Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The role of the NLRP3 inflammasome and pyroptosis in cardiovascular diseases

Abstract

An intense, stereotyped inflammatory response occurs in response to ischaemic and non-ischaemic injury to the myocardium. The NACHT, LRR and PYD domains-containing protein 3 (NLRP3) inflammasome is a finely regulated macromolecular protein complex that senses the injury and triggers and amplifies the inflammatory response by activation of caspase 1; cleavage of pro-inflammatory cytokines, such as pro-IL-1β and pro-IL-18, to their mature forms; and induction of inflammatory cell death (pyroptosis). Inhibitors of the NLRP3 inflammasome and blockers of IL-1β and IL-18 activity have been shown to reduce injury to the myocardium and pericardium, favour resolution of the inflammation and preserve cardiac function. In this Review, we discuss the components of the NLRP3 inflammasome and how it is formed and activated in various ischaemic and non-ischaemic cardiac pathologies (acute myocardial infarction, cardiac dysfunction and remodelling, atherothrombosis, myocarditis and pericarditis, cardiotoxicity and cardiac sarcoidosis). We also summarize current preclinical and clinical evidence from studies of agents that target the NLRP3 inflammasome and related cytokines.

Key points

  • The NACHT, LRR and PYD domains-containing protein 3 (NLRP3) inflammasome is a macromolecular, intracellular structure that functions as a sensor for injury.

  • NLRP3 inflammasome activation amplifies the inflammatory response and tissue injury by regulating the processing and release of IL-1β and IL-18 and causing cell death by pyroptosis.

  • Preclinical studies with genetically modified mouse models and the use of targeted inhibitors have shown that inhibiting activation of the NLRP3 inflammasome reduces inflammatory injury and adverse remodelling.

  • Colchicine, a non-selective NLRP3 inflammasome inhibitor, has been shown to be efficacious in the treatment of pericarditis and in reducing atherothrombotic risk in patients with coronary artery disease.

  • IL-1 blockers have been shown in phase Ib–III trials to reduce cardiovascular risk and morbidity across a wide range of cardiovascular diseases, including myocardial infarction, heart failure, acute myocarditis and recurrent pericarditis.

  • Targeted NLRP3 inflammasome inhibitors and blockers of IL-18 and IL-6, downstream of IL-1, are in clinical testing for various cardiovascular diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Activation of the NLRP3 inflammasome pathways in cardiomyocytes.
Fig. 2: Temporal expression of the NLRP3 inflammasome components and window of opportunity for effective inhibition in ischaemia–reperfusion injury.
Fig. 3: Prevention of NLRP3 inflammasome formation reduces damage in animal models of ischaemia–reperfusion injury.
Fig. 4: Role of IL-1β in acute injury and progression to heart failure.
Fig. 5: Mechanism of action of NLRP3 inflammasome inhibitors tested in experimental models of ischaemic and non-ischaemic injury.
Fig. 6: Role of IL-1α and IL-1β in the pathophysiology of recurrent pericarditis.
Fig. 7: Overview of phase II–III trials of IL-1 blockers in acute myocardial infarction and heart failure.

Similar content being viewed by others

References

  1. Tsao, C. W. et al. Heart disease and stroke statistics — 2022 update: a report from the American Heart Association. Circulation 145, e153–e639 (2022).

    Article  PubMed  Google Scholar 

  2. Lenz, A., Franklin, G. A. & Cheadle, W. G. Systemic inflammation after trauma. Injury 38, 1336–1345 (2007).

    Article  PubMed  Google Scholar 

  3. Abbate, A. et al. Interleukin-1 and the inflammasome as therapeutic targets in cardiovascular disease. Circ. Res. 126, 1260–1280 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Toldo, S. & Abbate, A. The NLRP3 inflammasome in acute myocardial infarction. Nat. Rev. Cardiol. 15, 203–214 (2018).

    Article  CAS  PubMed  Google Scholar 

  5. Westman, P. C. et al. Inflammation as a driver of adverse left ventricular remodeling after acute myocardial infarction. J. Am. Coll. Cardiol. 67, 2050–2060 (2016).

    Article  PubMed  Google Scholar 

  6. Seropian, I. M., Toldo, S., Van Tassell, B. W. & Abbate, A. Anti-inflammatory strategies for ventricular remodeling following ST-segment elevation acute myocardial infarction. J. Am. Coll. Cardiol. 63, 1593–1603 (2014).

    Article  CAS  PubMed  Google Scholar 

  7. Gao, X.-M., White, D. A., Dart, A. M. & Du, X.-J. Post-infarct cardiac rupture: recent insights on pathogenesis and therapeutic interventions. Pharmacol. Ther. 134, 156–179 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. Abbate, A. et al. Alterations in the interleukin-1/interleukin-1 receptor antagonist balance modulate cardiac remodeling following myocardial infarction in the mouse. PLoS ONE 6, e27923 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Savvatis, K. et al. Interleukin-23 deficiency leads to impaired wound healing and adverse prognosis after myocardial infarction. Circ. Heart Fail. 7, 161–171 (2014).

    Article  CAS  PubMed  Google Scholar 

  10. Dinarello, C. A. Overview of the IL-1 family in innate inflammation and acquired immunity. Immunol. Rev. 281, 8–27 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Swanson, K. V., Deng, M. & Ting, J. P.-Y. The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat. Rev. Immunol. 19, 477–489 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zheng, D., Liwinski, T. & Elinav, E. Inflammasome activation and regulation: toward a better understanding of complex mechanisms. Cell Discov. 6, 1–22 (2020).

    Article  Google Scholar 

  13. Viganò, E. et al. Human caspase-4 and caspase-5 regulate the one-step non-canonical inflammasome activation in monocytes. Nat. Commun. 6, 8761 (2015).

    Article  PubMed  Google Scholar 

  14. Matikainen, S., Nyman, T. A. & Cypryk, W. Function and regulation of noncanonical caspase-4/5/11 inflammasome. J. Immunol. 204, 3063–3069 (2020).

    Article  CAS  PubMed  Google Scholar 

  15. Ma, Q. Pharmacological inhibition of the NLRP3 inflammasome: structure, molecular activation, and inhibitor-NLRP3 interaction. Pharmacol. Rev. 75, 487–520 (2023).

    Article  CAS  PubMed  Google Scholar 

  16. Lu, A. et al. Unified polymerization mechanism for the assembly of ASC-dependent inflammasomes. Cell 156, 1193–1206 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dinarello, C. A. Interleukin-1 in the pathogenesis and treatment of inflammatory diseases. Blood 117, 3720–3732 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Westermann, D. et al. Cardioprotective and anti-inflammatory effects of interleukin converting enzyme inhibition in experimental diabetic cardiomyopathy. Diabetes 56, 1834–1841 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Xia, S. et al. Gasdermin D pore structure reveals preferential release of mature interleukin-1. Nature 593, 607–611 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Santa Cruz Garcia, A. B., Schnur, K. P., Malik, A. B. & Mo, G. C. H. Gasdermin D pores are dynamically regulated by local phosphoinositide circuitry. Nat. Commun. 13, 52 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Erickson, H. P. Size and shape of protein molecules at the nanometer level determined by sedimentation, gel filtration, and electron microscopy. Biol. Proced. Online 11, 32–51 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rider, P., Carmi, Y., Voronov, E. & Apte, R. N. Interleukin-1α. Semin. Immunol. 25, 430–438 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. Gross, O. et al. Inflammasome activators induce interleukin-1α secretion via distinct pathways with differential requirement for the protease function of caspase-1. Immunity 36, 388–400 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. Merkle, S. et al. A role for caspase-1 in heart failure. Circ. Res. 100, 645–653 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Liu, X. et al. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature 535, 153–158 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kayagaki, N. et al. NINJ1 mediates plasma membrane rupture during lytic cell death. Nature 591, 131–136 (2021).

    Article  CAS  PubMed  Google Scholar 

  27. Magnani, L., Colantuoni, M. & Mortellaro, A. Gasdermins: new therapeutic targets in host defense, inflammatory diseases, and cancer. Front. Immunol. 13, 898298 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tsuchiya, K. et al. Gasdermin D mediates the maturation and release of IL-1α downstream of inflammasomes. Cell Rep. 34, 108887 (2021).

    Article  CAS  PubMed  Google Scholar 

  29. Shao, W., Yeretssian, G., Doiron, K., Hussain, S. N. & Saleh, M. The caspase-1 digestome identifies the glycolysis pathway as a target during infection and septic shock. J. Biol. Chem. 282, 36321–36329 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Shen, J. et al. Caspase-1 recognizes extended cleavage sites in its natural substrates. Atherosclerosis 210, 422–429 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Downs, K. P., Nguyen, H., Dorfleutner, A. & Stehlik, C. An overview of the non-canonical inflammasome. Mol. Asp. Med. 76, 100924 (2020).

    Article  CAS  Google Scholar 

  32. Toldo, S. et al. Independent roles of the priming and the triggering of the NLRP3 inflammasome in the heart. Cardiovasc. Res. 105, 203–212 (2015).

    Article  CAS  PubMed  Google Scholar 

  33. Li, X. et al. NOD2 deficiency protects against cardiac remodeling after myocardial infarction in mice. Cell Physiol. Biochem. 32, 1857–1866 (2013).

    Article  CAS  PubMed  Google Scholar 

  34. Chevriaux, A. et al. Cathepsin B is required for NLRP3 inflammasome activation in macrophages, through NLRP3 interaction. Front. Cell Dev. Biol. 8, 167 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Rajamäki, K. et al. Cholesterol crystals activate the NLRP3 inflammasome in human macrophages: a novel link between cholesterol metabolism and inflammation. PLoS ONE 5, e11765 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Toldo, S., Mauro, A. G., Cutter, Z. & Abbate, A. Inflammasome, pyroptosis, and cytokines in myocardial ischemia–reperfusion injury. Am. J. Physiol. Heart Circ. Physiol. 315, H1553–H1568 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Takahashi, M. NLRP3 inflammasome as a novel player in myocardial infarction. Int. Heart J. 55, 101–105 (2014).

    Article  CAS  PubMed  Google Scholar 

  38. Mezzaroma, E., Abbate, A. & Toldo, S. The inflammasome in heart failure. Curr. Opin. Physiol. 19, 105–112 (2021).

    Article  CAS  PubMed  Google Scholar 

  39. Netea, M. G. et al. Differential requirement for the activation of the inflammasome for processing and release of IL-1beta in monocytes and macrophages. Blood 113, 2324–2335 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mezzaroma, E. et al. The inflammasome promotes adverse cardiac remodeling following acute myocardial infarction in the mouse. Proc. Natl Acad. Sci. USA 108, 19725–19730 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Suetomi, T. et al. Inflammation and NLRP3 inflammasome activation initiated in response to pressure overload by Ca2+/calmodulin-dependent protein kinase II δ signaling in cardiomyocytes are essential for adverse cardiac remodeling. Circulation 138, 2530–2544 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Willeford, A. et al. CaMKIIδ-mediated inflammatory gene expression and inflammasome activation in cardiomyocytes initiate inflammation and induce fibrosis. JCI Insight 3, e97054 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Marchetti, C. et al. Pharmacologic inhibition of the NLRP3 inflammasome preserves cardiac function after ischemic and nonischemic injury in the mouse. J. Cardiovasc. Pharmacol. 66, 1 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang, H. et al. Inflammasome-independent NLRP3 is required for epithelial-mesenchymal transition in colon cancer cells. Exp. Cell Res. 342, 184–192 (2016).

    Article  CAS  PubMed  Google Scholar 

  45. Wang, W. et al. Inflammasome-independent NLRP3 augments TGF-β signaling in kidney epithelium. J. Immunol. 190, 1239–1249 (2013).

    Article  CAS  PubMed  Google Scholar 

  46. Zuurbier, C. J. et al. Deletion of the innate immune NLRP3 receptor abolishes cardiac ischemic preconditioning and is associated with decreased Il-6/STAT3 signaling. PLoS ONE 7, e40643 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. He, Y., Zeng, M. Y., Yang, D., Motro, B. & Núñez, G. NEK7 is an essential mediator of NLRP3 activation downstream of potassium efflux. Nature 530, 354–357 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ito, M. et al. Bruton’s tyrosine kinase is essential for NLRP3 inflammasome activation and contributes to ischaemic brain injury. Nat. Commun. 6, 7360 (2015).

    Article  PubMed  Google Scholar 

  49. O’Riordan, C. E. et al. Bruton’s tyrosine kinase inhibition attenuates the cardiac dysfunction caused by cecal ligation and puncture in mice. Front. Immunol. 10, 2129 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Liu, Y. et al. TXNIP mediates NLRP3 inflammasome activation in cardiac microvascular endothelial cells as a novel mechanism in myocardial ischemia/reperfusion injury. Basic Res. Cardiol. 109, 415 (2014).

    Article  PubMed  Google Scholar 

  51. He, K. et al. Inhibition of NLRP3 inflammasome by thioredoxin-interacting protein in mouse Kupffer cells as a regulatory mechanism for non-alcoholic fatty liver disease development. Oncotarget 8, 37657–37672 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Elshaer, S. L. et al. Deletion of TXNIP mitigates high-fat diet-impaired angiogenesis and prevents inflammation in a mouse model of critical limb ischemia. Antioxid. Basel Switz. 6, 47 (2017).

    Article  Google Scholar 

  53. Masters, S. L. et al. Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1β in type 2 diabetes. Nat. Immunol. 11, 897–904 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Muri, J., Thut, H., Feng, Q. & Kopf, M. Thioredoxin-1 distinctly promotes NF-κB target DNA binding and NLRP3 inflammasome activation independently of Txnip. eLife 9, e53627 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Sun, Q., Fan, J., Billiar, T. R. & Scott, M. J. Inflammasome and autophagy regulation: a two-way street. Mol. Med. 23, 188–195 (2017).

    Article  CAS  PubMed  Google Scholar 

  56. Saitoh, T. et al. Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production. Nature 456, 264–268 (2008).

    Article  CAS  PubMed  Google Scholar 

  57. Nakahira, K. et al. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat. Immunol. 12, 222–230 (2011).

    Article  CAS  PubMed  Google Scholar 

  58. Shi, C.-S. et al. Activation of autophagy by inflammatory signals limits IL-1β production by targeting ubiquitinated inflammasomes for destruction. Nat. Immunol. 13, 255–263 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Li, L. et al. ATP6AP2 knockdown in cardiomyocyte deteriorates heart function via compromising autophagic flux and NLRP3 inflammasome activation. Cell Death Discov. 8, 161 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mao, S., Chen, P., Pan, W., Gao, L. & Zhang, M. Exacerbated post‐infarct pathological myocardial remodelling in diabetes is associated with impaired autophagy and aggravated NLRP3 inflammasome activation. ESC Heart Fail. 9, 303–317 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Zhang, D. et al. Activation of autophagy inhibits nucleotide‐binding oligomerization domain‐like receptor protein 3 inflammasome activation and attenuates myocardial ischemia–reperfusion injury in diabetic rats. J. Diabetes Investig. 11, 1126–1136 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Paik, S., Kim, J. K., Silwal, P., Sasakawa, C. & Jo, E.-K. An update on the regulatory mechanisms of NLRP3 inflammasome activation. Cell. Mol. Immunol. 18, 1141–1160 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kim, J. S., He, L., Qian, T. & Lemasters, J. J. Role of the mitochondrial permeability transition in apoptotic and necrotic death after ischemia/reperfusion injury to hepatocytes. Curr. Mol. Med. 3, 527–535 (2003).

    Article  CAS  PubMed  Google Scholar 

  64. Zhou, R., Yazdi, A. S., Menu, P. & Tschopp, J. A role for mitochondria in NLRP3 inflammasome activation. Nature 469, 221–225 (2011).

    Article  CAS  PubMed  Google Scholar 

  65. Sadatomi, D. et al. Mitochondrial function is required for extracellular ATP-induced NLRP3 inflammasome activation. J. Biochem. 161, 503–512 (2017).

    CAS  PubMed  Google Scholar 

  66. Park, S. et al. Defective mitochondrial fission augments NLRP3 inflammasome activation. Sci. Rep. 5, 15489 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Mills, E. L., Kelly, B. & O’Neill, L. A. J. Mitochondria are the powerhouses of immunity. Nat. Immunol. 18, 488–498 (2017).

    Article  CAS  PubMed  Google Scholar 

  68. Iyer, S. S. et al. Mitochondrial cardiolipin is required for Nlrp3 inflammasome activation. Immunity 39, 311–323 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Dagvadorj, J. et al. Recruitment of pro-IL-1α to mitochondrial cardiolipin, via shared LC3 binding domain, inhibits mitophagy and drives maximal NLRP3 activation. Proc. Natl Acad. Sci. USA 118, e2015632118 (2021).

    Article  CAS  PubMed  Google Scholar 

  70. Pereira, A. C. et al. Mitochondria fusion upon SERCA inhibition prevents activation of the NLRP3 inflammasome in human monocytes. Cells 11, 433 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kawaguchi, M. et al. Inflammasome activation of cardiac fibroblasts is essential for myocardial ischemia/reperfusion injury. Circulation 123, 594–604 (2011).

    Article  CAS  PubMed  Google Scholar 

  72. Wang, L., Qu, P., Zhao, J. & Chang, Y. NLRP3 and downstream cytokine expression elevated in the monocytes of patients with coronary artery disease. Arch. Med. Sci. 10, 791–800 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Toldo, S. et al. Inhibition of the NLRP3 inflammasome limits the inflammatory injury following myocardial ischemia–reperfusion in the mouse. Int. J. Cardiol. 209, 215–220 (2016).

    Article  PubMed  Google Scholar 

  74. Sandanger, Ø. et al. The NLRP3 inflammasome is up-regulated in cardiac fibroblasts and mediates myocardial ischaemia–reperfusion injury. Cardiovasc. Res. 99, 164–174 (2013).

    Article  CAS  PubMed  Google Scholar 

  75. Mastrocola, R. et al. Pharmacological inhibition of NLRP3 inflammasome attenuates myocardial ischemia/reperfusion injury by activation of RISK and mitochondrial pathways. Oxid. Med. Cell Longev. 2016, 5271251 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Takahashi, M. Cell-specific roles of NLRP3 inflammasome in myocardial infarction. J. Cardiovasc. Pharmacol. 74, 188 (2019).

    Article  CAS  PubMed  Google Scholar 

  77. Toldo, S. et al. The inflammasome in myocardial injury and cardiac remodeling. Antioxid. Redox Signal. 22, 1146–1161 (2015).

    Article  CAS  PubMed  Google Scholar 

  78. Toldo, S. et al. Induction of microRNA-21 with exogenous hydrogen sulfide attenuates myocardial ischemic and inflammatory injury in mice. Circ. Cardiovasc. Genet. 7, 311–320 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Jong, W. M. C. et al. Nlrp3 plays no role in acute cardiac infarction due to low cardiac expression. Int. J. Cardiol. 177, 41–43 (2014).

    Article  PubMed  Google Scholar 

  80. Toldo, S. et al. The NLRP3 inflammasome inhibitor, OLT1177 (Dapansutrile), reduces infarct size and preserves contractile function after ischemia–reperfusion injury in the mouse. J. Cardiovasc. Pharmacol. 73, 215–222 (2019).

    Article  CAS  PubMed  Google Scholar 

  81. Abbate, A. et al. Anakinra, a recombinant human interleukin-1 receptor antagonist, inhibits apoptosis in experimental acute myocardial infarction. Circulation 117, 2670–2683 (2008).

    Article  CAS  PubMed  Google Scholar 

  82. Toldo, S. et al. Interleukin-1β blockade improves left ventricular systolic/diastolic function and restores contractility reserve in severe ischemic cardiomyopathy in the mouse. J. Cardiovasc. Pharmacol. 64, 1–6 (2014).

    Article  CAS  PubMed  Google Scholar 

  83. Toldo, S. et al. Interleukin-1β blockade improves cardiac remodelling after myocardial infarction without interrupting the inflammasome in the mouse. Exp. Physiol. 98, 734–745 (2013).

    Article  CAS  PubMed  Google Scholar 

  84. Lugrin, J. et al. Cutting edge: IL-1α is a crucial danger signal triggering acute myocardial inflammation during myocardial infarction. J. Immunol. 194, 499–503 (2015).

    Article  CAS  PubMed  Google Scholar 

  85. Van Tassell, B. W. et al. Interleukin-1 trap attenuates cardiac remodeling after experimental acute myocardial infarction in mice. J. Cardiovasc. Pharmacol. 55, 117–122 (2010).

    Article  PubMed  Google Scholar 

  86. Mauro, A. G. et al. Reduction of myocardial ischemia–reperfusion injury by inhibiting interleukin-1 alpha. J. Cardiovasc. Pharmacol. 69, 156–160 (2017).

    Article  CAS  PubMed  Google Scholar 

  87. Sager, H. B. et al. Targeting interleukin-1β reduces leukocyte production after acute myocardial infarction. Circulation 132, 1880–1890 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. England, H., Summersgill, H. R., Edye, M. E., Rothwell, N. J. & Brough, D. Release of interleukin-1α or interleukin-1β depends on mechanism of cell death. J. Biol. Chem. 289, 15942–15950 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Pomerantz, B. J., Reznikov, L. L., Harken, A. H. & Dinarello, C. A. Inhibition of caspase 1 reduces human myocardial ischemic dysfunction via inhibition of IL-18 and IL-1beta. Proc. Natl Acad. Sci. USA 98, 2871–2876 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Venkatachalam, K. et al. Neutralization of interleukin-18 ameliorates ischemia/reperfusion-induced myocardial injury. J. Biol. Chem. 284, 7853–7865 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Gu, H. et al. The protective role of interleukin-18 binding protein in a murine model of cardiac ischemia/reperfusion injury. Transpl. Int. 28, 1436–1444 (2015).

    Article  CAS  PubMed  Google Scholar 

  92. Quader, M., Mezzaroma, E., Kenning, K. & Toldo, S. Modulation of interleukin-1 and -18 mediated injury in donation after circulatory death mouse hearts. J. Surg. Res. 257, 468–476 (2021).

    Article  CAS  PubMed  Google Scholar 

  93. Pörksen, G. et al. Periodic fever, mild arthralgias, and reversible moderate and severe organ inflammation associated with the V198M mutation in the CIAS1 gene in three German patients — expanding phenotype of CIAS1 related autoinflammatory syndrome. Eur. J. Haematol. 73, 123–127 (2004).

    Article  PubMed  Google Scholar 

  94. Kumar, A. et al. Tumor necrosis factor alpha and interleukin 1beta are responsible for in vitro myocardial cell depression induced by human septic shock serum. J. Exp. Med. 183, 949–958 (1996).

    Article  CAS  PubMed  Google Scholar 

  95. Fujimura, K. et al. NLRP3 inflammasome-driven IL-1β and IL-18 contribute to lipopolysaccharide-induced septic cardiomyopathy. J. Mol. Cell. Cardiol. 180, 58–68 (2023).

    Article  CAS  PubMed  Google Scholar 

  96. Van Tassell, B. W., Toldo, S., Mezzaroma, E. & Abbate, A. Targeting interleukin-1 in heart disease. Circulation 128, 1910–1923 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Toldo, S. et al. Interleukin-18 mediates interleukin-1-induced cardiac dysfunction. Am. J. Physiol. Heart Circ. Physiol. 306, H1025–H1031 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Van Tassell, B. W., Seropian, I. M., Toldo, S., Mezzaroma, E. & Abbate, A. Interleukin-1β induces a reversible cardiomyopathy in the mouse. Inflamm. Res. 62, 637–640 (2013).

    Article  PubMed  Google Scholar 

  99. Takahashi, M. NLRP3 inflammasome as a key driver of vascular disease. Cardiovasc. Res. 118, 372–385 (2022).

    Article  CAS  PubMed  Google Scholar 

  100. Duewell, P. et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 464, 1357–1361 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Alexander, M. R. et al. Genetic inactivation of IL-1 signaling enhances atherosclerotic plaque instability and reduces outward vessel remodeling in advanced atherosclerosis in mice. J. Clin. Invest. 122, 70–79 (2012).

    Article  CAS  PubMed  Google Scholar 

  102. Dragoljevic, D. et al. Inhibition of interleukin-1β signalling promotes atherosclerotic lesion remodelling in mice with inflammatory arthritis. Clin. Transl. Immunol. 9, e1206 (2020).

    Article  CAS  Google Scholar 

  103. Hettwer, J. et al. Interleukin-1β suppression dampens inflammatory leucocyte production and uptake in atherosclerosis. Cardiovasc. Res. 118, 2778–2791 (2022).

    Article  CAS  PubMed  Google Scholar 

  104. Jiang, M. et al. Caspase-11-gasdermin D-mediated pyroptosis is involved in the pathogenesis of atherosclerosis. Front. Pharmacol. 12, 657486 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Toldo, S. et al. Formation of the inflammasome in acute myocarditis. Int. J. Cardiol. 171, e119–e121 (2014).

    Article  PubMed  Google Scholar 

  106. Pappritz, K. et al. Colchicine prevents disease progression in viral myocarditis via modulating the NLRP3 inflammasome in the cardiosplenic axis. ESC Heart Fail. 9, 925–941 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Yu, Y. et al. Inhibition of calpain alleviates coxsackievirus B3-induced myocarditis through suppressing the canonical NLRP3 inflammasome/caspase-1-mediated and noncanonical caspase-11-mediated pyroptosis pathways. Am. J. Transl. Res. 12, 1954–1964 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Kron, J. et al. Inflammasome formation in granulomas in cardiac sarcoidosis. Circ. Arrhythm. Electrophysiol. 12, e007582 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Huppertz, C. et al. The NLRP3 inflammasome pathway is activated in sarcoidosis and involved in granuloma formation. Eur. Respir. J. 55, 1900119 (2020).

    Article  CAS  PubMed  Google Scholar 

  110. Zhang, W. et al. Cardiac fibroblasts contribute to myocardial dysfunction in mice with sepsis: the role of NLRP3 inflammasome activation. PLoS ONE 9, e107639 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Mauro, A. G. et al. NLRP3-mediated inflammation in cardio-oncology: sterile yet harmful. Transl. Res. J. Lab. Clin. Med. 252, 9–20 (2023).

    CAS  Google Scholar 

  112. Zeng, C. et al. NLRP3 inflammasome-mediated pyroptosis contributes to the pathogenesis of non-ischemic dilated cardiomyopathy. Redox Biol. 34, 101523 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Li, R. et al. Triptolide attenuates pressure overload-induced myocardial remodeling in mice via the inhibition of NLRP3 inflammasome expression. Biochem. Biophys. Res. Commun. 485, 69–75 (2017).

    Article  CAS  PubMed  Google Scholar 

  114. Dang, S. et al. Blockade of β-adrenergic signaling suppresses inflammasome and alleviates cardiac fibrosis. Ann. Transl. Med. 8, 127 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Zhang, L., Ai, C., Bai, M., Niu, J. & Zhang, Z. NLRP3 inflammasome/pyroptosis: a key driving force in diabetic cardiomyopathy. Int. J. Mol. Sci. 23, 10632 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Sokolova, M. et al. NLRP3 inflammasome promotes myocardial remodeling during diet-induced obesity. Front. Immunol. 10, 1621 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Carbone, S. et al. An orally available NLRP3 inflammasome inhibitor prevents western diet-induced cardiac dysfunction in mice. J. Cardiovasc. Pharmacol. 72, 303–307 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Shen, S. et al. Colchicine alleviates inflammation and improves diastolic dysfunction in heart failure rats with preserved ejection fraction. Eur. J. Pharmacol. 929, 175126 (2022).

    Article  CAS  PubMed  Google Scholar 

  119. Xia, Y.-Y. et al. Involvement of pyroptosis pathway in epicardial adipose tissue — myocardium axis in experimental heart failure with preserved ejection fraction. Biochem. Biophys. Res. Commun. 636, 62–70 (2022).

    Article  CAS  PubMed  Google Scholar 

  120. Yao, C. et al. Enhanced cardiomyocyte NLRP3 inflammasome signaling promotes atrial fibrillation. Circulation 138, 2227–2242 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Dubuisson, N. et al. Inhibiting the inflammasome with MCC950 counteracts muscle pyroptosis and improves Duchenne muscular dystrophy. Front. Immunol. 13, 1049076 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Mauro, A. G. et al. The role of NLRP3 inflammasome in pericarditis: potential for therapeutic approaches. JACC Basic Transl. Sci. 6, 137–150 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Vecchié, A. et al. Interleukin-1 and the NLRP3 inflammasome in pericardial disease. Curr. Cardiol. Rep. 23, 157 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Lamkanfi, M. et al. Glyburide inhibits the cryopyrin/Nalp3 inflammasome. J. Cell Biol. 187, 61–70 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Marchetti, C. et al. A novel pharmacologic inhibitor of the NLRP3 inflammasome limits myocardial injury after ischemia–reperfusion in the mouse. J. Cardiovasc. Pharmacol. 63, 316–322 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Fulp, J. et al. Structural insights of benzenesulfonamide analogues as NLRP3 inflammasome inhibitors: design, synthesis, and biological characterization. J. Med. Chem. 61, 5412–5423 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Coll, R. C. et al. A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases. Nat. Med. 21, 248–255 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. van Hout, G. P. J. et al. The selective NLRP3-inflammasome inhibitor MCC950 reduces infarct size and preserves cardiac function in a pig model of myocardial infarction. Eur. Heart J. 38, 828–836 (2017).

    PubMed  Google Scholar 

  129. Gao, R. et al. The selective NLRP3-inflammasome inhibitor MCC950 reduces myocardial fibrosis and improves cardiac remodeling in a mouse model of myocardial infarction. Int. Immunopharmacol. 74, 105575 (2019).

    Article  CAS  PubMed  Google Scholar 

  130. Wang, M. et al. MCC950, a selective NLRP3 inhibitor, attenuates adverse cardiac remodeling following heart failure through improving the cardiometabolic dysfunction in obese mice. Front. Cardiovasc. Med. 9, 727424 (2022).

    MathSciNet  Google Scholar 

  131. Zheng, G. et al. The selective NLRP3-inflammasome inhibitor MCC950 mitigates post-resuscitation myocardial dysfunction and improves survival in a rat model of cardiac arrest and resuscitation. Cardiovasc. Drugs Ther. 37, 423–433 (2023).

    Article  CAS  PubMed  Google Scholar 

  132. van der Heijden, T. et al. NLRP3 inflammasome inhibition by MCC950 reduces atherosclerotic lesion development in apolipoprotein E-deficient mice — brief report. Arterioscler. Thromb. Vasc. Biol. 37, 1457–1461 (2017).

    Article  PubMed  Google Scholar 

  133. Ren, P. et al. Targeting the NLRP3 inflammasome with inhibitor MCC950 prevents aortic aneurysms and dissections in mice. J. Am. Heart Assoc. 9, e014044 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Marchetti, C. et al. OLT1177, a β-sulfonyl nitrile compound, safe in humans, inhibits the NLRP3 inflammasome and reverses the metabolic cost of inflammation. Proc. Natl Acad. Sci. USA 115, E1530–E1539 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Marchetti, C. et al. NLRP3 inflammasome inhibitor OLT1177 suppresses joint inflammation in murine models of acute arthritis. Arthritis Res. Ther. 20, 169 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Aliaga, J. et al. Preservation of contractile reserve and diastolic function by inhibiting the NLRP3 inflammasome with OLT1177® (Dapansutrile) in a mouse model of severe ischemic cardiomyopathy due to non-reperfused anterior wall myocardial infarction. Mol. Basel Switz. 26, 3534 (2021).

    CAS  Google Scholar 

  137. Oronsky, B. et al. Discovery of RRx-001, a Myc and CD47 downregulating small molecule with tumor targeted cytotoxicity and healthy tissue cytoprotective properties in clinical development. J. Med. Chem. 64, 7261–7271 (2021).

    Article  CAS  PubMed  Google Scholar 

  138. Chen, Y. et al. RRx-001 ameliorates inflammatory diseases by acting as a potent covalent NLRP3 inhibitor. Cell. Mol. Immunol. 18, 1425–1436 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Juliana, C. et al. Anti-inflammatory compounds parthenolide and Bay 11-7082 are direct inhibitors of the inflammasome. J. Biol. Chem. 285, 9792–9802 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Kim, Y. S. et al. BAY 11-7082, a nuclear factor-κB inhibitor, reduces inflammation and apoptosis in a rat cardiac ischemia–reperfusion injury model. Int. Heart J. 51, 348–353 (2010).

    Article  CAS  PubMed  Google Scholar 

  141. Cocco, M. et al. Design, synthesis, and evaluation of acrylamide derivatives as direct NLRP3 inflammasome inhibitors. ChemMedChem 11, 1790–1803 (2016).

    Article  CAS  PubMed  Google Scholar 

  142. Jiang, H. et al. Identification of a selective and direct NLRP3 inhibitor to treat inflammatory disorders. J. Exp. Med. 214, 3219–3238 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Gao, R.-F. et al. The covalent NLRP3-inflammasome inhibitor Oridonin relieves myocardial infarction induced myocardial fibrosis and cardiac remodeling in mice. Int. Immunopharmacol. 90, 107133 (2021).

    Article  CAS  PubMed  Google Scholar 

  144. Zhang, F. et al. Therapeutic potential of colchicine in cardiovascular medicine: a pharmacological review. Acta Pharmacol. Sin. 43, 2173–2190 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Fujisue, K. et al. Colchicine improves survival, left ventricular remodeling, and chronic cardiac function after acute myocardial infarction. Circ. J. 81, 1174–1182 (2017).

    Article  CAS  PubMed  Google Scholar 

  146. Imazio, M. & Nidorf, M. Colchicine and the heart. Eur. Heart J. 42, 2745–2760 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Deftereos, S. et al. Anti-inflammatory treatment with colchicine in acute myocardial infarction: a pilot study. Circulation 132, 1395–1403 (2015).

    Article  CAS  PubMed  Google Scholar 

  148. Cole, J. et al. Colchicine to prevent periprocedural myocardial injury in percutaneous coronary intervention: the COPE-PCI pilot trial. Circ. Cardiovasc. Interv. 14, e009992 (2021).

    Article  CAS  PubMed  Google Scholar 

  149. Hosseini, S. H. et al. Preprocedural colchicine in patients with acute ST-elevation myocardial infarction undergoing percutaneous coronary intervention: a randomized controlled trial (PodCAST-PCI). J. Cardiovasc. Pharmacol. 80, 592–599 (2022).

    Article  CAS  PubMed  Google Scholar 

  150. Deftereos, S. et al. Colchicine treatment for the prevention of bare-metal stent restenosis in diabetic patients. J. Am. Coll. Cardiol. 61, 1679–1685 (2013).

    Article  CAS  PubMed  Google Scholar 

  151. Tardif, J.-C. et al. Efficacy and safety of low-dose colchicine after myocardial infarction. N. Engl. J. Med. 381, 2497–2505 (2019).

    Article  CAS  PubMed  Google Scholar 

  152. Nidorf, S. M., Eikelboom, J. W., Budgeon, C. A. & Thompson, P. L. Low-dose colchicine for secondary prevention of cardiovascular disease. J. Am. Coll. Cardiol. 61, 404–410 (2013).

    Article  CAS  PubMed  Google Scholar 

  153. Nidorf, S. M. et al. Colchicine in patients with chronic coronary disease. N. Engl. J. Med. 383, 1838–1847 (2020).

    Article  CAS  PubMed  Google Scholar 

  154. Deftereos, S. et al. Anti-inflammatory treatment with colchicine in stable chronic heart failure: a prospective, randomized study. JACC Heart Fail. 2, 131–137 (2014).

    Article  PubMed  Google Scholar 

  155. Imazio, M. et al. Colchicine in addition to conventional therapy for acute pericarditis: results of the COlchicine for acute PEricarditis (COPE) trial. Circulation 112, 2012–2016 (2005).

    Article  CAS  PubMed  Google Scholar 

  156. Imazio, M. et al. Colchicine as first-choice therapy for recurrent pericarditis: results of the CORE (COlchicine for REcurrent pericarditis) trial. Arch. Intern. Med. 165, 1987–1991 (2005).

    Article  CAS  PubMed  Google Scholar 

  157. Imazio, M. et al. Colchicine for recurrent pericarditis (CORP): a randomized trial. Ann. Intern. Med. 155, 409–414 (2011).

    Article  PubMed  Google Scholar 

  158. Imazio, M. et al. A randomized trial of colchicine for acute pericarditis. N. Engl. J. Med. 369, 1522–1528 (2013).

    Article  CAS  PubMed  Google Scholar 

  159. Imazio, M. et al. Efficacy and safety of colchicine for treatment of multiple recurrences of pericarditis (CORP-2): a multicentre, double-blind, placebo-controlled, randomised trial. Lancet Lond. Engl. 383, 2232–2237 (2014).

    Article  CAS  Google Scholar 

  160. Tong, D. C. et al. Colchicine in patients with acute coronary syndrome. Circulation 12, 171–181 (2020).

    Google Scholar 

  161. Fiolet, A. T. L. et al. Efficacy and safety of low-dose colchicine in patients with coronary disease: a systematic review and meta-analysis of randomized trials. Eur. Heart J. 42, 2765–2775 (2021).

    Article  CAS  PubMed  Google Scholar 

  162. Abbate, A. et al. Interleukin-1 blockade with anakinra to prevent adverse cardiac remodeling after acute myocardial infarction (Virginia Commonwealth University Anakinra Remodeling Trial [VCU-ART] Pilot Study). Am. J. Cardiol. 105, 1371–1377.e1 (2010).

    Article  CAS  PubMed  Google Scholar 

  163. Abbate, A. et al. Effects of interleukin-1 blockade with anakinra on adverse cardiac remodeling and heart failure after acute myocardial infarction [from the Virginia Commonwealth University-Anakinra Remodeling Trial (2) (VCU-ART2) pilot study]. Am. J. Cardiol. 111, 1394–1400 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Abbate, A. et al. Interleukin-1 blockade inhibits the acute inflammatory response in patients with ST-segment-elevation myocardial infarction. J. Am. Heart Assoc. 9, e014941 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Abbate, A. et al. Interleukin-1 blockade with anakinra and heart failure following ST-segment elevation myocardial infarction: results from a pooled analysis of the VCUART clinical trials. Eur. Heart J. Cardiovasc. Pharmacother. 8, 503–510 (2022).

    Article  PubMed  Google Scholar 

  166. Morton, A. C. et al. The effect of interleukin-1 receptor antagonist therapy on markers of inflammation in non-ST elevation acute coronary syndromes: the MRC-ILA Heart Study. Eur. Heart J. 36, 377–384 (2015).

    Article  CAS  PubMed  Google Scholar 

  167. Van Tassell, B. W. et al. Effects of interleukin-1 blockade with anakinra on aerobic exercise capacity in patients with heart failure and preserved ejection fraction (from the D-HART pilot study). Am. J. Cardiol. 113, 321–327 (2014).

    Article  PubMed  Google Scholar 

  168. Van Tassell, B. W. et al. Interleukin-1 blockade in recently decompensated systolic heart failure: results from REDHART (Recently Decompensated Heart Failure Anakinra Response Trial). Circ. Heart Fail. 10, e004373 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Van Tassell, B. W. et al. Enhanced interleukin-1 activity contributes to exercise intolerance in patients with systolic heart failure. PLoS ONE 7, e33438 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Van Tassell, B. W. et al. Interleukin-1 blockade in acute decompensated heart failure: a randomized, double-blinded, placebo-controlled pilot study. J. Cardiovasc. Pharmacol. 67, 544–551 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Van Tassell, B. W. et al. IL-1 blockade in patients with heart failure with preserved ejection fraction. Circ. Heart Fail. 11, e005036 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Arnold, D. D., Yalamanoglu, A. & Boyman, O. Systematic review of safety and efficacy of IL-1-targeted biologics in treating immune-mediated disorders. Front. Immunol. 13, 888392 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Cavalli, G. et al. Treating life-threatening myocarditis by blocking interleukin-1. Crit. Care Med. 44, e751–e754 (2016).

    Article  CAS  PubMed  Google Scholar 

  174. Kerneis, M. et al. Rationale and design of the ARAMIS trial: anakinra versus placebo, a double blind randomized controlled trial for the treatment of acute myocarditis. Arch. Cardiovasc. Dis. https://doi.org/10.1016/j.acvd.2023.07.004 (2023).

  175. Wohlford, G. F. et al. Acute effects of interleukin-1 blockade using anakinra in patients with acute pericarditis. J. Cardiovasc. Pharmacol. 76, 50–52 (2020).

    Article  CAS  PubMed  Google Scholar 

  176. Brucato, A. et al. Effect of anakinra on recurrent pericarditis among patients with colchicine resistance and corticosteroid dependence: the AIRTRIP randomized clinical trial. J. Am. Med. Assoc. 316, 1906–1912 (2016).

    Article  Google Scholar 

  177. Ikonomidis, I. et al. Inhibition of interleukin-1 by anakinra improves vascular and left ventricular function in patients with rheumatoid arthritis. Circulation 117, 2662–2669 (2008).

    Article  CAS  PubMed  Google Scholar 

  178. Ikonomidis, I. et al. Lowering interleukin-1 activity with anakinra improves myocardial deformation in rheumatoid arthritis. Heart Br. Card. Soc. 95, 1502–1507 (2009).

    Article  CAS  Google Scholar 

  179. Ridker, P. M. et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med. 377, 1119–1131 (2017).

    Article  CAS  PubMed  Google Scholar 

  180. Everett, B. M. et al. Anti-inflammatory therapy with canakinumab for the prevention of hospitalization for heart failure. Circulation 139, 1289–1299 (2019).

    Article  CAS  PubMed  Google Scholar 

  181. Everett, B. M. et al. Inhibition of interleukin-1β and reduction in atherothrombotic cardiovascular events in the CANTOS trial. J. Am. Coll. Cardiol. 76, 1660–1670 (2020).

    Article  CAS  PubMed  Google Scholar 

  182. Rothman, A. M. et al. Effects of interleukin-1β inhibition on blood pressure, incident hypertension, and residual inflammatory risk: a secondary analysis of CANTOS. Hypertension 75, 477–482 (2020).

    Article  CAS  PubMed  Google Scholar 

  183. Trankle, C. R. et al. Usefulness of canakinumab to improve exercise capacity in patients with long-term systolic heart failure and elevated C-reactive protein. Am. J. Cardiol. 122, 1366–1370 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Ks, R. et al. A randomized, placebo-controlled trial of canakinumab in patients with peripheral artery disease. Vasc. Med. Lond. Engl. 24, 414–421 (2019).

    Article  Google Scholar 

  185. Svensson, E. C. et al. TET2-driven clonal hematopoiesis and response to canakinumab: an exploratory analysis of the CANTOS randomized clinical trial. JAMA Cardiol. 7, 521–528 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Klein, A. L. et al. Phase 3 trial of interleukin-1 trap rilonacept in recurrent pericarditis. N. Engl. J. Med. 384, 31–41 (2021).

    Article  CAS  PubMed  Google Scholar 

  187. Myachikova, V. Y. et al. Treatment of idiopathic recurrent pericarditis with goflikicept: phase II/III study results. J. Am. Coll. Cardiol. 82, 30–40 (2023).

    Article  CAS  PubMed  Google Scholar 

  188. Samsonov, M., Bogin, V., Van Tassell, B. W. & Abbate, A. Interleukin-1 blockade with RPH-104 in patients with acute ST-elevation myocardial infarction: study design and rationale. J. Transl. Med. 19, 169 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Ridker, P. M., MacFadyen, J. G., Thuren, T. & Libby, P. Residual inflammatory risk associated with interleukin-18 and interleukin-6 after successful interleukin-1β inhibition with canakinumab: further rationale for the development of targeted anti-cytokine therapies for the treatment of atherothrombosis. Eur. Heart J. 41, 2153–2163 (2020).

    Article  CAS  PubMed  Google Scholar 

  190. Mistry, P. et al. Safety, tolerability, pharmacokinetics, and pharmacodynamics of single-dose antiinterleukin-18 mAb GSK1070806 in healthy and obese subjects. Int. J. Clin. Pharmacol. Ther. 52, 867–879 (2014).

    Article  CAS  PubMed  Google Scholar 

  191. Gabay, C. et al. Open-label, multicentre, dose-escalating phase II clinical trial on the safety and efficacy of tadekinig alfa (IL-18BP) in adult-onset Still’s disease. Ann. Rheum. Dis. 77, 840–847 (2018).

    CAS  PubMed  Google Scholar 

  192. Ridker, P. M. & Rane, M. Interleukin-6 signaling and anti-interleukin-6 therapeutics in cardiovascular disease. Circ. Res. 128, 1728–1746 (2021).

    Article  CAS  PubMed  Google Scholar 

  193. Broch, K. et al. Randomized trial of interleukin-6 receptor inhibition in patients with acute ST-segment elevation myocardial infarction. J. Am. Coll. Cardiol. 77, 1845–1855 (2021).

    Article  CAS  PubMed  Google Scholar 

  194. Meyer, M. A. S. et al. Treatment effects of interleukin-6 receptor antibodies for modulating the systemic inflammatory response after out-of-hospital cardiac arrest (The IMICA Trial): a double-blinded, placebo-controlled, single-center, randomized, clinical trial. Circulation 143, 1841–1851 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Christensen, R. H. et al. Aerobic exercise induces cardiac fat loss and alters cardiac muscle mass through an interleukin-6 receptor-dependent mechanism: cardiac analysis of a double-blind randomized controlled clinical trial in abdominally obese humans. Circulation 140, 1684–1686 (2019).

    Article  PubMed  Google Scholar 

  196. Ridker, P. M. et al. IL-6 inhibition with ziltivekimab in patients at high atherosclerotic risk (RESCUE): a double-blind, randomised, placebo-controlled, phase 2 trial. Lancet Lond. Engl. 397, 2060–2069 (2021).

    Article  CAS  Google Scholar 

  197. NIH National Library of Medicine. ZEUS — a research study to look at how ziltivekimab works compared to placebo in people with cardiovascular disease, chronic kidney disease and inflammation (ZEUS). ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05021835 (2023).

  198. NIH National Library of Medicine. A research study to look at how ziltivekimab works compared to placebo in people with heart failure and inflammation (HERMES). ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05636176 (2023).

  199. Wohlford, G. F. et al. Phase 1B, randomized, double-blinded, dose escalation, single-center, repeat dose safety and pharmacodynamics study of the oral NLRP3 inhibitor dapansutrile in subjects with NYHA II-III systolic heart failure. J. Cardiovasc. Pharmacol. 77, 49–60 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  200. Klück, V. et al. Dapansutrile, an oral selective NLRP3 inflammasome inhibitor, for treatment of gout flares: an open-label, dose-adaptive, proof-of-concept, phase 2a trial. Lancet Rheumatol. 2, e270–e280 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  201. Madurka, I. et al. DFV890: a new oral NLRP3 inhibitor-tested in an early phase 2a randomised clinical trial in patients with COVID-19 pneumonia and impaired respiratory function. Infection 51, 641–654 (2023).

    Article  CAS  PubMed  Google Scholar 

  202. NIH National Library of Medicine. Study of efficacy, safety and tolerability of DFV890 in patients with knee osteoarthritis. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04886258 (2023).

  203. Parmar, D. V. et al. Safety, tolerability, pharmacokinetics, and pharmacodynamics of the oral NLRP3 inflammasome inhibitor ZYIL1: first-in-human phase 1 studies (single ascending dose and multiple ascending dose). Clin. Pharmacol. Drug Dev. 12, 202–211 (2023).

    Article  CAS  PubMed  Google Scholar 

  204. Zydus Lifesciences Limited. A phase 2a, prospective, open-label study to evaluate the safety, tolerability, pharmacokinetics and pharmacodynamics of ZYIL1 in subjects with cryopyrin associated periodic syndromes (CAPS). ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT05186051 (2022).

  205. Klughammer, B. et al. P805 Selnoflast, a potent NLRP3 inhibitor — results from a phase 1b experimental medicine study in patients with ulcerative colitis. J. Crohns Colitis 17, i938 (2023).

    Article  Google Scholar 

  206. Inflazome UK Ltd. A phase 1, randomised, double-blind, placebo-controlled, single and multiple ascending dose study to determine the safety, tolerability, pharmacokinetics, pharmacodynamics and food effect of IZD334 in healthy adult participants as well as an open-label cohort to confirm the safety, pharmacokinetics, and pharmacodynamics in adult patients with cryopyrin-associated periodic syndromes. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04086602 (2020).

  207. Clinical Trials Register. https://www.clinicaltrialsregister.eu/ctr-search/trial/2020-000942-32/NL.

  208. Halia Therapeutics, Inc. A phase 1, single-center, randomized, placebo-controlled, single ascending dose study to evaluate the safety, tolerability, pharmacokinetics, and pharmacodynamics of HT-6184 in healthy human subjects. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT05447546 (2022).

  209. Zomagen Biosciences, Ltd. A phase 2A, single-arm study to evaluate the safety and clinical activity of VTX2735 in participants with cryopyrin-associated periodic syndrome (CAPS). ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT05812781 (2023).

  210. Pipeline. Nodthera https://www.nodthera.com/pipeline/.

  211. EpicentRx, Inc. A phase 3, controlled, open-label, randomized study of RRx-001 administered sequentially with a platinum doublet or a platinum doublet in third-line or beyond small cell lung cancer. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03699956 (2022).

  212. Akrami, M. et al. Effects of colchicine on major adverse cardiac events in next 6-month period after acute coronary syndrome occurrence; a randomized placebo-control trial. BMC Cardiovasc. Disord. 21, 583 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Cole, J. et al. COlchicine to prevent periprocedural myocardial injury in percutaneous coronary intervention (COPE-PCI): coronary microvascular physiology pilot substudy. J. Interv. Cardiol. 2022, 1098429 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

S.T. is supported by an NIH grant HL150115. A.A. is supported by NIH grants AG076360, HL139943 and HL150115.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Stefano Toldo or Antonio Abbate.

Ethics declarations

Competing interests

S.T. has received research grants from Cardiol, Kiniksa and Olatec. A.A. has served as a consultant to Cardiol, Implicit Bioscience, Janssen, Kiniksa, Novo Nordisk, Olatec, R-Pharm, Sanofi and Serpin Pharma.

Peer review

Peer review information

Nature Reviews Cardiology thanks Pal Aukrust, Andrew Murphy, Masafumi Takahashi and Zoltan Varga for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toldo, S., Abbate, A. The role of the NLRP3 inflammasome and pyroptosis in cardiovascular diseases. Nat Rev Cardiol 21, 219–237 (2024). https://doi.org/10.1038/s41569-023-00946-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41569-023-00946-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing