Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Valvular heart disease and cardiomyopathy: reappraisal of their interplay

Abstract

Cardiomyopathies and valvular heart diseases are typically considered distinct diagnostic categories with dedicated guidelines for their management. However, the interplay between these conditions is increasingly being recognized and they frequently coexist, as in the paradigmatic examples of dilated cardiomyopathy and hypertrophic cardiomyopathy, which are often complicated by the occurrence of mitral regurgitation. Moreover, cardiomyopathies and valvular heart diseases can have a shared aetiology because several genetic or acquired diseases can affect both the cardiac valves and the myocardium. In addition, the association between cardiomyopathies and valvular heart diseases has important prognostic and therapeutic implications. Therefore, a better understanding of their shared pathophysiological mechanisms, as well as of the prevalence and predisposing factors to their association, might lead to a different approach in the risk stratification and management of these diseases. In this Review, we discuss the different scenarios in which valvular heart diseases and cardiomyopathies coexist, highlighting the need for an improved classification and clustering of these diseases with potential repercussions in the clinical management and, particularly, personalized therapeutic approaches.

Key points

  • Cardiomyopathies and valvular heart diseases are traditionally considered to be distinct diagnostic categories, but their coexistence is increasingly being recognized in several clinical settings.

  • Dilated cardiomyopathy and hypertrophic cardiomyopathy are the paradigmatic examples of the coexistence of valvular heart disease and cardiomyopathy, given that these cardiomyopathies are often associated with mitral regurgitation, which further complicates their management.

  • Cardiomyopathies and valvular heart disease can also share specific pathophysiological mechanisms, given that various genetic or acquired diseases can affect both the valves and the myocardium, including storage or immune-mediated disorders and radiation-induced cardiac damage.

  • The association between cardiomyopathies and valvular heart diseases can have prognostic implications and can affect clinical decision-making; therefore, a personalized medicine approach is advocated for patients in whom these conditions coexist.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Interplay between valvular heart diseases and cardiomyopathies.
Fig. 2: Mitral regurgitation in hypertrophic and dilated cardiomyopathy.
Fig. 3: Arrhythmic mitral valve prolapse.
Fig. 4: Cardiac amyloidosis and aortic stenosis.
Fig. 5: Workflow for the assessment and management of patients with concomitant cardiomyopathy and valvular heart disease.

Similar content being viewed by others

References

  1. Vahanian, A. et al. 2021 ESC/EACTS guidelines for the management of valvular heart disease. Eur. Heart J. 43, 561–632 (2022).

    Article  PubMed  Google Scholar 

  2. Elliott, P. et al. Classification of the cardiomyopathies: a position statement from the European Society of Cardiology working group on myocardial and pericardial diseases. Eur. Heart J. 29, 270–276 (2008).

    Article  PubMed  Google Scholar 

  3. McKenna, W. J., Maron, B. J. & Thiene, G. Classification, epidemiology, and global burden of cardiomyopathies. Circ. Res. 121, 722–730 (2017).

    Article  CAS  PubMed  Google Scholar 

  4. Lancellotti, P., Zamorano, J. L. & Vannan, M. A. Imaging challenges in secondary mitral regurgitation: unsolved issues and perspectives. Circ. Cardiovasc. Imaging 7, 735–746 (2014).

    Article  PubMed  Google Scholar 

  5. Wigle, E. D. Cardiomyopathy: the diagnosis of hypertrophic cardiomyopathy. Heart 86, 709–714 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Milleron, O. et al. Eclipsed mitral regurgitation: an unusual cause of acute heart failure. Eur. Heart J. Cardiovasc. Imaging 18, 1163–1169 (2017).

    Article  CAS  PubMed  Google Scholar 

  7. Agricola, E. et al. Non-ischemic dilated cardiopathy: prognostic value of functional mitral regurgitation. Int. J. Cardiol. 146, 426–428 (2010).

    Article  PubMed  Google Scholar 

  8. He, S., Fontaine, A. A., Schwammenthal, E., Yoganathan, A. P. & Levine, R. A. Integrated mechanism for functional mitral regurgitation: leaflet restriction versus coapting force: in vitro studies. Circulation 96, 1826–1834 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Levack, M. M. et al. Three-dimensional echocardiographic analysis of mitral annular dynamics: implication for annuloplasty selection. Circulation 126, S183–S188 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Rossi, A. et al. Independent prognostic value of functional mitral regurgitation in patients with heart failure. A quantitative analysis of 1256 patients with ischaemic and non-ischaemic dilated cardiomyopathy. Heart 97, 1675–1680 (2011).

    Article  PubMed  Google Scholar 

  11. Mack, M. & Grayburn, P. Guideline-directed medical therapy for secondary mitral regurgitation: more questions than answers! JACC Heart Fail. 5, 660–662 (2017).

    Article  PubMed  Google Scholar 

  12. El Sabbagh, A., Reddy, Y. N. V. & Nishimura, R. A. Mitral valve regurgitation in the contemporary era: insights into diagnosis, management, and future directions. JACC Cardiovasc. Imaging 11, 628–643 (2018).

    Article  PubMed  Google Scholar 

  13. Kajimoto, K., Minami, Y., Otsubo, S. & Sato, N. Ischemic or nonischemic functional mitral regurgitation and outcomes in patients with acute decompensated heart failure with preserved or reduced ejection fraction. Am. J. Cardiol. 120, 809–816 (2017).

    Article  PubMed  Google Scholar 

  14. Trichon, B. H., Felker, G. M., Shaw, L. K., Cabell, C. H. & O’Connor, C. M. Relation of frequency and severity of mitral regurgitation to survival among patients with left ventricular systolic dysfunction and heart failure. Am. J. Cardiol. 91, 538–543 (2003).

    Article  PubMed  Google Scholar 

  15. Goliasch, G. et al. Refining the prognostic impact of functional mitral regurgitation in chronic heart failure. Eur. Heart J. 39, 39–46 (2018).

    Article  CAS  PubMed  Google Scholar 

  16. Seneviratne, B., Moore, G. A. & West, P. D. Effect of captopril on functional mitral regurgitation in dilated heart failure: a randomised double blind placebo controlled trial. Br. Heart J. 72, 63–68 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nasser, R. et al. Evolution of functional mitral regurgitation and prognosis in medically managed heart failure patients with reduced ejection fraction. JACC Heart Fail. 5, 652–659 (2017).

    Article  PubMed  Google Scholar 

  18. Pagnesi, M. et al. Clinical impact of changes in mitral regurgitation severity after medical therapy optimization in heart failure. Clin. Res. Cardiol. 111, 912–923 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kang, D. H. et al. Angiotensin receptor neprilysin inhibitor for functional mitral regurgitation. Circulation 139, 1354–1365 (2019).

    Article  CAS  PubMed  Google Scholar 

  20. Cabrera-Bueno, F. et al. Persistence of secondary mitral regurgitation and response to cardiac resynchronization therapy. Eur. J. Echocardiogr. 11, 131–137 (2010).

    Article  PubMed  Google Scholar 

  21. Verhaert, D. et al. Impact of mitral regurgitation on reverse remodeling and outcome in patients undergoing cardiac resynchronization therapy. Circ. Cardiovasc. Imaging 5, 21–26 (2012).

    Article  PubMed  Google Scholar 

  22. Van Bommel, R. J. et al. Cardiac resynchronization therapy as a therapeutic option in patients with moderate–severe functional mitral regurgitation and high operative risk. Circulation 124, 912–919 (2011).

    Article  PubMed  Google Scholar 

  23. Spartera, M. et al. Role of cardiac dyssynchrony and resynchronization therapy in functional mitral regurgitation. Eur. Heart J. Cardiovasc. Imaging 17, 471–480 (2016).

    Article  PubMed  Google Scholar 

  24. Acker, M. A. et al. Mitral-valve repair versus replacement for severe ischemic mitral regurgitation. N. Engl. J. Med. 370, 23–32 (2014).

    Article  CAS  PubMed  Google Scholar 

  25. Smith, P. K. et al. Cardiothoracic Surgical Trials Network Investigators. Surgical treatment of moderate ischemic mitral regurgitation. N. Engl. J. Med. 371, 2178–2188 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Obadia, J. F. et al. Percutaneous repair or medical treatment for secondary mitral regurgitation. N. Engl. J. Med. 379, 2297–2306 (2018).

    Article  PubMed  Google Scholar 

  27. Stone, G. W. et al. Transcatheter mitral-valve repair in patients with heart failure. N. Engl. J. Med. 379, 2307–2318 (2018).

    Article  PubMed  Google Scholar 

  28. Chiarito, M. et al. Edge-to-edge percutaneous mitral repair for functional ischaemic and non-ischaemic mitral regurgitation: a systematic review and meta-analysis. Esc. Heart Fail. 9, 3177–3187 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Grayburn, P. A., Sannino, A. & Packer, M. Proportionate and disproportionate functional mitral regurgitation: a new conceptual framework that reconciles the results of the MITRA-FR and COAPT trials. JACC Cardiovasc. Imaging 12, 353–362 (2019).

    Article  PubMed  Google Scholar 

  30. Lindenfeld, J. et al. Association of effective regurgitation orifice area to left ventricular end-diastolic volume ratio with transcatheter mitral valve repair outcomes: a secondary analysis of the COAPT trial. JAMA Cardiol. 6, 427–443 (2021).

    Article  PubMed  Google Scholar 

  31. Ooms, J. F. et al. Transcatheter edge-to-edge repair in proportionate versus disproportionate functional mitral regurgitation. J. Am. Soc. Echocardiogr. 35, 105–115e8 (2022).

    Article  PubMed  Google Scholar 

  32. Orban, M. et al. Impact of proportionality of secondary mitral regurgitation on outcome after transcatheter mitral valve repair. JACC Cardiovasc. Imaging 14, 715–725 (2021).

    Article  PubMed  Google Scholar 

  33. Adamo, M. et al. COAPT-like profile predicts long-term outcomes in patients with secondary mitral regurgitation undergoing mitraclip implantation. JACC Cardiovasc. Interv. 14, 15–25 (2021).

    Article  PubMed  Google Scholar 

  34. Brener, M. I. et al. Right ventricular–pulmonary arterial coupling in patients with HF secondary MR: analysis from the COAPT trial. JACC Cardiovasc. Interv. 14, 2231–2242 (2021).

    Article  PubMed  Google Scholar 

  35. Otto, C. M. et al. 2020 ACC/AHA guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 143, e72–e227 (2021).

    PubMed  Google Scholar 

  36. Rose, E. A. et al. Long-term use of a left ventricular assist device for end-stage heart failure. N. Engl. J. Med. 345, 1435–1443 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Maron, B. J. et al. Diagnosis and evaluation of hypertrophic cardiomyopathy: JACC state-of-the-art review. J. Am. Coll. Cardiol. 79, 372–389 (2022).

    Article  PubMed  Google Scholar 

  38. Ommen, S. R. et al. 2020 AHA/ACC guideline for the diagnosis and treatment of patients with hypertrophic cardiomyopathy: executive summary: a report of The American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. J. Am. Coll. Cardiol. 76, 3022–3055 (2020).

    Article  PubMed  Google Scholar 

  39. Woo, A. & Jedrzkiewicz, S. The mitral valve in hypertrophic cardiomyopathy: it’s a long story. Circulation 124, 9–12 (2011).

    Article  PubMed  Google Scholar 

  40. Maron, M. S. et al. Mitral valve abnormalities identified by cardiovascular magnetic resonance represent a primary phenotypic expression of hypertrophic cardiomyopathy. Circulation 124, 40–47 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Levine, R. A. et al. Papillary muscle displacement causes systolic anterior motion of the mitral valve. Experimental validation and insights into the mechanism of subaortic obstruction. Circulation 91, 1189–1195 (1995).

    Article  CAS  PubMed  Google Scholar 

  42. Klues, H. G., Roberts, W. C. & Maron, B. J. Anomalous insertion of papillary muscle directly into anterior mitral leaflet in hypertrophic cardiomyopathy. Significance in producing left ventricular outflow obstruction. Circulation 84, 1188–1197 (1991).

    Article  CAS  PubMed  Google Scholar 

  43. Groarke, J. D. et al. Intrinsic mitral valve alterations in hypertrophic cardiomyopathy sarcomere mutation carriers. Eur. Heart J. Cardiovasc. Imaging 19, 1109–1116 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Ferrazzi, P. et al. Congenital muscular mitral-aortic discontinuity identified in patients with obstructive hypertrophic cardiomyopathy. J. Am. Coll. Cardiol. 76, 2238–2247 (2020).

    Article  PubMed  Google Scholar 

  45. Olivotto, I., Cecchi, F., Poggesi, C. & Yacoub, M. H. Developmental origins of hypertrophic cardiomyopathy phenotypes: a unifying hypothesis. Nat. Rev. Cardiol. 6, 317–321 (2009).

    Article  CAS  PubMed  Google Scholar 

  46. Djenoune, L., Berg, K., Brueckner, M. & Yuan, S. A change of heart: new roles for cilia in cardiac development and disease. Nat. Rev. Cardiol. 19, 211–227 (2022).

    Article  PubMed  Google Scholar 

  47. Wigle, E. D., Adelman, A., Auger, P. & Marquis, Y. Mitral regurgitation in muscular subaortic stenosis. Am. J. Cardiol. 24, 698–706 (1969).

    Article  CAS  PubMed  Google Scholar 

  48. Rowin, E. J., Maron, B. J., Olivotto, I. & Maron, M. S. Role of exercise testing in hypertrophic cardiomyopathy. JACC Cardiovasc. Imaging 10, 1374–1386 (2017).

    Article  PubMed  Google Scholar 

  49. Maron, M. S. et al. Effect of left ventricular outflow tract obstruction on clinical outcome in hypertrophic cardiomyopathy. N. Engl. J. Med. 348, 295–303 (2003).

    Article  PubMed  Google Scholar 

  50. Maron, B. J., Rowin, E. J., Udelson, J. E. & Maron, M. S. Clinical spectrum and management of heart failure in hypertrophic cardiomyopathy. JACC Heart Fail. 6, 353–363 (2018).

    Article  PubMed  Google Scholar 

  51. Elliott, P. M. et al. 2014 ESC guidelines on diagnosis and management of hypertrophic cardiomyopathy: the task force for the diagnosis and management of hypertrophic cardiomyopathy of the European Society of Cardiology (ESC). Eur. Heart J. 35, 2733–2779 (2014).

    Article  PubMed  Google Scholar 

  52. Maron, B. J. et al. Left atrial remodeling in hypertrophic cardiomyopathy and susceptibility markers for atrial fibrillation identified by cardiovascular magnetic resonance. Am. J. Cardiol. 113, 1394–1400 (2014).

    Article  PubMed  Google Scholar 

  53. Feneon, D. et al. Impact of exercise-induced mitral regurgitation on hypertrophic cardiomyopathy outcomes. Eur. Heart J. Cardiovasc. Imaging 17, 1110–1117 (2016).

    Article  PubMed  Google Scholar 

  54. Olivotto, I., Cecchi, F., Poggesi, C. & Yacoub, M. H. Patterns of disease progression in hypertrophic cardiomyopathy: an individualized approach to clinical staging. Circ. Heart Fail. 5, 535–546 (2012).

    Article  PubMed  Google Scholar 

  55. Hong, J. H. et al. Mitral regurgitation in patients with hypertrophic obstructive cardiomyopathy: implications for concomitant valve procedures. J. Am. Coll. Cardiol. 68, 1497–1504 (2016).

    Article  PubMed  Google Scholar 

  56. Iacovoni, A. et al. A contemporary European experience with surgical septal myectomy in hypertrophic cardiomyopathy. Eur. Heart J. 33, 2080–2087 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Pelliccia, F. et al. Multidisciplinary evaluation and management of obstructive hypertrophic cardiomyopathy in 2020: towards the HCM Heart Team. Int. J. Cardiol. 304, 86–92 (2020).

    Article  PubMed  Google Scholar 

  58. Maron, B. J. et al. The case for surgery in obstructive hypertrophic cardiomyopathy. J. Am. Coll. Cardiol. 44, 2044–2053 (2004).

    Article  PubMed  Google Scholar 

  59. Ferrazzi, P. et al. Transaortic chordal cutting: mitral valve repair for obstructive hypertrophic cardiomyopathy with mild septal hypertrophy. J. Am. Coll. Cardiol. 66, 1687–1696 (2015).

    Article  PubMed  Google Scholar 

  60. Morcos, M., Strobel, A., Messenger, J. & Gill, E. Treatment of severe left ventricular outflow tract obstruction and mitral regurgitation with alcohol septal ablation. CASE 6, 387–391 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Nielsen, C. D., Fernandes, V. & Spencer, W. H. III Alcohol septal ablation for obstructive hypertrophic cardiomyopathy. Am. Heart Hosp. J. 1, 83–90 (2003).

    Article  PubMed  Google Scholar 

  62. Krajcer, Z., Leachman, R. D., Cooley, D. A. & Coronado, R. Septal myotomy-myomectomy versus mitral valve replacement in hypertrophic cardiomyopathy. Ten-year follow-up in 185 patients. Circulation 80, I57–I64 (1989).

    CAS  PubMed  Google Scholar 

  63. Sherrid, M. V., Balaram, S., Kim, B., Axel, L. & Swistel, D. G. The mitral valve in obstructive hypertrophic cardiomyopathy: a test in context. J. Am. Coll. Cardiol. 67, 1846–1858 (2016).

    Article  PubMed  Google Scholar 

  64. Afanasyev, A. V. et al. Edge-to-Edge repair versus secondary cord cutting during septal myectomy in patients with hypertrophic obstructive cardiomyopathy: a pilot randomised study. Heart Lung Circ. 30, 438–445 (2021).

    Article  PubMed  Google Scholar 

  65. Thomas, F., Rader, F. & Siegel, R. J. The use of mitraclip for symptomatic patients with hypertrophic obstructive cardiomyopathy. Cardiology 137, 58–61 (2017).

    Article  PubMed  Google Scholar 

  66. van der Lee, C., Kofflard, M. J. & van Herwerden, L. A. Sustained improvement after combined anterior mitral leaflet extension and myectomy in hypertrophic obstructive cardiomyopathy. Circulation 108, 2088–2092 (2003).

    Article  PubMed  Google Scholar 

  67. Rankin, J. S. et al. A new mitral valve repair strategy for hypertrophic obstructive cardiomyopathy. J. Heart Valve Dis. 17, 642–647 (2008).

    PubMed  Google Scholar 

  68. Delmo Walter, E. M., Siniawski, H. & Hetzer, R. Sustained improvement after combined anterior mitral valve leaflet retention plasty and septal myectomy in preventing systolic anterior motion in hypertrophic obstructive cardiomyopathy in children. Eur. J. Cardiothorac. Surg. 36, 546–552 (2009).

    Article  PubMed  Google Scholar 

  69. Nasseri, B. A. et al. Combined anterior mitral valve leaflet retention plasty and septal myectomy in patients with hypertrophic obstructive cardiomyopathy. Eur. J. Cardiothorac. Surg. 40, 1515–1520 (2011).

    PubMed  Google Scholar 

  70. Nistri, S. et al. β-Blockers for prevention of exercise-induced left ventricular outflow tract obstruction in patients with hypertrophic cardiomyopathy. Am. J. Cardiol. 110, 715–719 (2012).

    Article  CAS  PubMed  Google Scholar 

  71. Cohen, L. S. & Braunwald, E. Amelioration of angina pectoris in idiopathic hypertrophic subaortic stenosis with beta-adrenergic blockade. Circulation 35, 847–851 (1967).

    Article  CAS  PubMed  Google Scholar 

  72. Dybro, A. M. et al. Randomized trial of metoprolol in patients with obstructive hypertrophic cardiomyopathy. J. Am. Coll. Cardiol. 78, 2505–2517 (2021).

    Article  PubMed  Google Scholar 

  73. Maron, B. J. Clinical course and management of hypertrophic cardiomyopathy. N. Engl. J. Med. 379, 655–668 (2018).

    Article  PubMed  Google Scholar 

  74. Olivotto, I. et al. EXPLORER-HCM_Study Investigators. Mavacamten for treatment of symptomatic obstructive hypertrophic cardiomyopathy (EXPLORER-HCM): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 396, 759–769 (2020).

    Article  CAS  PubMed  Google Scholar 

  75. Maron, M. S. & Ommen, S. R. Exploring new and old therapies for obstructive hypertrophic cardiomyopathy: mavacamten in perspective. Circulation 143, 1181–1183 (2021).

    Article  PubMed  Google Scholar 

  76. Schönbeck, M. H. et al. Long-term follow-up in hypertrophic obstructive cardiomyopathy after septal myectomy. Ann. Thorac. Surg. 65, 1207–1214 (1998).

    Article  PubMed  Google Scholar 

  77. Sun, D. et al. Posterior wall thickness associates with survival following septal myectomy for obstructive hypertrophic cardiomyopathy. JACC Heart Fail. 10, 831–837 (2022).

    Article  PubMed  Google Scholar 

  78. Woo, A. et al. Clinical and echocardiographic determinants of long-term survival after surgical myectomy in obstructive hypertrophic cardiomyopathy. Circulation 111, 2033–2041 (2005).

    Article  PubMed  Google Scholar 

  79. Gigli, M. et al. Genetic risk of arrhythmic phenotypes in patients with dilated cardiomyopathy. J. Am. Coll. Cardiol. 74, 1480–1490 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. De Frutos, F. et al. Natural history of MYH7-related dilated cardiomyopathy. J. Am. Coll. Cardiol. 80, 1447–1461 (2022).

    Article  PubMed  Google Scholar 

  81. Paldino, A. et al. Prognostic prediction of genotype vs phenotype in genetic cardiomyopathies. J. Am. Coll. Cardiol. 80, 1981–1994 (2022).

    Article  CAS  PubMed  Google Scholar 

  82. Ho, C. Y. et al. Genotype and lifetime burden of disease in hypertrophic cardiomyopathy: insights from the Sarcomeric Human Cardiomyopathy Registry (SHaRe). Circulation 138, 1387–1398 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Arends, M. et al. Characterization of classical and nonclassical fabry disease: a multicenter study. J. Am. Soc. Nephrol. 28, 1631–1641 (2017).

    Article  CAS  PubMed  Google Scholar 

  84. LaHaye, S., Lincoln, J. & Garg, V. Genetics of valvular heart disease. Curr. Cardiol. Rep. 16, 487 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Durst, R. et al. Mutations in DCHS1 cause mitral valve prolapse. Nature 525, 109–113 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Ta-Shma, A. et al. Congenital valvular defects associated with deleterious mutations in the PLD1 gene. J. Med. Genet. 54, 278–286 (2017).

    Article  CAS  PubMed  Google Scholar 

  87. Wünnemann, F. et al. Loss of ADAMTS19 causes progressive non-syndromic heart valve disease. Nat. Genet. 52, 40–47 (2020).

    Article  PubMed  Google Scholar 

  88. Hiemstra, Y. L. et al. Familial occurrence of mitral regurgitation in patients with mitral valve prolapse undergoing mitral valve surgery. Eur. J. Prev. Cardiol. 27, 272–280 (2020).

    Article  PubMed  Google Scholar 

  89. Lillo, R. et al. Echocardiography in Anderson–Fabry disease. Rev. Cardiovasc. Med. 23, 201 (2022).

    Article  Google Scholar 

  90. Prasad, M. et al. Cardiorheumatology: cardiac involvement in systemic rheumatic disease. Nat. Rev. Cardiol. 12, 168–176 (2015).

    Article  PubMed  Google Scholar 

  91. Shammas, R. L. & Movahed, A. Sarcoidosis of the heart. Clin. Cardiol. 16, 462–472 (1993).

    Article  CAS  PubMed  Google Scholar 

  92. Remenyi, B. et al. Valvular aspects of rheumatic heart disease. Lancet 387, 1335–1346 (2016).

    Article  PubMed  Google Scholar 

  93. Desai, M. Y., Jellis, C. L., Kotecha, R., Johnston, D. R. & Griffin, B. P. Radiation-associated cardiac disease: a practical approach to diagnosis and management. JACC Cardiovasc. Imaging 11, 1132–1149 (2018).

    Article  PubMed  Google Scholar 

  94. Freed, L. A. et al. Mitral valve prolapse in the general population: the benign nature of echocardiographic features in the Framingham Heart Study. J. Am. Coll. Cardiol. 40, 1298–1304 (2002).

    Article  PubMed  Google Scholar 

  95. Van Wijngaarden, A. L., Kruithof, B. P. T., Vinella, T., Barge-Schaapveld, D. Q. C. M. & Ajmone Marsan, N. Characterization of degenerative mitral valve disease: differences between fibroelastic deficiency and Barlow’s disease. J. Cardiovasc. Dev. Dis. 8, 23 (2021).

    PubMed  PubMed Central  Google Scholar 

  96. Nascimento, R. et al. Is mitral valve prolapse a congenital or acquired disease? Am. J. Cardiol. 79, 226–227 (1997).

    Article  CAS  PubMed  Google Scholar 

  97. Kruithof, B. P. T. et al. Stress-induced remodelling of the mitral valve: a model for leaflet thickening and superimposed tissue formation in mitral valve disease. Cardiovasc. Res. 5, 931–943 (2020).

    Google Scholar 

  98. Van Wijngaarden, A. L. et al. Identification of known and unknown genes associated with mitral valve prolapse using an exome slice methodology. J. Med. Genet. 57, 843–850 (2020).

    Article  PubMed  Google Scholar 

  99. Delwarde, C. et al. Genetics and pathophysiology of mitral valve prolapse. Front. Cardiovasc. Med. 10, 1077788 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Gulotta, S. J., Gulco, L., Padmanabhan, V. & Miller, S. The syndrome of systolic click, murmur, and mitral valve prolapse — a cardiomyopathy? Circulation 49, 717–728 (1974).

    Article  CAS  PubMed  Google Scholar 

  101. Yang, L. T. et al. Mitral valve prolapse patients with less than moderate mitral regurgitation exhibit early cardiac chamber remodeling. J. Am. Soc. Echocardiogr. 33, 815–825 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Romero Daza, A. et al. Mitral valve prolapse morphofunctional features by cardiovascular magnetic resonance: more than just a valvular disease. J. Cardiovasc. Magn. Reson. 23, 107 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Kitkungvan, D. et al. Myocardial fibrosis in patients with primary mitral regurgitation with and without prolapse. J. Cardiovasc. Magn. Reson. 72, 823–834 (2018).

    Google Scholar 

  104. Han, Y. et al. Cardiovascular magnetic resonance characterization of mitral valve prolapse. JACC Cardiovasc. Imaging 1, 294–303 (2008).

    Article  PubMed  Google Scholar 

  105. Bui, A. H. et al. Diffuse myocardial fibrosis in patients with mitral valve prolapse and ventricular arrhythmia. Heart 103, 204–209 (2017).

    Article  PubMed  Google Scholar 

  106. Constant Dit Beaufils, A. L. et al. Replacement myocardial fibrosis in patients with mitral valve prolapse: relation to mitral regurgitation, ventricular remodeling, and arrhythmia. Circulation 143, 1763–1774 (2021).

    Article  PubMed  Google Scholar 

  107. Sabbag, A. et al. EHRA expert consensus statement on arrhythmic mitral valve prolapse and mitral annular disjunction complex in collaboration with the ESC Council on Valvular Heart Disease and the European Association of Cardiovascular Imaging endorsed by the Heart Rhythm Society, by the Asia Pacific Heart Rhythm Society, and by the Latin American Heart Rhythm Society. Europace 24, 1981–2003 (2022).

    Article  PubMed  Google Scholar 

  108. Perazzolo Marra, M. et al. Morphofunctional abnormalities of mitral annulus and arrhythmic mitral valve prolapse. Circ. Cardiovasc. Imaging 9, e005030 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Basso, C. et al. Arrhythmic mitral valve prolapse and sudden cardiac death. Circulation 132, 556–566 (2015).

    Article  PubMed  Google Scholar 

  110. Van Wijngaarden, A. L. et al. Parameters associated with ventricular arrhythmias in mitral valve prolapse with significant regurgitation. Heart 107, 411–418 (2021).

    Article  PubMed  Google Scholar 

  111. Dejgaard, L. A. et al. The mitral annulus disjunction arrhythmic syndrome. J. Am. Coll. Cardiol. 72, 1600–1609 (2018).

    Article  PubMed  Google Scholar 

  112. Toh, H. et al. Prevalence and extent of mitral annular disjunction in structurally normal hearts: comprehensive 3D analysis using cardiac computed tomography. Eur. Heart J. Cardiovasc. Imaging 22, 614–622 (2021).

    Article  PubMed  Google Scholar 

  113. Faletra, F. F. et al. Morphology of mitral annular disjunction in mitral valve prolapse. J. Am. Soc. Echocardiogr. 35, 176–186 (2022).

    Article  PubMed  Google Scholar 

  114. Basso, C. et al. An echocardiographic survey of primary school children for bicuspid aortic valve. Am. J. Cardiol. 93, 661–663 (2004).

    Article  PubMed  Google Scholar 

  115. Siu, S. C. & Silversides, C. K. Bicuspid aortic valve disease. J. Am. Coll. Cardiol. 55, 2789–2800 (2010).

    Article  PubMed  Google Scholar 

  116. Roberts, W. C. & Ko, J. M. Frequency by decades of unicuspid, bicuspid, and tricuspid aortic valves in adults having isolated aortic valve replacement for aortic stenosis, with or without associated aortic regurgitation. Circulation 111, 920–925 (2005).

    Article  PubMed  Google Scholar 

  117. Padang, R., Bagnall, R. D. & Semsarian, C. Genetic basis of familial valvular heart disease. Circ. Cardiovasc. Genet. 5, 569–580 (2012).

    Article  PubMed  Google Scholar 

  118. Glick, B. N. & Roberts, W. C. Congenitally bicuspid aortic valve in multiple family members. Am. J. Cardiol. 73, 400–404 (1994).

    Article  CAS  PubMed  Google Scholar 

  119. Martin, L. J. et al. Evidence in favor of linkage to human chromosomal regions 18q, 5q and 13q for bicuspid aortic valve and associated cardiovascular malformations. Hum. Genet. 121, 275–284 (2007).

    Article  CAS  PubMed  Google Scholar 

  120. Fedak, P. W. et al. Clinical and pathophysiological implications of a bicuspid aortic valve. Circulation 106, 900–904 (2002).

    Article  PubMed  Google Scholar 

  121. Yassine, N. M., Shahram, J. T. & Body, S. C. Pathogenic mechanisms of bicuspid aortic valve aortopathy. Front. Physiol. 8, 687 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Owens, G. K., Kumar, M. S. & Wamhoff, B. R. Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol. Rev. 84, 767–801 (2004).

    Article  CAS  PubMed  Google Scholar 

  123. Feizi, O., Farrer Brown, G. & Emanuel, R. Familial study of hypertrophic cardiomyopathy and congenital aortic valve disease. Am. J. Cardiol. 41, 956–964 (1978).

    Article  CAS  PubMed  Google Scholar 

  124. Brown, P. S. Jr, Roberts, C. S., McIntosh, C. L., Roberts, W. C. & Clark, R. E. Combined obstructive hypertrophic cardiomyopathy and stenotic congenitally bicuspid aortic valve. Am. J. Cardiol. 66, 1273–1275 (1990).

    Article  PubMed  Google Scholar 

  125. Agarwal, A. et al. Left ventricular noncompaction in patients with bicuspid aortic valve. J. Am. Soc. Echocardiogr. 26, 1306–1313 (2013).

    Article  PubMed  Google Scholar 

  126. Jeong, H. et al. Prevalence, characteristics, and clinical significance of concomitant cardiomyopathies in subjects with bicuspid aortic valves. Yonsei Med. J. 60, 816–823 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Galat, A. et al. Aortic stenosis and transthyretin cardiac amyloidosis: the chicken or the egg? Eur. Heart J. 37, 3525–3531 (2016).

    Article  PubMed  Google Scholar 

  128. Tanskanen, M. et al. Senile systemic amyloidosis affects 25% of the very aged and associates with genetic variation in alpha2-macroglobulin and tau: a population based autopsy study. Ann. Med. 40, 232–239 (2008).

    Article  CAS  PubMed  Google Scholar 

  129. Osnabrugge, R. L. et al. Aortic stenosis in the elderly: disease prevalence and number of candidates for transcatheter aortic valve replacement: a meta-analysis and modeling study. J. Am. Coll. Cardiol. 62, 1002–1012 (2013).

    Article  PubMed  Google Scholar 

  130. Cooper, J. H. Localized dystrophic amyloidosis of heart valves. Hum. Pathol. 14, 649–653 (1983).

    Article  CAS  PubMed  Google Scholar 

  131. Conte, M. et al. Isolated valve amyloidosis in aortic stenosis: a new clinical scenario? J. Am. Coll. Cardiol. 79, 3476 (2022).

    Article  Google Scholar 

  132. Kristen, A. V. et al. High prevalence of amyloid in 150 surgically removed heart valves — a comparison of histological and clinical data reveals a correlation to atheroinflammatory conditions. Cardiovasc. Pathol. 19, 228–235 (2010).

    Article  CAS  PubMed  Google Scholar 

  133. Fujimoto, T. et al. Case with transthyretin amyloid cardiomyopathy complicated with rapidly progressive aortic stenosis possibly caused by amyloid deposition in the aortic valve. Circ. Cardiovasc. Imaging 14, e013357 (2021).

    Article  PubMed  Google Scholar 

  134. Singal, A. K. et al. Concomitant transthyretin amyloidosis and severe aortic stenosis in elderly Indian population: a pilot study. JACC CardioOncol 3, 565–576 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Merlini, G. & Bellotti, V. Molecular mechanisms of amyloidosis. N. Engl. J. Med. 349, 583–596 (2003).

    Article  CAS  PubMed  Google Scholar 

  136. Henderson, B. C. et al. Oxidative remodeling in pressure overload induced chronic heart failure. Eur. J. Heart Fail. 9, 450–457 (2007).

    Article  CAS  PubMed  Google Scholar 

  137. Park, J. Y. et al. Association of inflammation, myocardial fibrosis and cardiac remodelling in patients with mild aortic stenosis as assessed by biomarkers and echocardiography. Clin. Exp. Pharmacol. Physiol. 41, 185–191 (2014).

    Article  CAS  PubMed  Google Scholar 

  138. Rosenblum, H. et al. Unveiling outcomes in coexisting severe aortic stenosis and transthyretin cardiac amyloidosis. Eur. J. Heart Fail. 23, 250–258 (2021).

    Article  CAS  PubMed  Google Scholar 

  139. Chacko, L. et al. Echocardiographic phenotype and prognosis in transthyretin cardiac amyloidosis. Eur. Heart J. 41, 1439–1447 (2020).

    Article  PubMed  Google Scholar 

  140. Ricci, F. et al. Prognostic significance of cardiac amyloidosis in patients with aortic stenosis: a systematic review and meta-analysis. JACC Cardiovasc. Imaging 14, 293–295 (2021).

    Article  PubMed  Google Scholar 

  141. Myasoedova, V. A. et al. Red flags, prognostic impact, and management of patients with cardiac amyloidosis and aortic valve stenosis: a systematic review and meta-analysis. Front. Med. 9, 858281 (2022).

    Article  Google Scholar 

  142. Ternacle, J. et al. Aortic stenosis and cardiac amyloidosis: JACC review topic of the week. J. Am. Coll. Cardiol. 74, 2638–2651 (2019).

    Article  PubMed  Google Scholar 

  143. Dahl Pedersen, A. L. et al. Prevalence and prognostic implications of increased apical-to-basal strain ratio in patients with aortic stenosis undergoing transcatheter aortic valve replacement. J. Am. Soc. Echocardiogr. 33, 1465–1473 (2020).

    Article  PubMed  Google Scholar 

  144. Cannata, F. et al. Transcatheter aortic valve replacement in aortic stenosis and cardiac amyloidosis: a systematic review and meta-analysis. ESC Heart Fail. 9, 3188–3197 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Nitsche, C. et al. Prevalence and outcomes of concomitant aortic stenosis and cardiac amyloidosis. J. Am. Coll. Cardiol. 77, 128–139 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Scully, P. R. et al. Prevalence and outcome of dual aortic stenosis and cardiac amyloid pathology in patients referred for transcatheter aortic valve implantation. Eur. Heart J. 41, 2759–2767 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Burzotta, F. et al. Clinical impact of heart team decisions for patients with complex valvular heart disease: a large, single-center experience. J. Am. Heart Assoc. 11, e024404 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Ammar, K. A. et al. Cardiac amyloidosis presenting as severe mitral regurgitation. JACC Cardiovasc. Imaging 9, 1003–1006 (2016).

    Article  PubMed  Google Scholar 

  149. Krishnaswamy, A., Hanna, M., Goodman, A. & Kapadia, S. R. First reported case of mitraclip placement due to mitral valve flail in the setting of cardiac amyloidosis. Circ. Heart Fail. 9, e003069 (2016).

    Article  PubMed  Google Scholar 

  150. Donà, C. et al. Unveiling cardiac amyloidosis, its characteristics, and outcomes among patients with MR undergoing transcatheter edge-to-edge MV repair. JACC Cardiovasc. Interv. 15, 1748–1758 (2022).

    Article  PubMed  Google Scholar 

  151. Braunlin, E. A. et al. Cardiac disease in patients with mucopolysaccharidosis: presentation, diagnosis and management. J. Inherit. Metab. Dis. 34, 1183–1197 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Rosser, B. A., Chan, C. & Hoschtitzky, A. Surgical management of valvular heart disease in mucopolysaccharidoses: a review of literature. Biomedicines 10, 375 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Mori, N. et al. Transcatheter aortic valve implantation for severe aortic stenosis in a patient with mucopolysaccharidosis type II (Hunter syndrome) accompanied by severe airway obstruction. J. Cardiol. Cases 25, 49–51 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Lillo, R., Ingrasciotta, G., Locorotondo, G., Lombardo, A. & Graziani, F. An unusual case of mitral valve chordal rupture. Echocardiography 38, 2109–2111 (2021).

    Article  PubMed  Google Scholar 

  155. Calcagni, G. et al. Cardiac defects, morbidity and mortality in patients affected by RASopathies. CARNET study results. Int. J. Cardiol. 245, 92–98 (2017).

    Article  PubMed  Google Scholar 

  156. Sade, L. E. & Akdogan, A. Imaging for screening cardiovascular involvement in patients with systemic rheumatologic diseases: more questions than answers. Eur. Heart J. Cardiovasc. Imaging 20, 967–978 (2019).

    Article  PubMed  Google Scholar 

  157. Donnellan, E. et al. Outcomes of patients with mediastinal radiation-associated severe aortic stenosis undergoing transcatheter aortic valve replacement. Circulation 138, 1752–1754 (2018).

    Article  PubMed  Google Scholar 

  158. Donnellan, E. et al. Longterm outcomes of patients with mediastinal radiation-associated severe aortic stenosis and subsequent surgical aortic valve replacement: a matched cohort study. J. Am. Heart Assoc. 6, e005396 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Donnellan, E. et al. Outcomes of patients with mediastinal radiation-associated mitral valve disease undergoing cardiac surgery. Circulation 140, 1288–1290 (2019).

    Article  PubMed  Google Scholar 

  160. Wilde, A. A. M. et al. Expert consensus statement on the state of genetic testing for cardiac diseases. Europace 24, 1307–1367 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Rapezzi, C. et al. Diagnostic work-up in cardiomyopathies: bridging the gap between clinical phenotypes and final diagnosis. A position statement from the ESC working group on myocardial and pericardial diseases. Eur. Heart J. 34, 1448–1458 (2013).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

N.A.M., F.G., M.C.M., H.W.W. and R.L. researched data for the article. N.A.M., F.G., M.C.M. and R.L. provided substantial contribution to the discussion of content. All the authors wrote the manuscript and reviewed and/or edited it before submission.

Corresponding author

Correspondence to Nina Ajmone Marsan.

Ethics declarations

Competing interests

N.A.M. received speaker fees from Abbott Vascular, GE Healthcare and Philips Ultrasound and a research grant from Alnylam and Pfizer. F.G. received honoraria for board meetings; speaker fees from Sanofi-Genzyme, Shire, Takeda and Pfizer and research grants from Takeda and Pfizer. R.L. received honoraria for board meetings from Sanofi-Genzyme and Shire. J.J.B. received speaker fees from Abbott Vascular. F.B. received speaker fees from Abiomed, Abbott, Medtronic and Terumo. J.W.J. and his department received research grants from and/or was a speaker (with or without lecture fees) at meetings sponsored or supported by Abbott, Amarin, Amgen, Athera, Biotronik, Boston Scientific, Dalcor, Daiichi Sankyo, Edwards Lifesciences, GE Healthcare, Johnson and Johnson, Lilly, Medtronic, Merck-Schering-Plough, Novartis, Novo Nordisk, Pfizer, Roche, Sanofi Aventis, the Netherlands Heart Foundation, CardioVascular Research the Netherlands, the Netherlands Heart Institute and the European Community Framework KP7 Programme. F.C. received personal fees from Amgen, Astra Zeneca, BMS, GlyCardial Diagnostics and Servier. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Cardiology thanks Christopher Semsarian and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ajmone Marsan, N., Graziani, F., Meucci, M.C. et al. Valvular heart disease and cardiomyopathy: reappraisal of their interplay. Nat Rev Cardiol 21, 37–50 (2024). https://doi.org/10.1038/s41569-023-00911-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41569-023-00911-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing