Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Sex-specific and ethnicity-specific differences in MINOCA

Abstract

Suspected myocardial infarction with non-obstructive coronary arteries (MINOCA) has received increasing attention over the past decade. Given the heterogeneity in the mechanisms underlying acute myocardial infarction in the absence of obstructive coronary arteries, the syndrome of MINOCA is considered a working diagnosis that requires further investigation after diagnostic angiography studies have been performed, including coronary magnetic resonance angiography and functional angiography. Although once considered an infrequent and low-risk form of myocardial infarction, recent data have shown that the prognosis of MINOCA is not as benign as previously assumed. However, despite increasing awareness of the condition, many questions remain regarding the diagnosis, risk stratification and treatment of MINOCA. Women seem to be more susceptible to MINOCA, but studies on the sex-specific differences of the disease are scarce. Similarly, ethnicity-specific factors might explain discrepancies in the observed prevalence or underlying pathophysiological mechanisms of MINOCA but data are also scarce. Therefore, in this Review, we provide an update on the latest evidence available on the sex-specific and ethnicity-specific differences in the clinical features, pathophysiological mechanisms, treatment and prognosis of MINOCA.

Key points

  • The overall prevalence of myocardial infarction with non-obstructive coronary arteries (MINOCA) is estimated to be 6%, and women are over-represented as compared to men.

  • Sex-based differences in adverse events and health outcomes in MINOCA remain largely unreported; however, female patients have an increased risk of major adverse cardiovascular events and worse health status compared with male patients.

  • Spontaneous coronary artery dissection is more common in women, but sex-based differences in genetic and hormonal-related mechanisms of MINOCA require further exploration.

  • The prevalence and clinical characteristics of MINOCA are generally similar across patients from different ethnic backgrounds; however, a higher prevalence of MINOCA has been reported in African-American, Hispanic-American and Pacific Islander populations, whereas Japanese individuals have a greater propensity to coronary artery spasm.

  • Management therapies for MINOCA should be personalized according to the underlying reason for the presentation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Underlying mechanisms of suspected MINOCA.
Fig. 2: Diagnostic work-up and personalized treatment strategy for patients with MINOCA.

Similar content being viewed by others

References

  1. Cheng, V. Y. et al. Performance of the traditional age, sex, and angina typicality-based approach for estimating pretest probability of angiographically significant coronary artery disease in patients undergoing coronary computed tomographic angiography: results from the multinational coronary CT angiography evaluation for clinical outcomes: an international multicenter registry (CONFIRM). Circulation 124, 2423–2432, 1-8 (2011).

    PubMed  PubMed Central  Google Scholar 

  2. Miller, R. D., Burchell, H. B. & Edwards, J. E. Myocardial infarction with and without acute coronary occlusion; a pathologic study. AMA Arch. Intern. Med. 88, 597–604 (1951).

    CAS  PubMed  Google Scholar 

  3. Gross, H. & Sternberg, W. H. Myocardial infarction without significant lesions of coronary arteries. Arch. Intern. Med. 64, 249–267 (1939).

    Google Scholar 

  4. Beltrame, J. F. Assessing patients with myocardial infarction and nonobstructed coronary arteries (MINOCA). J. Intern. Med. 273, 182–185 (2013).

    PubMed  Google Scholar 

  5. Pasupathy, S., Air, T., Dreyer, R. P., Tavella, R. & Beltrame, J. F. Systematic review of patients presenting with suspected myocardial infarction and nonobstructive coronary arteries. Circulation 131, 861–870 (2015).

    CAS  PubMed  Google Scholar 

  6. Agewall, S. et al. ESC working group position paper on myocardial infarction with non-obstructive coronary arteries. Eur. Heart J. 38, 143–153 (2017).

    PubMed  Google Scholar 

  7. Thygesen, K. et al. Fourth universal definition of myocardial infarction (2018). Eur. Heart J. 40, 237–269 (2019).

    PubMed  Google Scholar 

  8. Tamis-Holland, J. E. et al. Contemporary diagnosis and management of patients with myocardial infarction in the absence of obstructive coronary artery disease: a scientific statement from the American Heart Association. Circulation 139, e891–e908 (2019).

    PubMed  Google Scholar 

  9. Pasupathy, S. et al. Survival in patients with suspected myocardial infarction with nonobstructive coronary arteries: a comprehensive systematic review and meta-analysis from the MINOCA global collaboration. Circ. Cardiovasc. Qual. Outcomes 14, e007880 (2021).

    PubMed  Google Scholar 

  10. Smilowitz, N. R. et al. Mortality of myocardial infarction by sex, age, and obstructive coronary artery disease status in the ACTION registry-GWTG (acute coronary treatment and intervention outcomes network registry-get with the guidelines). Circ. Cardiovasc. Qual. Outcomes 10, e003443 (2017).

    PubMed  Google Scholar 

  11. Nordenskjold, A. M. et al. Circadian onset and prognosis of myocardial infarction with non-obstructive coronary arteries (MINOCA). PLoS ONE 14, e0216073 (2019).

    PubMed  PubMed Central  Google Scholar 

  12. Mahajan, A. M. et al. Seasonal and circadian patterns of myocardial infarction by coronary artery disease status and sex in the ACTION Registry-GWTG. Int. J. Cardiol. 274, 16–20 (2019).

    PubMed  Google Scholar 

  13. Beltrame, J. F. et al. International standardization of diagnostic criteria for vasospastic angina. Eur. Heart J. 38, 2565–2568 (2015).

    Google Scholar 

  14. Beltrame, J. F. et al. The who, what, why, when, how and where of vasospastic angina. Circ. J. 80, 289–298 (2016).

    PubMed  Google Scholar 

  15. Montone, R. A. et al. Patients with acute myocardial infarction and non-obstructive coronary arteries: safety and prognostic relevance of invasive coronary provocative tests. Eur. Heart J. 39, 91–98 (2018).

    CAS  PubMed  Google Scholar 

  16. Bil, J., MoZeNska, O., Segiet-SwiEcicka, A. & Gil, R. J. Revisiting the use of the provocative acetylcholine test in patients with chest pain and nonobstructive coronary arteries: a five-year follow-up of the AChPOL registry, with special focus on patients with MINOCA. Transl. Res. 231, 64–75 (2021).

    CAS  PubMed  Google Scholar 

  17. Sueda, S. & Sakaue, T. Coronary artery spasm-induced acute myocardial infarction in patients with myocardial infarction with non-obstructive coronary arteries. Heart Vessel. 36, 1804–1810 (2021).

    Google Scholar 

  18. Yasue, H. et al. Long-term prognosis for patients with variant angina and influential factors. Circulation 78, 1–9 (1988).

    CAS  PubMed  Google Scholar 

  19. Cannon, R. O. III & Epstein, S. E. “Microvascular angina” as a cause of chest pain with angiographically normal coronary arteries. Am. J. Cardiol. 61, 1338–1343 (1988).

    PubMed  Google Scholar 

  20. Bairey Merz, C. N., Pepine, C. J., Walsh, M. N. & Fleg, J. L. Ischemia and no obstructive coronary artery disease (INOCA): developing evidence-based therapies and research agenda for the next decade. Circulation 135, 1075–1092 (2017).

    PubMed  Google Scholar 

  21. Ong, P. et al. International standardization of diagnostic criteria for microvascular angina. Int. J. Cardiol. 250, 16–20 (2018).

    PubMed  Google Scholar 

  22. Mohri, M. et al. Angina pectoris caused by coronary microvascular spasm. Lancet 351, 1165–1169 (1998).

    CAS  PubMed  Google Scholar 

  23. Beltrame, J. F., Limaye, S. B. & Horowitz, J. D. The coronary slow flow phenomenon — a new coronary microvascular disorder. Cardiology 97, 197–202 (2002).

    PubMed  Google Scholar 

  24. Mareai, R. M. et al. Prognostic implication of coronary slow flow assessed by cTFC in patients with myocardial infarction with non-obstructive coronary arteries. Eur. J. Intern. Med. 108, 74–80 (2023).

    CAS  PubMed  Google Scholar 

  25. Mauricio, R., Srichai, M. B., Axel, L., Hochman, J. S. & Reynolds, H. R. Stress cardiac mri in women with myocardial infarction and nonobstructive coronary artery disease. Clin. Cardiol. 39, 596–602 (2016).

    PubMed  PubMed Central  Google Scholar 

  26. Reynolds, H. R. et al. Mechanisms of myocardial infarction in women without angiographically obstructive coronary artery disease. Circulation 124, 1414–1425 (2011).

    PubMed  PubMed Central  Google Scholar 

  27. Ouldzein, H. et al. Plaque rupture and morphological characteristics of the culprit lesion in acute coronary syndromes without significant angiographic lesion: analysis by intravascular ultrasound. Ann. Cardiol. Angeiol. 61, 20–26 (2012).

    CAS  Google Scholar 

  28. Iqbal, S. N. et al. Characteristics of plaque disruption by intravascular ultrasound in women presenting with myocardial infarction without obstructive coronary artery disease. Am. Heart J. 167, 715–722 (2014).

    PubMed  Google Scholar 

  29. Araki, M. et al. Optical coherence tomography in coronary atherosclerosis assessment and intervention. Nat. Rev. Cardiol. 19, 684–703 (2022).

    PubMed  PubMed Central  Google Scholar 

  30. Kardasz, I. & De Caterina, R. Myocardial infarction with normal coronary arteries: a conundrum with multiple aetiologies and variable prognosis: an update. J. Intern. Med. 261, 330–348 (2007).

    CAS  PubMed  Google Scholar 

  31. Da Costa, A. et al. Long term prognosis of patients with myocardial infarction and normal coronary angiography: impact of inherited coagulation disorders. Thromb. Haemost. 91, 388–393 (2004).

    PubMed  Google Scholar 

  32. Stepien, K., Nowak, K., Wypasek, E., Zalewski, J. & Undas, A. High prevalence of inherited thrombophilia and antiphospholipid syndrome in myocardial infarction with non-obstructive coronary arteries: comparison with cryptogenic stroke. Int. J. Cardiol. 290, 1–6 (2019).

    PubMed  Google Scholar 

  33. Svenungsson, E. et al. Antiphospholipid antibodies in patients with myocardial infarction with and without obstructive coronary arteries. J. Intern. Med. 291, 327–337 (2022).

    CAS  PubMed  Google Scholar 

  34. Safdar, B. et al. Presentation, clinical profile, and prognosis of young patients with myocardial infarction with nonobstructive coronary arteries (MINOCA): results from the VIRGO study. J. Am. Heart Assoc. 7, e009174 (2018).

    MathSciNet  PubMed  PubMed Central  Google Scholar 

  35. Pasupathy, S., Tavella, R. & Beltrame, J. Unravelling the enigma of MI with nonobstructive coronary arteries. Am. J. Cardiol. 168, 17–21 (2019).

    Google Scholar 

  36. Di Fusco, S. A. et al. Spontaneous coronary artery dissection: overview of pathophysiology. Trends Cardiovasc. Med. 32, 92–100 (2022).

    PubMed  Google Scholar 

  37. Kim, E. S. H. Spontaneous coronary-artery dissection. N. Engl. J. Med. 383, 2358–2370 (2020).

    CAS  PubMed  Google Scholar 

  38. Hayes, S. N. et al. Spontaneous coronary artery dissection: JACC state-of-the-art review. J. Am. Coll. Cardiol. 76, 961–984 (2020).

    PubMed  Google Scholar 

  39. Chen, S. et al. Spontaneous coronary artery dissection: clinical characteristics, management, and outcomes in a racially and ethnically diverse community-based cohort. Perm. J. 23, 18.278 (2019).

    PubMed  PubMed Central  Google Scholar 

  40. Lindahl, B., Baron, T., Albertucci, M. & Prati, F. Myocardial infarction with non-obstructive coronary artery disease. EuroIntervention 17, e875–e887 (2021).

    PubMed  PubMed Central  Google Scholar 

  41. Leurent, G. et al. Diagnostic contributions of cardiac magnetic resonance imaging in patients presenting with elevated troponin, acute chest pain syndrome and unobstructed coronary arteries. Arch. Cardiovasc. Dis. 104, 161–170 (2011).

    PubMed  Google Scholar 

  42. Sorensson, P. et al. Early comprehensive cardiovascular magnetic resonance imaging in patients with myocardial infarction with nonobstructive coronary arteries. JACC Cardiovasc. Imaging 14, 1774–1783 (2021).

    PubMed  Google Scholar 

  43. Gerbaud, E. et al. OCT and CMR for the diagnosis of patients presenting with MINOCA and suspected epicardial causes. JACC Cardiovasc. Imaging 13, 2619–2631 (2020).

    PubMed  Google Scholar 

  44. Dastidar, A. G. et al. Prognostic role of CMR and conventional risk factors in myocardial infarction with nonobstructed coronary arteries. JACC Cardiovasc. Imaging 12, 1973–1982 (2019).

    PubMed  Google Scholar 

  45. Dastidar, A. G. et al. Myocardial infarction with nonobstructed coronary arteries: impact of CMR early after presentation. JACC Cardiovasc. Imaging 10, 1204–1206 (2017).

    PubMed  Google Scholar 

  46. Nickander, J. et al. Comprehensive follow-up cardiac magnetic resonance of patients with myocardial infarction with nonobstructive coronary arteries. JACC Cardiovasc. Imaging 16, 128–129 (2023).

    PubMed  Google Scholar 

  47. Ibanez, B. et al. Cardiac MRI endpoints in myocardial infarction experimental and clinical trials: JACC scientific expert panel. J. Am. Coll. Cardiol. 74, 238–256 (2019).

    PubMed  PubMed Central  Google Scholar 

  48. Pasupathy, S. & Beltrame, J. F. Refining the role of CMR imaging in MINOCA. JACC Cardiovasc. Imaging 14, 1784–1786 (2021).

    PubMed  Google Scholar 

  49. Mileva, N. et al. Diagnostic and prognostic role of cardiac magnetic resonance in MINOCA: systematic review and meta-analysis. JACC Cardiovasc. Imaging 16, 376–389 (2023).

    PubMed  Google Scholar 

  50. Ananthakrishna, R. et al. Long-term clinical outcomes in patients with a working diagnosis of myocardial infarction with non-obstructed coronary arteries (MINOCA) assessed by cardiovascular magnetic resonance imaging. Int. J. Cardiol. 349, 12–17 (2022).

    PubMed  Google Scholar 

  51. Reynolds, H. R. et al. Coronary optical coherence tomography and cardiac magnetic resonance imaging to determine underlying causes of myocardial infarction with nonobstructive coronary arteries in women. Circulation 143, 624–640 (2021).

    PubMed  Google Scholar 

  52. Opolski, M. P. et al. Mechanisms of myocardial infarction in patients with nonobstructive coronary artery disease: results from the optical coherence tomography study. JACC Cardiovasc. Imaging 12, 2210–2221 (2019).

    PubMed  Google Scholar 

  53. Takahashi, T. et al. Safety of provocative testing with intracoronary acetylcholine and implications for standard protocols. J. Am. Coll. Cardiol. 79, 2367–2378 (2022).

    CAS  PubMed  Google Scholar 

  54. Kunadian, V. et al. An EAPCI expert consensus document on ischaemia with non-obstructive coronary arteries in collaboration with European Society of Cardiology Working Group on Coronary Pathophysiology & Microcirculation Endorsed by Coronary Vasomotor Disorders International Study Group. Eur. Heart J. 41, 3504–3520 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Lawless, M. et al. Sex differences in treatment and outcomes among myocardial infarction patients presenting with and without obstructive coronary arteries: a prospective multicentre study. Eur. Heart J. Open 3, ead033 (2023).

    Google Scholar 

  56. Lindahl, B. et al. Medical therapy for secondary prevention and long-term outcome in patients with myocardial infarction with nonobstructive coronary artery disease. Circulation 135, 1481–1489 (2017).

    PubMed  Google Scholar 

  57. Nordenskjold, A. M. et al. Randomized evaluation of beta blocker and ACE-inhibitor/angiotensin receptor blocker treatment in patients with myocardial infarction with non-obstructive coronary arteries (MINOCA-BAT): rationale and design. Am. Heart J. 231, 96–104 (2021).

    PubMed  Google Scholar 

  58. Collet, J. P. et al. 2020 ESC guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Eur. Heart J. 42, 1289–1367 (2021).

    PubMed  Google Scholar 

  59. Beltrame, J. F., Tavella, R., Jones, D. & Zeitz, C. Management of ischaemia with non-obstructive coronary arteries (INOCA). BMJ 375, e060602 (2021).

    PubMed  Google Scholar 

  60. US National Library of Medicine. ClinicalTrials.gov https://classic.clinicaltrials.gov/ct2/show/NCT05198791 (2022).

  61. Montone, R. A. et al. Precision medicine versus standard of care for patients with myocardial infarction with non-obstructive coronary arteries (MINOCA): rationale and design of the multicentre, randomised PROMISE trial. EuroIntervention 18, e933–e939 (2022).

    PubMed  PubMed Central  Google Scholar 

  62. Pelliccia, F. et al. Predictors of mortality in myocardial infarction and nonobstructed coronary arteries: a systematic review and meta-regression. Am. J. Med. 133, 73–83.e4 (2020).

    PubMed  Google Scholar 

  63. Thombs, B. D. et al. Prevalence of depression in survivors of acute myocardial infarction. J. Gen. Intern. Med. 21, 30–38 (2006).

    PubMed  PubMed Central  ADS  Google Scholar 

  64. Foxwell, R., Morley, C. & Frizelle, D. Illness perceptions, mood and quality of life: a systematic review of coronary heart disease patients. J. Psychosom. Res. 75, 211–222 (2013).

    PubMed  Google Scholar 

  65. Grodzinsky, A. et al. Angina frequency after acute myocardial infarction in patients without obstructive coronary artery disease. Eur. Heart J. Qual. Care Clin. Outcomes 1, 92–99 (2015).

    PubMed  PubMed Central  Google Scholar 

  66. Daniel, M. et al. Effect of myocardial infarction with nonobstructive coronary arteries on physical capacity and quality-of-life. Am. J. Cardiol. 120, 341–346 (2017).

    PubMed  Google Scholar 

  67. Daniel, M. et al. Prevalence of anxiety and depression symptoms in patients with myocardial infarction with non-obstructive coronary arteries. Am. J. Med. 131, 1118–1124 (2018).

    PubMed  Google Scholar 

  68. Berg, E. et al. Health-related quality-of-life up to one year after myocardial infarction with non-obstructive coronary arteries.Eur. Heart J. Qual. Care Clin. Outcomes https://doi.org/10.1093/ehjqcco/qcac072 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Nero, D. et al. Personality traits in patients with myocardial infarction with nonobstructive coronary arteries. Am. J. Med. 132, 374–381.e1 (2019).

    PubMed  Google Scholar 

  70. Pais, J. L. et al. Psycho-emotional disorders as incoming risk factors for myocardial infarction with non-obstructive coronary arteries. Cardiol. J. 25, 24–31 (2018).

    PubMed  Google Scholar 

  71. Dreyer, R. P. et al. Myocardial infarction with non-obstructive coronary arteries as compared with myocardial infarction and obstructive coronary disease: outcomes in a Medicare population. Eur. Heart J. 41, 870–878 (2020).

    PubMed  Google Scholar 

  72. Patel, M. R. et al. Prevalence, predictors, and outcomes of patients with non-ST-segment elevation myocardial infarction and insignificant coronary artery disease: results from the Can Rapid risk stratification of Unstable angina patients Suppress ADverse outcomes with Early implementation of the ACC/AHA Guidelines (CRUSADE) initiative. Am. Heart J. 152, 641–647 (2006).

    PubMed  Google Scholar 

  73. Williams, M. G. L. et al. Sex differences in patients with acute coronary syndromes and non-obstructive coronary arteries: presentation and outcome. Int. J. Cardiol. 372, 15–22 (2023).

    PubMed  Google Scholar 

  74. Gao, S., Ma, W., Huang, S., Lin, X. & Yu, M. Sex-specific clinical characteristics and long-term outcomes in patients with myocardial infarction with non-obstructive coronary arteries. Front. Cardiovasc. Med. 8, 670401 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Jung, R. G. et al. Clinical features, sex differences and outcomes of myocardial infarction with nonobstructive coronary arteries: a registry analysis. Coron. Artery Dis. 32, 10–16 (2021).

    PubMed  Google Scholar 

  76. Jedrychowska, M. et al. Impact of sex on the follow-up course and predictors of clinical outcomes in patients hospitalised due to myocardial infarction with non-obstructive coronary arteries: a single-centre experience. Kardiol. Pathol. 77, 198–206 (2019).

    Google Scholar 

  77. van Oosterhout, R. E. M. et al. Sex differences in symptom presentation in acute coronary syndromes: a systematic review and meta-analysis. J. Am. Heart Assoc. 9, e014733 (2020).

    PubMed  PubMed Central  Google Scholar 

  78. White, S. J., Newby, A. C. & Johnson, T. W. Endothelial erosion of plaques as a substrate for coronary thrombosis. Thromb. Haemost. 115, 509–519 (2016).

    PubMed  Google Scholar 

  79. Maseri, A. & Louis, F. Bishop Lecture. Role of coronary artery spasm in symptomatic and silent myocardial ischemia. J. Am. Coll. Cardiol. 9, 249–262 (1987).

    CAS  PubMed  Google Scholar 

  80. Beltrame, J. F., Sasayama, S. & Maseri, A. Racial heterogeneity in coronary artery vasomotor reactivity: differences between Japanese and Caucasian patients. J. Am. Coll. Cardiol. 33, 1442–1452 (1999).

    CAS  PubMed  Google Scholar 

  81. Walling, A. et al. Long-term prognosis of patients with variant angina. Circulation 76, 990–997 (1987).

    CAS  PubMed  Google Scholar 

  82. Hubert, A. et al. Coronary artery spasm: the interplay between endothelial dysfunction and vascular smooth muscle cell hyperreactivity. Eur. Cardiol. 15, e12 (2020).

    PubMed  PubMed Central  Google Scholar 

  83. Yamagishi, M. et al. Intravascular ultrasound detection of atherosclerosis at the site of focal vasospasm in angiographically normal or minimally narrowed coronary segments. J. Am. Coll. Cardiol. 23, 352–357 (1994).

    CAS  PubMed  Google Scholar 

  84. McAlister, C. et al. Differences in demographics and outcomes between men and women with spontaneous coronary artery dissection. JACC Cardiovasc. Interv. 15, 2052–2061 (2022).

    PubMed  Google Scholar 

  85. Fahmy, P., Prakash, R., Starovoytov, A., Boone, R. & Saw, J. Pre-disposing and precipitating factors in men with spontaneous coronary artery dissection. JACC Cardiovasc. Interv. 9, 866–868 (2016).

    PubMed  Google Scholar 

  86. Phan, D. et al. Characteristics and outcomes of patients with spontaneous coronary artery dissection who suffered sudden cardiac arrest. J. Interv. Card. Electrophysiol. 60, 77–83 (2021).

    PubMed  Google Scholar 

  87. Faden, M. S., Bottega, N., Benjamin, A. & Brown, R. N. A nationwide evaluation of spontaneous coronary artery dissection in pregnancy and the puerperium. Heart 102, 1974–1979 (2016).

    PubMed  Google Scholar 

  88. Krishnamurthy, M., Desai, R. & Patel, H. Spontaneous coronary artery dissection in the postpartum period: association with antiphospholipid antibody. Heart 90, e53 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Tomaiuolo, R. et al. Prothrombotic gene variants as risk factors of acute myocardial infarction in young women. J. Transl. Med. 10, 235 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Chaudhary, R. et al. Sex-related differences in clinical outcomes among patients with myocardial infarction with nonobstructive coronary artery disease: a systematic review and meta-analysis. Int. J. Cardiol. 369, 1–4 (2022).

    PubMed  Google Scholar 

  91. Mohammed, A.-Q. et al. Does sex influence outcomes in myocardial infarction with nonobstructive coronary arteries? Angiology 73, 275–280 (2022).

    CAS  PubMed  Google Scholar 

  92. Vogel, B. et al. The Lancet Women and Cardiovascular Disease Commission: reducing the global burden by 2030. Lancet 397, 2385–2438 (2021).

    PubMed  Google Scholar 

  93. Jin, X. et al. Women’s participation in cardiovascular clinical trials from 2010 to 2017. Circulation 141, 540–548 (2020).

    PubMed  Google Scholar 

  94. Sawano, M. et al. Sex difference in outcomes of acute myocardial infarction in young patients. J. Am. Coll. Cardiol. 81, 1797–1806 (2023).

    PubMed  Google Scholar 

  95. Tavella, R. & Beltrame, J. F. Shortcomings in managing patients with ischemia with nonobstructed coronary arteries. Circ. Cardiovasc. Qual. Outcomes 15, e008746 (2022).

    PubMed  Google Scholar 

  96. Gulati, M., Hendry, C., Parapid, B. & Mulvagh, S. L. Why we need specialised centres for women’s hearts: changing the face of cardiovascular care for women. Eur. Cardiol. 16, e52 (2021).

    PubMed  PubMed Central  Google Scholar 

  97. Parvand, M. et al. One-year prospective follow-up of women with INOCA and MINOCA at a Canadian Women’s Heart Centre. Can. J. Cardiol. 38, 1600–1610 (2022).

    PubMed  Google Scholar 

  98. Al-Kebsi, M. M. et al. Characteristics and risk factors of yemeni patients presenting with myocardial infarction with nonobstructive coronary arteries (MINOCA). Heart Views 22, 235–239 (2021).

    PubMed  Google Scholar 

  99. Nutt, D., King, L. A., Saulsbury, W. & Blakemore, C. Development of a rational scale to assess the harm of drugs of potential misuse. Lancet 369, 1047–1053 (2007).

    PubMed  Google Scholar 

  100. Al-Motarreb, A., Al-Kebsi, M., Al-Adhi, B. & Broadley, K. J. Khat chewing and acute myocardial infarction. Heart 87, 279–280 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Al-Motarreb, A., Shabana, A. & El-Menyar, A. Epicardial coronary arteries in khat chewers presenting with myocardial infarction. Int. J. Vasc. Med. 2013, 857019 (2013).

    PubMed  PubMed Central  Google Scholar 

  102. Gasior, P. et al. Clinical characteristics, treatments, and outcomes of patients with myocardial infarction with non-obstructive coronary arteries (MINOCA): results from a Multicenter National Registry. J. Clin. Med. 9, 2779 (2020).

    PubMed  PubMed Central  Google Scholar 

  103. Abdu, F. A. et al. Myocardial infarction with non-obstructive coronary arteries (MINOCA) in Chinese patients: clinical features, treatment and 1 year follow-up. Int. J. Cardiol. 287, 27–31 (2019).

    PubMed  Google Scholar 

  104. Rakowski, T. et al. Characteristics of patients presenting with myocardial infarction with non-obstructive coronary arteries (MINOCA) in Poland: data from the ORPKI national registry. J. Thromb. Thrombolysis 47, 462–466 (2019).

    PubMed  Google Scholar 

  105. Janosi, A. et al. Myocardial infarction without obstructive coronary artery disease (MINOCA) — prevalence and prognosis [Hungarian]. Orv. Hetil. 160, 1791–1797 (2019).

    PubMed  Google Scholar 

  106. Kilic, S. et al. Prevalence and clinical profile of patients with myocardial infarction with non-obstructive coronary arteries in Turkey (MINOCA-TR): a national multi-center, observational study. Anatol. J. Cardiol. 23, 176–182 (2020).

    PubMed  PubMed Central  Google Scholar 

  107. Barr, P. R. et al. Myocardial infarction without obstructive coronary artery disease is not a benign condition (ANZACS-QI 10). Heart Lung Circ. 27, 165–174 (2018).

    PubMed  Google Scholar 

  108. Teng, L. E., Saleemi, S. & Premaratne, M. MINOCA: under recognized and affecting predominantly female patients — an Australian experience. Ir. J. Med. Sci. 192, 1091–1096 (2022).

    PubMed  Google Scholar 

  109. Ishii, M. et al. Characteristics and in-hospital mortality of patients with myocardial infarction in the absence of obstructive coronary artery disease in super-aging society. Int. J. Cardiol. 301, 108–113 (2020).

    PubMed  Google Scholar 

  110. Deyama, J. et al. Effect of coronary artery spasm on long-term outcomes in survivors of acute myocardial infarction. Int. J. Cardiol. 257, 7–11 (2018).

    PubMed  Google Scholar 

  111. Nakayama, N. et al. Clinical features and prognosis of patients with coronary spasm-induced non-ST-segment elevation acute coronary syndrome. J. Am. Heart Assoc. 3, e000795 (2014).

    PubMed  PubMed Central  Google Scholar 

  112. Lee, J. H. et al. Gender differences among korean patients with coronary spasm. Korean Circ. J. 39, 423–427 (2009).

    PubMed  PubMed Central  ADS  Google Scholar 

  113. Di Fiore, D. P. et al. Clinical determinants of acetylcholine-induced coronary artery spasm in Australian patients. Int. J. Cardiol. 193, 59–61 (2015).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed substantially to all aspects of the article.

Corresponding author

Correspondence to Rosanna Tavella.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Cardiology thanks Purvi Parwani, Carmine Pizzi and Per Tornvall for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

La, S., Beltrame, J. & Tavella, R. Sex-specific and ethnicity-specific differences in MINOCA. Nat Rev Cardiol 21, 192–202 (2024). https://doi.org/10.1038/s41569-023-00927-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41569-023-00927-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing