).

    Article  PubMed  Google Scholar 

  177. Baron-Esquivias, G. et al. Dual-chamber pacing with closed loop stimulation in recurrent reflex vasovagal syncope: the SPAIN study. J. Am. Coll. Cardiol. 70, 1720–1728 (2017).

    Article  PubMed  Google Scholar 

  178. Brignole, M. et al. Clinical controversy: methodology and indications of cardioneuroablation for reflex syncope. Europace 25, euad033 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Piotrowski, R., Baran, J., Sikorska, A., Krynski, T. & Kulakowski, P. Cardioneuroablation for reflex syncope: efficacy and effects on autonomic cardiac regulation – a prospective randomized trial. JACC Clin. Electrophysiol. 9, 85–95 (2023).

    Article  PubMed  Google Scholar 

  180. Hauser, R. A., Isaacson, S., Lisk, J. P., Hewitt, L. A. & Rowse, G. Droxidopa for the short-term treatment of symptomatic neurogenic orthostatic hypotension in Parkinson’s disease (nOH306B). Mov. Disord. 30, 646–654 (2015).

    Article  CAS  PubMed  Google Scholar 

  181. Veazie, S. et al. Fludrocortisone for orthostatic hypotension. Cochrane Database Syst. Rev. 5, CD012868 (2021).

    PubMed  Google Scholar 

  182. Low, P. A. & Singer, W. Management of neurogenic orthostatic hypotension: an update. Lancet Neurol. 7, 451–458 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

A. Fedorowski was supported by the Swedish Heart Lung Foundation (grant no. 20220319). A. Fanciulli received research grants from the Austrian Exchange Program, Dr Johannes and Hertha Tuba Foundation, FWF-Austrian Science Fund, Medical University of Innsbruck and US MSA Coalition. S.R.R. received funding from the Canadian Institutes of Health Research to study autonomic function in long COVID (GA4-177741) and research grants from the Heart and Stroke Foundation of Canada, Dysautonomia International and Standing Up To POTS. C.A.S. received research grants from Alnylam, American Heart Association, National Institutes of Health, National Heart, Lung, and Blood Institute and National Institute of Diabetes and Digestive and Kidney Diseases.

Author information

Authors and Affiliations

Authors

Contributions

A. Fedorowski, A. Fanciulli, S.R.R. and C.A.S. researched data for the article. All the authors contributed to discussions of content, wrote the manuscript, and reviewed/edited it before submission.

Corresponding author

Correspondence to Artur Fedorowski.

Ethics declarations

Competing interests

A. Fedorowski has received speaker fees from Bristol-Myers Squibb, Finapres Medical Systems and Medtronic, and is a consultant to Argenx and Medtronic in the field of syncope, cardiovascular autonomic dysfunction and postural orthostatic tachycardia syndrome. A. Fanciulli has received royalties from Springer Verlag, and speaker fees and honoraria from the Austrian Autonomic Society, Broadview Ventures, Elsevier, GE Healthcare, Stopp-HSP and Theravance Biopharma. S.R.R. has served as a consultant for Amneal Pharmaceuticals, Antag Therapeutics, Argenx BV, Regeneron and Theravance Biopharma, and receives an honorarium from Elsevier for being Associate Editor of Autonomic Neuroscience. C.A.S. has received speaker fees and honoraria from Argenx and Theravance Biopharma, and is a consultant for Antag Therapeutics and Theravance Biopharma. R. Sutton has received consulting fees from Medtronic and payment for expert testimony in medicolegal cases in the UK; was a member of the clinical events committee for the BioSync study; and is secretary to the Executive Board of the World Society of Arrhythmias. R. Sheldon declares no competing interests.

Peer review

Peer review information

Nature Reviews Cardiology thanks Svetlana Blitshteyn, David Goldstein and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Alternating knee lifts: https://youtu.be/9M4NqQkcRaM

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedorowski, A., Fanciulli, A., Raj, S.R. et al. Cardiovascular autonomic dysfunction in post-COVID-19 syndrome: a major health-care burden. Nat Rev Cardiol (2024). https://doi.org/10.1038/s41569-023-00962-3

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41569-023-00962-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing