Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cardiovascular physiology and pathophysiology at high altitude

Abstract

Oxygen is vital for cellular metabolism; therefore, the hypoxic conditions encountered at high altitude affect all physiological functions. Acute hypoxia activates the adrenergic system and induces tachycardia, whereas hypoxic pulmonary vasoconstriction increases pulmonary artery pressure. After a few days of exposure to low oxygen concentrations, the autonomic nervous system adapts and tachycardia decreases, thereby protecting the myocardium against high energy consumption. Permanent exposure to high altitude induces erythropoiesis, which if excessive can be deleterious and lead to chronic mountain sickness, often associated with pulmonary hypertension and heart failure. Genetic factors might account for the variable prevalence of chronic mountain sickness, depending on the population and geographical region. Cardiovascular adaptations to hypoxia provide a remarkable model of the regulation of oxygen availability at the cellular and systemic levels. Rapid exposure to high altitude can have adverse effects in patients with cardiovascular diseases. However, intermittent, moderate hypoxia might be useful in the management of some cardiovascular disorders, such as coronary heart disease and heart failure. The aim of this Review is to help physicians to understand the cardiovascular responses to hypoxia and to outline some recommendations that they can give to patients with cardiovascular disease who wish to travel to high-altitude destinations.

Key points

  • Acute exposure to high altitude stimulates the adrenergic system, increasing heart rate and cardiac output; although blood pressure remains stable, pulmonary artery pressure increases owing to hypoxic pulmonary vasoconstriction.

  • Prolonged exposure to high altitude induces a decrease in maximal heart rate through desensitization of the adrenergic pathway, as a protective mechanism against environmental conditions of low oxygen availability.

  • Long-term exposure to high altitude results in cardiac adaptations with no obvious dysfunction; stroke volume is slightly reduced owing to decreased left ventricular filling volume secondary to right ventricular overload.

  • High-altitude natives can develop chronic mountain sickness, associated with erythropoiesis, pulmonary hypertension and right heart failure, although genetic adaptations to hypoxia have been found in Tibetan and Ethiopian populations.

  • Patients with cardiovascular diseases can be at increased risk of adverse events at altitudes above 2,500 m, owing to hypoxaemia, high adrenergic activity and pulmonary hypertension.

  • Intermittent, moderate hypoxia might be useful in the conditioning of patients with cardiovascular diseases, such as coronary heart disease and heart failure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Altitude, barometric pressure, air density and inspired oxygen pressure.
Fig. 2: Physiological effects of acute hypoxia.
Fig. 3: Effects of hypoxia on cardiomyocytes.
Fig. 4: Heart rate and arterial oxygen saturation at rest during a simulation of ascent to 8,848 m.
Fig. 5: Parallel linear decrease in arterial oxygen saturation and heart rate at maximal exercise as a function of altitude.
Fig. 6: Myocardial venous oxygen saturation at maximal exercise with and without autoregulation of maximal heart rate.
Fig. 7: Processes of adaptation to hypoxia.

Similar content being viewed by others

References

  1. Pace, N., Consolazio, W. V. & Lozner, E. L. The effect of transfusions of red blood cells on the hypoxia tolerance of normal men. Science 102, 589–591 (1945).

    Article  CAS  PubMed  Google Scholar 

  2. Wiggers, C. J. Cardiac adaptations in acute progressive anoxia. Ann. Intern. Med. 14, 1237–1247 (1941).

    Article  CAS  Google Scholar 

  3. Richalet, J.-P. The invention of hypoxia. J. Appl. Physiol. 130, 1573–1582 (2021).

    Article  CAS  PubMed  Google Scholar 

  4. Berner, R. A. Phanerozoic atmospheric oxygen: new results using the GEOCARBSULF model. Am. J. Sci. 309, 603–606 (2009).

    Article  CAS  Google Scholar 

  5. Payne, J. L. et al. The evolutionary consequences of oxygenic photosynthesis: a body size perspective. Photosynth. Res. 107, 37–57 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Saugy, J. J. et al. Same performance changes after live high-train low in normobaric vs. hypobaric hypoxia. Front. Physiol. 7, 138 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Semenza, G. L. Regulation of oxygen homeostasis by hypoxia-inducible factor 1. Physiology 24, 97–106 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Sommer, N., Strielkov, I., Pak, O. & Weissmann, N. Oxygen sensing and signal transduction in hypoxic pulmonary vasoconstriction. Eur. Respir. J. 47, 288–303 (2016).

    Article  CAS  PubMed  Google Scholar 

  9. Luks, A. et al. Ward, Milledge and West’s High Altitude Medicine and Physiology 6th edn (CRC Press, 2021).

  10. Wehrlin, J. P. & Hallén, J. Linear decrease in VO2max and performance with increasing altitude in endurance athletes. Eur. J. Appl. Physiol. 96, 404–412 (2006).

    Article  PubMed  Google Scholar 

  11. Richalet, J.-P. & Lhuissier, F. J. Aging, tolerance to high altitude, and cardiorespiratory response to hypoxia. High Alt. Med. Biol. 16, 117–124 (2015).

    Article  PubMed  Google Scholar 

  12. Dehnert, C. Identification of individuals susceptible to high-altitude pulmonary oedema at low altitude. Eur. Respir. J. 25, 545–551 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. León-Velarde, F. & Richalet, J.-P. Respiratory control in residents at high altitude: physiology and pathophysiology. High Alt. Med. Biol. 7, 125–137 (2006).

    Article  PubMed  Google Scholar 

  14. Richalet, J.-P. in Hypoxia: Translation in Progress (eds Roach, R. C., Hackett, P. H. & Wagner, P. D.) Ch. 23, 343–356 (Springer, 2016).

  15. Escourrou, P., Johnson, D. G. & Rowell, L. B. Hypoxemia increases plasma catecholamine concentrations in exercising humans. J. Appl. Physiol. 57, 1507–1511 (1984).

    Article  CAS  PubMed  Google Scholar 

  16. Calbet, J. A. L. Chronic hypoxia increases blood pressure and noradrenaline spillover in healthy humans. J. Physiol. 551, 379–386 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hansen, J. & Sander, M. Sympathetic neural overactivity in healthy humans after prolonged exposure to hypobaric hypoxia. J. Physiol. 546, 921–929 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Kacimi, R. et al. Differential regulation of G protein expression in rat hearts exposed to chronic hypoxia. Am. J. Physiol. Heart Circ. Physiol. 269, H1865–H1873 (1995).

    Article  CAS  Google Scholar 

  19. Boussi, L. & Frishman, W. H. β-Arrestin as a therapeutic target in heart failure. Cardiol. Rev. 29, 223–229 (2021).

    Article  PubMed  Google Scholar 

  20. Cornolo, J., Mollard, P., Brugniaux, J. V., Robach, P. & Richalet, J.-P. Autonomic control of the cardiovascular system during acclimatization to high altitude: effects of sildenafil. J. Appl. Physiol. 97, 935–940 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Vogel, J. A. & Harris, C. W. Cardiopulmonary responses of resting man during early exposure to high altitude. J. Appl. Physiol. 22, 1124–1128 (1967).

    Article  CAS  PubMed  Google Scholar 

  22. Richalet, J. & Hermand, E. Modeling the oxygen transport to the myocardium at maximal exercise at high altitude. Physiol. Rep. 10, e15262 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kacimi, R., Richalet, J. P. & Crozatier, B. Hypoxia-induced differential modulation of adenosinergic and muscarinic receptors in rat heart. J. Appl. Physiol. 75, 1123–1128 (1993).

    Article  CAS  PubMed  Google Scholar 

  24. León-Velarde, F. et al. Hypoxia- and normoxia-induced reversibility of autonomic control in Andean guinea pig heart. J. Appl. Physiol. 81, 2229–2234 (1996).

    Article  PubMed  Google Scholar 

  25. León-Velarde, F. et al. Differential alterations in cardiac adrenergic signaling in chronic hypoxia or norepinephrine infusion. Am. J. Physiol. Regul. Integr. Comp. Physiol. 280, R274–R281 (2001).

    Article  PubMed  Google Scholar 

  26. Voelkel, N. F., Hegstrand, L., Reeves, J. T., McMurty, I. F. & Molinoff, P. B. Effects of hypoxia on density of beta-adrenergic receptors. J. Appl. Physiol. 50, 363–366 (1981).

    Article  CAS  PubMed  Google Scholar 

  27. Richalet, J. P. et al. Decreased cardiac response to isoproterenol infusion in acute and chronic hypoxia. J. Appl. Physiol. 65, 1957–1961 (1988).

    Article  CAS  PubMed  Google Scholar 

  28. Richalet, J. P. et al. MIBG scintigraphic assessment of cardiac adrenergic activity in response to altitude hypoxia. J. Nucl. Med. 31, 34–37 (1990).

    CAS  PubMed  Google Scholar 

  29. Boushel, R. et al. Parasympathetic neural activity accounts for the lowering of exercise heart rate at high altitude. Circulation 104, 1785–1791 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Clar, C., Dorrington, K. L., Fatemian, M. & Robbins, P. A. Effects of 8 h of isocapnic hypoxia with and without muscarinic blockade on ventilation and heart rate in humans. Exp. Physiol. 86, 529–538 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Hartley, L. H., Vogel, J. A. & Cruz, J. C. Reduction of maximal exercise heart rate at altitude and its reversal with atropine. J. Appl. Physiol. 36, 362–365 (1974).

    Article  CAS  PubMed  Google Scholar 

  32. Favret, F., Richalet, J.-P., Henderson, K. K., Germack, R. & Gonzalez, N. C. Myocardial adrenergic and cholinergic receptor function in hypoxia: correlation with O2 transport in exercise. Am. J. Physiol. Regul. Integr. Comp. Physiol. 280, R730–R738 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Basnyat, B., Sill, D. & Gupta, V. Myocardial infarction or high-altitude pulmonary edema? Wilderness Environ. Med. 11, 196–198 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Liggett, S. B. et al. A GRK5 polymorphism that inhibits β-adrenergic receptor signaling is protective in heart failure. Nat. Med. 14, 510–517 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Reeves, J. T. et al. Operation Everest II: preservation of cardiac function at extreme altitude. J. Appl. Physiol. 63, 531–539 (1987).

    Article  CAS  PubMed  Google Scholar 

  36. Grover, R. F., Weil, J. V. & Reeves, J. T. Cardiovascular adaptation to exercise at high altitude. Exerc. Sport Sci. Rev. 14, 269–302 (1986).

    Article  CAS  PubMed  Google Scholar 

  37. Fukuda, T. et al. Effects of acute hypoxia at moderate altitude on stroke volume and cardiac output during exercise. Int. Heart J. 51, 170–175 (2010).

    Article  PubMed  Google Scholar 

  38. Boussuges, A. et al. Operation Everest III (Comex ’97): modifications of cardiac function secondary to altitude-induced hypoxia: an echocardiographic and Doppler study. Am. J. Respir. Crit. Care Med.  161, 264–270 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Ghofrani, H. A. et al. Sildenafil increased exercise capacity during hypoxia at low altitudes and at Mount Everest Base Camp: a randomized, double-blind, placebo-controlled crossover trial. Ann. Intern. Med.  141, 169 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Brugniaux, J. V. et al. Living high-training low: tolerance and acclimatization in elite endurance athletes. Eur. J. Appl. Physiol. 96, 66–77 (2006).

    Article  PubMed  Google Scholar 

  41. Holloway, C. J. et al. Cardiac response to hypobaric hypoxia: persistent changes in cardiac mass, function, and energy metabolism after a trek to Mt. Everest Base Camp. FASEB J. 25, 792–796 (2011).

    Article  CAS  PubMed  Google Scholar 

  42. Brito, J. et al. Chronic intermittent hypoxia at high altitude exposure for over 12 years: assessment of hematological, cardiovascular, and renal effects. High Alt. Med. Biol. 8, 236–244 (2007).

    Article  PubMed  Google Scholar 

  43. Richalet, J.-P. et al. Chilean miners commuting from sea level to 4500 m: a prospective study. High Alt. Med. Biol. 3, 159–166 (2002).

    Article  PubMed  Google Scholar 

  44. Richalet, J.-P. Operation Everest III: COMEX ’97. High Alt. Med. Biol. 11, 121–132 (2010).

    Article  PubMed  Google Scholar 

  45. Huez, S., Faoro, V., Guénard, H., Martinot, J.-B. & Naeije, R. Echocardiographic and tissue Doppler imaging of cardiac adaptation to high altitude in native highlanders versus acclimatized lowlanders. Am. J. Cardiol. 103, 1605–1609 (2009).

    Article  PubMed  Google Scholar 

  46. Coustet, B., Lhuissier, F. J., Vincent, R. & Richalet, J.-P. Electrocardiographic changes during exercise in acute hypoxia and susceptibility to severe high-altitude illnesses. Circulation 131, 786–794 (2015).

    Article  CAS  PubMed  Google Scholar 

  47. Deussen, A., Ohanyan, V., Jannasch, A., Yin, L. & Chilian, W. Mechanisms of metabolic coronary flow regulation. J. Mol. Cell Cardiol. 52, 794–801 (2012).

    Article  CAS  PubMed  Google Scholar 

  48. Grubbström, J., Berglund, B. & Kaijser, L. Myocardial oxygen supply and lactate metabolism during marked arterial hypoxaemia. Acta Physiol. Scand. 149, 303–310 (1993).

    Article  PubMed  Google Scholar 

  49. Wyss, C. A. et al. Influence of altitude exposure on coronary flow reserve. Circulation 108, 1202–1207 (2003).

    Article  PubMed  Google Scholar 

  50. Hainsworth, R., Drinkhill, M. J. & Rivera-Chira, M. The autonomic nervous system at high altitude. Clin. Auton. Res. 17, 13–19 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Bruno, R. M. et al. Sympathetic regulation of vascular function in health and disease. Front. Physiol. 3, 284 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Bilo, G. et al. Effects of selective and nonselective beta-blockade on 24-h ambulatory blood pressure under hypobaric hypoxia at altitude. J. Hypertens. 29, 380–387 (2011).

    Article  CAS  PubMed  Google Scholar 

  53. Parati, G. et al. Effects of acetazolamide on central blood pressure, peripheral blood pressure, and arterial distensibility at acute high altitude exposure. Eur. Heart J. 34, 759–766 (2013).

    Article  CAS  PubMed  Google Scholar 

  54. Parati, G. et al. Changes in 24 h ambulatory blood pressure and effects of angiotensin II receptor blockade during acute and prolonged high-altitude exposure: a randomized clinical trial. Eur. Heart J. 35, 3113–3122 (2014).

    Article  CAS  PubMed  Google Scholar 

  55. Casey, D. P. & Joyner, M. J. Compensatory vasodilatation during hypoxic exercise: mechanisms responsible for matching oxygen supply to demand. J. Physiol.  590, 6321–6326 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Richalet, J.-P., Larmignat, P., Poitrine, E., Letournel, M. & Canouï-Poitrine, F. Physiological risk factors for severe high-altitude illness: a prospective cohort study. Am. J. Respir. Crit. Care Med.  185, 192–198 (2012).

    Article  PubMed  Google Scholar 

  57. Canouï-Poitrine, F. et al. Risk prediction score for severe high altitude illness: a cohort study. PLoS One 9, e100642 (2014).

    Article  Google Scholar 

  58. Richalet, J.-P. et al. Validation of a score for the detection of subjects with high risk for severe high-altitude illness. Med. Sci. Sports Exercise 53, 1294–1302 (2021).

    Article  CAS  Google Scholar 

  59. Vogel, J. A., Hansen, J. E. & Harris, C. W. Cardiovascular responses in man during exhaustive work at sea level and high altitude. J. Appl. Physiol.  23, 531–539 (1967).

    Article  CAS  PubMed  Google Scholar 

  60. Winkler, L., Lhuissier, F. J. & Richalet, J.-P. Systemic blood pressure at exercise in hypoxia in hypertensive and normotensive patients. J. Hypertens. 35, 2402–2410 (2017).

    Article  CAS  PubMed  Google Scholar 

  61. Mallet, R. T., Burtscher, J., Richalet, J.-P., Millet, G. P. & Burtscher, M. Impact of high altitude on cardiovascular health: current perspectives. Vasc. Health Risk Manag. 17, 317–335 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Savard, G. K., Areskog, N. H. & Saltin, B. Cardiovascular response to exercise in humans following acclimatization to extreme altitude. Acta Physiol. Scand. 154, 499–509 (1995).

    Article  CAS  PubMed  Google Scholar 

  63. Wolfel, E. E. et al. Oxygen transport during steady-state submaximal exercise in chronic hypoxia. J. Appl. Physiol. 70, 1129–1136 (1991).

    Article  CAS  PubMed  Google Scholar 

  64. Wolfel, E. E. et al. O2 extraction maintains O2 uptake during submaximal exercise with beta-adrenergic blockade at 4,300 m. J. Appl. Physiol. 85, 1092–1102 (1998).

    Article  CAS  PubMed  Google Scholar 

  65. Zhou, Q. et al. A randomly-controlled study on the cardiac function at the early stage of return to the plains after short-term exposure to high altitude. PLoS ONE 7, e31097 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Keyes, L. E. et al. Blood pressure and altitude: an observational cohort study of hypertensive and nonhypertensive Himalayan trekkers in Nepal. High Alt. Med. Biol.  18, 267–277 (2017).

    Article  PubMed  Google Scholar 

  67. Tremblay, J. C. et al. Endothelial function and shear stress in hypobaric hypoxia: time course and impact of plasma volume expansion in men. Am. J. Physiol. Heart Circ. Physiol. 319, H980–H994 (2020).

    Article  CAS  PubMed  Google Scholar 

  68. Rieger, M. G. et al. Cardiopulmonary and cerebrovascular acclimatization in children and adults at 3800 m. J. Physiol. 600, 4849–4863 (2022).

    Article  CAS  PubMed  Google Scholar 

  69. Talbot, N. P., Balanos, G. M., Dorrington, K. L. & Robbins, P. A. Two temporal components within the human pulmonary vascular response to approximately 2 h of isocapnic hypoxia. J. Appl. Physiol. 98, 1125–1139 (2005).

    Article  PubMed  Google Scholar 

  70. Groves, B. M. et al. Operation Everest II: elevated high-altitude pulmonary resistance unresponsive to oxygen. J. Appl. Physiol. 63, 521–530 (1987).

    Article  CAS  PubMed  Google Scholar 

  71. Moudgil, R., Michelakis, E. D. & Archer, S. L. Hypoxic pulmonary vasoconstriction. J. Appl. Physiol.  98, 390–403 (2005).

    Article  CAS  PubMed  Google Scholar 

  72. Stenmark, K. R., Fagan, K. A. & Frid, M. G. Hypoxia-induced pulmonary vascular remodeling: cellular and molecular mechanisms. Circ. Res. 99, 675–691 (2006).

    Article  CAS  PubMed  Google Scholar 

  73. Richalet, J.-P. & Pichon, A. in The Right Heart (eds. Gaine, S. P., Naeije, R. & Peacock, A. J.) 117–129 (Springer, 2014). 

  74. Naeije, R. et al. Pulmonary artery pressure limits exercise capacity at high altitude. Eur. Respir. J. 36, 1049–1055 (2010).

    Article  CAS  PubMed  Google Scholar 

  75. Hildebrandt, W., Ottenbacher, A., Schuster, M., Swenson, E. R. & Bärtsch, P. Diuretic effect of hypoxia, hypocapnia, and hyperpnea in humans: relation to hormones and O2 chemosensitivity. J. Appl. Physiol.  88, 599–610 (2000).

    Article  CAS  PubMed  Google Scholar 

  76. Olsen, N. V. et al. Effects of acute hypoxia on renal and endocrine function at rest and during graded exercise in hydrated subjects. J. Appl. Physiol. 73, 2036–2043 (1992).

    Article  CAS  PubMed  Google Scholar 

  77. Steele, A. R. et al. Global REACH 2018: renal oxygen delivery is maintained during early acclimatization to 4,330 m. Am. J. Physiol. Renal Physiol. 319, F1081–F1089 (2020).

    Article  CAS  PubMed  Google Scholar 

  78. Singh, M. V. et al. Blood gases, hematology, and renal blood flow during prolonged mountain sojourns at 3500 and 5800 m. Aviat. Space Environ. Med. 74, 533–536 (2003).

    CAS  PubMed  Google Scholar 

  79. Richalet, J. P. et al. Control of erythropoiesis in humans during prolonged exposure to the altitude of 6,542 m. Am. J. Physiol. 266, R756–R764 (1994).

    CAS  PubMed  Google Scholar 

  80. Lozano, R. & Monge, C. Renal function in high-altitude natives and in natives with chronic mountain sickness. J. Appl. Physiol. 20, 1026–1027 (1965).

    Article  CAS  PubMed  Google Scholar 

  81. Ainslie, P. N. & Subudhi, A. W. Cerebral blood flow at high altitude. High Alt. Med. Biol. 15, 133–140 (2014).

    Article  CAS  PubMed  Google Scholar 

  82. Ter Minassian, A. et al. Doppler study of middle cerebral artery blood flow velocity and cerebral autoregulation during a simulated ascent of Mount Everest. Wilderness Environ. Med. 12, 175–183 (2001).

    Article  CAS  PubMed  Google Scholar 

  83. Hanada, A., Sander, M. & González-Alonso, J. Human skeletal muscle sympathetic nerve activity, heart rate and limb haemodynamics with reduced blood oxygenation and exercise. J. Physiol. 551, 635–647 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Casey, D. P. et al. Nitric oxide contributes to the augmented vasodilatation during hypoxic exercise. J. Physiol. 588, 373–385 (2010).

    Article  CAS  PubMed  Google Scholar 

  85. Wilkins, B. W. et al. Exercise intensity-dependent contribution of β-adrenergic receptor-mediated vasodilatation in hypoxic humans. J. Physiol. 586, 1195–1205 (2008).

    Article  CAS  PubMed  Google Scholar 

  86. Pohl, U. & Busse, R. Hypoxia stimulates release of endothelium-derived relaxant factor. Am. J. Physiol. Heart Circ. Physiol. 256, H1595–H1600 (1989).

    Article  CAS  Google Scholar 

  87. Kooijman, M. et al. Flow-mediated dilatation in the superficial femoral artery is nitric oxide mediated in humans: FMD in the SFA is nitric oxide mediated. J. Physiol. 586, 1137–1145 (2008).

    Article  CAS  PubMed  Google Scholar 

  88. Mortensen, S. P., Nyberg, M., Thaning, P., Saltin, B. & Hellsten, Y. Adenosine contributes to blood flow regulation in the exercising human leg by increasing prostaglandin and nitric oxide formation. Hypertension 53, 993–999 (2009).

    Article  CAS  PubMed  Google Scholar 

  89. Azad, P. et al. High-altitude adaptation in humans: from genomics to integrative physiology. J. Mol. Med. 95, 1269–1282 (2017).

    Article  CAS  PubMed  Google Scholar 

  90. Moore, L. G., Armaza, F., Villena, M. & Vargas, E. Comparative aspects of high-altitude adaptation in human populations. Adv. Exp. Med. Biol. 475, 45–62 (2000).

    Article  CAS  PubMed  Google Scholar 

  91. Hunley, K., Gwin, K. & Liberman, B. A Reassessment of the impact of European contact on the structure of Native American genetic diversity. PLoS ONE 11, e0161018 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Hultgren, H. N. & Miller, H. Human heart weight at high altitude. Circulation 35, 207–218 (1967).

    Article  CAS  PubMed  Google Scholar 

  93. Antezana, A. et al. Pulmonary hypertension in high-altitude chronic hypoxia: response to nifedipine. Eur. Respir. J.  12, 1181–1185 (1998).

    Article  CAS  PubMed  Google Scholar 

  94. León-Velarde, F., Villafuerte, F. C. & Richalet, J.-P. Chronic mountain sickness and the heart. Prog. Cardiovasc. Dis. 52, 540–549 (2010).

    Article  PubMed  Google Scholar 

  95. Maignan, M. et al. Pulmonary pressure and cardiac function in chronic mountain sickness patients. Chest 135, 499–504 (2009).

    Article  Google Scholar 

  96. Corante, N. et al. Excessive erythrocytosis and cardiovascular risk in Andean highlanders. High Alt. Med. Biol. 19, 221–231 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Pratali, L. et al. RV contractility and exercise-induced pulmonary hypertension in chronic mountain sickness. JACC Cardiovasc. Imag. 6, 1287–1297 (2013).

    Article  Google Scholar 

  98. Severinghaus, J. W., Bainton, C. R. & Carcelen, A. Respiratory insensitivity to hypoxia in chronically hypoxic man. Respir. Physiol. 1, 308–334 (1966).

    Article  CAS  PubMed  Google Scholar 

  99. Antezana, A., Richalet, J., Antezana, G., Spielvogel, H. & Kacimi, R. Adrenergic aystem in high altitude residents. Int. J. Sports Med.  13, S96–S100 (1992).

    Article  PubMed  Google Scholar 

  100. Richalet, J.-P. et al. Acetazolamide for Monge’s disease: efficiency and tolerance of 6-month treatment. Am. J. Respir. Crit. Care Med.  177, 1370–1376 (2008).

    Article  CAS  PubMed  Google Scholar 

  101. Aryal, N., Weatherall, M., Bhatta, Y. K. D. & Mann, S. Blood pressure and hypertension in adults permanently living at high altitude: a systematic review and meta-analysis. High Alt. Med. Biol. 17, 185–193 (2016).

    Article  PubMed  Google Scholar 

  102. Sun, S. Epidemiology of hypertension on the Tibetan plateau. Hum. Biol. 58, 507–515 (1986).

    CAS  PubMed  Google Scholar 

  103. Hancco, I. et al. Excessive erythrocytosis and chronic mountain sickness in dwellers of the highest city in the world. Front. Physiol. 11, 773 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Coombs, G. B. et al. Global Reach 2018: nitric oxide-mediated cutaneous vasodilation is reduced in chronic, but not acute, hypoxia independently of enzymatic superoxide formation. Free Radic. Biol. Med. 172, 451–458 (2021).

    Article  CAS  PubMed  Google Scholar 

  105. Beall, C. M., Laskowski, D. & Erzurum, S. C. Nitric oxide in adaptation to altitude. Free Radic. Biol. Med. 52, 1123–1134 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Tremblay, J. C. et al. Global Reach 2018: high blood viscosity and hemoglobin concentration contribute to reduced flow-mediated dilation in high-altitude excessive erythrocytosis. Hypertension 73, 1327–1335 (2019).

    Article  CAS  PubMed  Google Scholar 

  107. Basak, N. & Thangaraj, K. High-altitude adaptation: role of genetic and epigenetic factors. J. Biosci. 46, 107 (2021).

    Article  CAS  PubMed  Google Scholar 

  108. Beall, C. M. Andean, Tibetan, and Ethiopian patterns of adaptation to high-altitude hypoxia. Integr. Comp. Biol. 46, 18–24 (2006).

    Article  PubMed  Google Scholar 

  109. Beall, C. M. et al. Natural selection on EPAS1 (HIF2alpha) associated with low hemoglobin concentration in Tibetan highlanders. Proc. Natl Acad. Sci. USA 107, 11459–11464 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Bigham, A. et al. Identifying signatures of natural selection in Tibetan and Andean populations using dense genome scan data. PLoS Genet. 6, e1001116 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Simonson, T. S. et al. Genetic evidence for high-altitude adaptation in Tibet. Science 329, 72–75 (2010).

    Article  CAS  PubMed  Google Scholar 

  112. Sharma, V., Varshney, R. & Sethy, N. K. Human adaptation to high altitude: a review of convergence between genomic and proteomic signatures. Hum. Genomics 16, 21 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Scheinfeldt, L. B. et al. Genetic adaptation to high altitude in the Ethiopian highlands. Genome Biol. 13, R1 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Espinoza, J. R. et al. Vascular endothelial growth factor-A is associated with chronic mountain sickness in the Andean population. High Alt. Med. Biol. 15, 146–154 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Gazal, S. et al. The genetic architecture of chronic mountain sickness in Peru. Front. Genet. 10, 690 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Zhou, D. et al. Whole-genome sequencing uncovers the genetic basis of chronic mountain sickness in Andean highlanders. Am. J. Hum. Genet. 93, 452–462 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Ravenhill, T. H. Some experiences of mountain sickness in the Andes. J. Trop. Med. Hyg. 16, 313–320 (1913).

    Google Scholar 

  118. Houston, C. S. Acute pulmonary edema of high altitude. N. Engl. J. Med. 263, 478–480 (1960).

    Article  CAS  PubMed  Google Scholar 

  119. Richalet, J.-P., Jeny, F., Callard, P. & Bernaudin, J.-F. High altitude pulmonary edema: the intercellular network hypothesis. Am. J. Physiol. Lung Cell. Mol. Physiol. https://doi.org/10.1152/ajplung.00292.2022 (2023).

  120. Donegani, E. et al. Pre-existing cardiovascular conditions and high altitude travel.Travel Med. Infect. Dis. 12, 237–252 (2014).

    Article  PubMed  Google Scholar 

  121. Luks, A. M. & Hackett, P. H. Medical conditions and high-altitude travel. N. Engl. J. Med. 386, 364–373 (2022).

    Article  PubMed  Google Scholar 

  122. Parati, G. et al. Clinical recommendations for high altitude exposure of individuals with pre-existing cardiovascular conditions: a joint statement by the European Society of Cardiology, the Council on Hypertension of the European Society of Cardiology, the European Society of Hypertension, the International Society of Mountain Medicine, the Italian Society of Hypertension and the Italian Society of Mountain Medicine. Eur. Heart J. 39, 1546–1554 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Mollard, P. et al. Determinants of maximal oxygen uptake in moderate acute hypoxia in endurance athletes. Eur. J. Appl. Physiol. 100, 663–673 (2007).

    Article  CAS  PubMed  Google Scholar 

  124. Schmid, J.-P. Safety and exercise tolerance of acute high altitude exposure (3454 m) among patients with coronary artery disease. Heart 92, 921–925 (2006).

    Article  CAS  PubMed  Google Scholar 

  125. de Vries, S. T. et al. Impact of high altitude on echocardiographically determined cardiac morphology and function in patients with coronary artery disease and healthy controls. Eur. J. Echocardiogr. 11, 446–450 (2010).

    Article  PubMed  Google Scholar 

  126. Morgan, B. J., Alexander, J. K., Nicoli, S. A. & Brammell, H. L. The patient with coronary heart disease at altitude: observations during acute exposure to 3100 meters. J. Wilderness Med. 1, 147–153 (1990).

    Article  Google Scholar 

  127. Salvi, P. et al. Changes in subendocardial viability ratio with acute high-altitude exposure and protective role of acetazolamide. Hypertension 61, 793–799 (2013).

    Article  CAS  PubMed  Google Scholar 

  128. Agostoni, P. et al. Effects of simulated altitude-induced hypoxia on exercise capacity in patients with chronic heart failure. Am. J. Med. 109, 450–455 (2000).

    Article  CAS  PubMed  Google Scholar 

  129. Schmid, J.-P. et al. Short-term high altitude exposure at 3454 m is well tolerated in patients with stable heart failure. Eur. J. Heart Fail. 17, 182–186 (2015).

    Article  PubMed  Google Scholar 

  130. Vona, M. et al. Effects of altitude on effort tolerance in non-acclimatized patients with ischemic left ventricular dysfunction. Eur. J. Cardiovasc. Prev. Rehabil. 13, 617–624 (2006).

    Article  PubMed  Google Scholar 

  131. Staempfli, R. et al. Cardiopulmonary adaptation to short-term high altitude exposure in adult Fontan patients. Heart 102, 1296–1301 (2016).

    Article  CAS  PubMed  Google Scholar 

  132. Allemann, Y. et al. Patent foramen ovale and high-altitude pulmonary edema. JAMA 296, 2954–2958 (2006).

    Article  CAS  PubMed  Google Scholar 

  133. Bilo, G. et al. Ambulatory blood pressure in untreated and treated hypertensive patients at high altitude: the High Altitude Cardiovascular Research-Andes study. Hypertension 65, 1266–1272 (2015).

    Article  CAS  PubMed  Google Scholar 

  134. Wu, T.-Y. et al. Who should not go high: chronic disease and work at altitude during construction of the Qinghai-Tibet railroad. High Alt. Med. Biol. 8, 88–107 (2007).

    Article  PubMed  Google Scholar 

  135. Hackett, P. H. et al. High-altitude pulmonary edema in persons without the right pulmonary artery. N. Engl. J. Med. 302, 1070–1073 (1980).

    Article  CAS  PubMed  Google Scholar 

  136. Richalet, J.-P., Chenivesse, C., Larmignat, P. & Meille, L. High altitude pulmonary edema, Down syndrome, and obstructive sleep apneas. High Alt. Med. Biol. 9, 179–181 (2008).

    Article  PubMed  Google Scholar 

  137. Lichtblau, M. et al. Altitude travel in patients with pulmonary hypertension: randomized pilot-trial evaluating nocturnal oxygen therapy. Front. Med. 7, 502 (2020).

    Article  Google Scholar 

  138. Verges, S., Chacaroun, S., Godin-Ribuot, D. & Baillieul, S. Hypoxic conditioning as a new therapeutic modality. Front. Pediatr. 3, 58 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Burtscher, J., Mallet, R. T., Burtscher, M. & Millet, G. P. Hypoxia and brain aging: neurodegeneration or neuroprotection? Ageing Res. Rev. 68, 101343 (2021).

    Article  CAS  PubMed  Google Scholar 

  140. Moncayo, J., de Freitas, G. R., Bogousslavsky, J., Altieri, M. & van Melle, G. Do transient ischemic attacks have a neuroprotective effect? Neurology 54, 2089–2094 (2000).

    Article  CAS  PubMed  Google Scholar 

  141. Zhang, Y. et al. Hypoxia conditioning enhances neuroprotective effects of aged human bone marrow mesenchymal stem cell-derived conditioned medium against cerebral ischemia in vitro. Brain Res. 1725, 146432 (2019).

    Article  CAS  PubMed  Google Scholar 

  142. Serebrovskaya, T. V., Manukhina, E. B., Smith, M. L., Downey, H. F. & Mallet, R. T. Intermittent hypoxia: cause of or therapy for systemic hypertension? Exp. Biol. Med. 233, 627–650 (2008).

    Article  CAS  Google Scholar 

  143. Mateika, J. H. & Syed, Z. Intermittent hypoxia, respiratory plasticity and sleep apnea in humans: present knowledge and future investigations. Respir. Physiol. Neurobiol. 188, 289–300 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Hobbins, L., Hunter, S., Gaoua, N. & Girard, O. Normobaric hypoxic conditioning to maximize weight loss and ameliorate cardio-metabolic health in obese populations: a systematic review. Am. J. Physiol. Regul. Integr. Comp. Physiol. 313, R251–R264 (2017).

    Article  CAS  PubMed  Google Scholar 

  145. Klug, L. et al. Normobaric hypoxic conditioning in men with metabolic syndrome. Physiol. Rep. 6, e13949 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Burtscher, M. Lower mortality rates in those living at moderate altitude. Aging 8, 2603–2604 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Ezzati, M. et al. Altitude, life expectancy and mortality from ischaemic heart disease, stroke, COPD and cancers: national population-based analysis of US counties. J. Epidemiol. Community Health 66, e17 (2012).

    Article  PubMed  Google Scholar 

  148. Faeh, D., Gutzwiller, F. & Bopp, M. Lower mortality from coronary heart disease and stroke at higher altitudes in Switzerland. Circulation 120, 495–501 (2009).

    Article  PubMed  Google Scholar 

  149. Lopez-Pascual, A., Arévalo, J., Martínez, J. A. & González-Muniesa, P. Inverse association between metabolic syndrome and altitude: a cross-sectional study in an adult population of Ecuador. Front. Endocrinol. 9, 658 (2018).

    Article  Google Scholar 

  150. Woolcott, O. O. et al. Inverse association between diabetes and altitude: a cross-sectional study in the adult population of the United States: diabetes at high altitude. Obesity 22, 2080–2090 (2014).

    Article  PubMed  Google Scholar 

  151. Coté, T. R., Stroup, D. F., Dwyer, D. M., Horan, J. M. & Peterson, D. E. Chronic obstructive pulmonary disease mortality: a role for altitude. Chest 103, 1194–1197 (1993).

    Article  PubMed  Google Scholar 

  152. Anderson, J. D. & Honigman, B. The effect of altitude-induced hypoxia on heart disease: do acute, intermittent, and chronic exposures provide cardioprotection? High Alt. Med. Biol. 12, 45–55 (2011).

    Article  PubMed  Google Scholar 

  153. Sanchis-Gomar, F., Viña, J. & Lippi, G. Intermittent hypobaric hypoxia applicability in myocardial infarction prevention and recovery. J. Cell Mol. Med. 16, 1150–1154 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. del Pilar Valle, M. et al. Improvement of myocardial perfusion in coronary patients after intermittent hypobaric hypoxia. J. Nucl. Cardiol. 13, 69–74 (2006).

    Article  PubMed  Google Scholar 

  155. Burtscher, M. et al. Intermittent hypoxia increases exercise tolerance in elderly men with and without coronary artery disease. Int. J. Cardiol. 96, 247–254 (2004).

    Article  PubMed  Google Scholar 

  156. Saeed, O. et al. Improved exercise performance and skeletal muscle strength after simulated altitude exposure: a novel approach for patients with chronic heart failure. J. Card. Fail. 18, 387–391 (2012).

    Article  PubMed  Google Scholar 

  157. Cai, Z. et al. Complete loss of ischaemic preconditioning-induced cardioprotection in mice with partial deficiency of HIF-1. Cardiovasc. Res. 77, 463–470 (2007).

    Article  PubMed  Google Scholar 

  158. Huang, T. et al. Hypoxia-inducible factor-1α upregulation in microglia following hypoxia protects against ischemia-induced cerebral infarction. NeuroReport 25, 1122–1128 (2014).

    Article  CAS  PubMed  Google Scholar 

  159. Belaidi, E., Beguin, P. C., Levy, P., Ribuot, C. & Godin-Ribuot, D. Prevention of HIF-1 activation and iNOS gene targeting by low-dose cadmium results in loss of myocardial hypoxic preconditioning in the rat. Am. J. Physiol. Heart Circ. Physiol. 294, H901–H908 (2008).

    Article  CAS  PubMed  Google Scholar 

  160. Park, A.-M., Nagase, H., Vinod Kumar, S. & Suzuki, Y. J. Acute intermittent hypoxia activates myocardial cell survival signaling. Am. J. Physiol. Heart Circ. Physiol. 292, H751–H757 (2007).

    Article  CAS  PubMed  Google Scholar 

  161. Joyeux-Faure, M., Godin-Ribuot, D. & Ribuot, C. Erythropoietin and myocardial protection: what’s new? Fundam. Clin. Pharmacol. 19, 439–446 (2005).

    Article  CAS  PubMed  Google Scholar 

  162. Moore, E. & Bellomo, R. Erythropoietin (EPO) in acute kidney injury. Ann. Intensive Care 1, 3 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  163. El’chaninova, S. A., Korenyak, N. A., Pavlovskaya, L. I., Smagina, I. V. & Makarenko, V. V. The effect of interval hypoxic hypoxia on the vascular endothelial growth factor and basic fibroblast growth factor concentrations in the peripheral blood. Hum. Physiol. 30, 705–707 (2004).

    Article  Google Scholar 

  164. Maulik, N. & Das, D. K. Redox signaling in vascular angiogenesis. Free Radic. Biol. Med. 33, 1047–1060 (2002).

    Article  CAS  PubMed  Google Scholar 

  165. Ray, P. S., Estrada-Hernandez, T., Sasaki, H., Zhu, L. & Maulik, N. Early effects of hypoxia/reoxygenation on VEGF, ang-1, ang-2 and their receptors in the rat myocardium: implications for myocardial angiogenesis. Mol. Cell Biochem. 213, 145–153 (2000).

    Article  CAS  PubMed  Google Scholar 

  166. Dempsey, J. A., Veasey, S. C., Morgan, B. J. & O’Donnell, C. P. Pathophysiology of sleep apnea. Physiol. Rev. 90, 47–112 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Mallet, R. T., Manukhina, E. B., Ruelas, S. S., Caffrey, J. L. & Downey, H. F. Cardioprotection by intermittent hypoxia conditioning: evidence, mechanisms, and therapeutic potential. Am. J. Physiol. Heart Circ. Physiol. 315, H216–H232 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Navarrete-Opazo, A. & Mitchell, G. S. Therapeutic potential of intermittent hypoxia: a matter of dose. Am. J. Physiol. Regul. Integr. Comp. Physiol. 307, R1181–R1197 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Millet, G. P. et al. Commentaries on viewpoint: time for a new metric for hypoxic dose? J. Appl. Physiol. 121, 356–358 (2016).

    Article  PubMed  Google Scholar 

  170. Richalet, J.-P. Oxygen sensors in the organism: examples of regulation under altitude hypoxia in mammals. Comp. Biochem. Physiol. A Physiol. 118, 9–14 (1997).

    Article  CAS  PubMed  Google Scholar 

  171. Kanai, M., Nishihara, F., Shiga, T., Shimada, H. & Saito, S. Alterations in autonomic nervous control of heart rate among tourists at 2700 and 3700 m above sea level. Wilderness Environ. Med. 12, 8–12 (2001).

    Article  CAS  PubMed  Google Scholar 

  172. Heistad, D. D. & Abboud, F. M. Dickinson W. Richards lecture: circulatory adjustments to hypoxia. Circulation 61, 463–470 (1980).

    Article  CAS  PubMed  Google Scholar 

  173. Mortensen, S. P., González-Alonso, J., Damsgaard, R., Saltin, B. & Hellsten, Y. Inhibition of nitric oxide and prostaglandins, but not endothelial-derived hyperpolarizing factors, reduces blood flow and aerobic energy turnover in the exercising human leg: effect of triple blockade on exercise hyperaemia. J. Physiol. 581, 853–861 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Richalet, J.-P. & Herry, J.-P. Médecine de Montagne: Alpinisme et Sports de Montagne 5th edn, Vol. 72 (Elsevier Masson, 2017).

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed substantially to all aspects of the article.

Corresponding author

Correspondence to Jean-Paul Richalet.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Cardiology thanks Martin Burtscher, Lorenza Pratali and Stephan von Haehling for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Anoxia

The absence of oxygen from the tissues of a living organism.

Duration of exposure to hypoxia

Acute: minutes or hours; prolonged: days or weeks; chronic: months, years or lifetime.

Hypobaric hypoxia

Decrease in oxygen pressure owing to a decrease in barometric pressure.

Hypoxaemia

Decrease in oxygen pressure in blood compared with normal value at sea level (100 mmHg).

Hypoxia

Decrease in oxygen pressure in a given milieu (such as ambient air, lung alveoli, blood or cells).

Normobaric hypoxia

Decrease in oxygen pressure owing to a decrease in the fraction of oxygen in the inspired air.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Richalet, JP., Hermand, E. & Lhuissier, F.J. Cardiovascular physiology and pathophysiology at high altitude. Nat Rev Cardiol 21, 75–88 (2024). https://doi.org/10.1038/s41569-023-00924-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41569-023-00924-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing