Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Interplay of hypoxia-inducible factors and oxygen therapy in cardiovascular medicine

Abstract

Mammals have evolved to adapt to differences in oxygen availability. Although systemic oxygen homeostasis relies on respiratory and circulatory responses, cellular adaptation to hypoxia involves the transcription factor hypoxia-inducible factor (HIF). Given that many cardiovascular diseases involve some degree of systemic or local tissue hypoxia, oxygen therapy has been used liberally over many decades for the treatment of cardiovascular disorders. However, preclinical research has revealed the detrimental effects of excessive use of oxygen therapy, including the generation of toxic oxygen radicals or attenuation of endogenous protection by HIFs. In addition, investigators in clinical trials conducted in the past decade have questioned the excessive use of oxygen therapy and have identified specific cardiovascular diseases in which a more conservative approach to oxygen therapy could be beneficial compared with a more liberal approach. In this Review, we provide numerous perspectives on systemic and molecular oxygen homeostasis and the pathophysiological consequences of excessive oxygen use. In addition, we provide an overview of findings from clinical studies on oxygen therapy for myocardial ischaemia, cardiac arrest, heart failure and cardiac surgery. These clinical studies have prompted a shift from liberal oxygen supplementation to a more conservative and vigilant approach to oxygen therapy. Furthermore, we discuss the alternative therapeutic strategies that target oxygen-sensing pathways, including various preconditioning approaches and pharmacological HIF activators, that can be used regardless of the level of oxygen therapy that a patient is already receiving.

Key points

  • Patients with cardiovascular disease frequently experience hypoxia, which can be systemic or localized.

  • Hypoxia causes the stabilization of hypoxia-inducible factor (HIF) transcription factors, which promote adaptive responses to limited oxygen availability, precondition the heart and increase resistance to acute ischaemia.

  • In the past 12 decades, oxygen therapy has been used extensively in patients with cardiovascular disease to treat or prevent hypoxia but often leads to unintended high oxygen levels (hyperoxia).

  • Hyperoxia is associated with the excessive production of reactive oxygen species and also dampens endogenous adaptive responses to hypoxia, including HIF stabilization, thereby exacerbating organ injury.

  • The findings from several clinical trials from the past 10 years support a more conservative and vigilant approach to oxygen therapy in specific cardiovascular disease contexts, including myocardial infarction, cardiac arrest, heart failure or cardiac surgery.

  • Alternative approaches targeting oxygen-sensing pathways include preconditioning approaches or newly developed pharmacological agents that promote the stabilization of HIFs; these therapeutic interventions are being developed for the treatment of cardiovascular disease and can be applied independently of the level of oxygen therapy that a patient is receiving.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Responses of HIFs to hypoxia or hyperoxia.
Fig. 2: Pathophysiological effects of hyperoxia on the cardiovascular system.
Fig. 3: Oxygen targets during cardiovascular disease and acute illness.
Fig. 4: Molecular mechanisms of preconditioning, postconditioning and RIPC for cardioprotection.

Similar content being viewed by others

References

  1. Eltzschig, H. K. & Carmeliet, P. Hypoxia and inflammation. N. Engl. J. Med. 364, 656–665 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Steele, C. Severe angina pectoris relieved by oxygen inhalations.Br. Med. J. 2, 1568 (1900).

    Google Scholar 

  3. Heffner, J. E. The story of oxygen. Respir. Care 58, 18–31 (2013).

    Article  PubMed  Google Scholar 

  4. Shultz, S. M. & Hartmann, P. M. George E Holtzapple (1862-1946) and oxygen therapy for lobar pneumonia: the first reported case (1887) and a review of the contemporary literature to 1899. J. Med. Biogr. 13, 201–206 (2005).

    PubMed  Google Scholar 

  5. Severinghaus, J. W. Eight sages over five centuries share oxygen’s discovery. Adv. Physiol. Educ. 40, 370–376 (2016).

    Article  PubMed  Google Scholar 

  6. Troensegaard, H., Petersen, C., Pedersen, N. E., Petersen, T. S. & Meyhoff, C. S. Variable oxygen administration in surgical and medical wards evaluated by 30-day mortality-An observational study. Acta Anaesthesiol. Scand. 65, 952–958 (2021).

    Article  CAS  PubMed  Google Scholar 

  7. Hafner, S., Beloncle, F., Koch, A., Radermacher, P. & Asfar, P. Hyperoxia in intensive care, emergency, and peri-operative medicine: Dr. Jekyll or Mr. Hyde? A 2015 update. Ann. Intensive Care 5, 42 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Sies, H. et al. Defining roles of specific reactive oxygen species (ROS) in cell biology and physiology. Nat. Rev. Mol. Cell Biol. 23, 499–515 (2022).

    Article  CAS  PubMed  Google Scholar 

  9. Eltzschig, H. K., Bratton, D. L. & Colgan, S. P. Targeting hypoxia signalling for the treatment of ischaemic and inflammatory diseases. Nat. Rev. Drug Discov. 13, 852–869 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Eltzschig, H. K. & Eckle, T. Ischemia and reperfusion — from mechanism to translation. Nat. Med. 17, 1391–1401 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. Eckle, T., Kohler, D., Lehmann, R., El Kasmi, K. & Eltzschig, H. K. Hypoxia-inducible factor-1 is central to cardioprotection: a new paradigm for ischemic preconditioning. Circulation 118, 166–175 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Koeppen, M. et al. Hypoxia-inducible factor 2-α-dependent induction of amphiregulin dampens myocardial ischemia-reperfusion injury. Nat. Commun. 9, 816 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Chu, D. K. et al. Mortality and morbidity in acutely ill adults treated with liberal versus conservative oxygen therapy (IOTA): a systematic review and meta-analysis. Lancet 391, 1693–1705 (2018).

    Article  PubMed  Google Scholar 

  14. Fandrey, J., Schodel, J., Eckardt, K. U., Katschinski, D. M. & Wenger, R. H. Now a Nobel gas: oxygen. Pflug. Arch. 471, 1343–1358 (2019).

    Article  CAS  Google Scholar 

  15. Eltzschig, H. K. et al. Coordinated adenine nucleotide phosphohydrolysis and nucleoside signaling in posthypoxic endothelium: role of ectonucleotidases and adenosine A2B receptors. J. Exp. Med. 198, 783–796 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Taylor, C. T. & McElwain, J. C. Ancient atmospheres and the evolution of oxygen sensing via the hypoxia-inducible factor in metazoans. Physiology 25, 272–279 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Dole, M. The natural history of oxygen. J. Gen. Physiol. 49, 5–27 (1965).

    Article  CAS  PubMed Central  Google Scholar 

  18. Lenfant, C. & Sullivan, K. Adaptation to high altitude. N. Engl. J. Med. 284, 1298–1309 (1971).

    Article  CAS  PubMed  Google Scholar 

  19. Semenza, G. L. & Prabhakar, N. R. The role of hypoxia-inducible factors in carotid body (patho) physiology. J. Physiol. 596, 2977–2983 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Semenza, G. L., Nejfelt, M. K., Chi, S. M. & Antonarakis, S. E. Hypoxia-inducible nuclear factors bind to an enhancer element located 3’ to the human erythropoietin gene. Proc. Natl Acad. Sci. USA 88, 5680–5684 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ivan, M. et al. HIFα targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 292, 464–468 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Epstein, A. C. et al. C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 107, 43–54 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Semenza, G. L., Roth, P. H., Fang, H. M. & Wang, G. L. Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. J. Biol. Chem. 269, 23757–23763 (1994).

    Article  CAS  PubMed  Google Scholar 

  24. Eckle, T. et al. Adora2b-elicited Per2 stabilization promotes a HIF-dependent metabolic switch crucial for myocardial adaptation to ischemia. Nat. Med. 18, 774–782 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Semenza, G. L. Pharmacologic targeting of hypoxia-inducible factors. Annu. Rev. Pharmacol. Toxicol. 59, 379–403 (2019).

    Article  CAS  PubMed  Google Scholar 

  26. Manalo, D. J. et al. Transcriptional regulation of vascular endothelial cell responses to hypoxia by HIF-1. Blood 105, 659–669 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Ju, C. et al. Hypoxia-inducible factor-1α-dependent induction of miR122 enhances hepatic ischemia tolerance. J. Clin. Invest. 131, e140300 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Poth, J. M., Brodsky, K., Ehrentraut, H., Grenz, A. & Eltzschig, H. K. Transcriptional control of adenosine signaling by hypoxia-inducible transcription factors during ischemic or inflammatory disease. J. Mol. Med. 91, 183–193 (2013).

    Article  CAS  PubMed  Google Scholar 

  29. Ruan, W. et al. The hypoxia-adenosine link during myocardial ischemia-reperfusion injury. Biomedicines 10, 1939 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bowser, J. L., Lee, J. W., Yuan, X. & Eltzschig, H. K. The hypoxia-adenosine link during inflammation. J. Appl. Physiol. 123, 1303–1320 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lisy, K. & Peet, D. J. Turn me on: regulating HIF transcriptional activity. Cell Death Differ. 15, 642–649 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Yuhong, L. et al. Transcriptomic profiling reveals gene expression kinetics in patients with hypoxia and high altitude pulmonary edema. Gene 651, 200–205 (2018).

    Article  PubMed  Google Scholar 

  33. Semenza, G. L. & Wang, G. L. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol. Cell Biol. 12, 5447–5454 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Prabhakar, N. R. & Semenza, G. L. Regulation of carotid body oxygen sensing by hypoxia-inducible factors. Pflug. Arch. 468, 71–75 (2016).

    Article  CAS  Google Scholar 

  35. Kline, D. D., Peng, Y. J., Manalo, D. J., Semenza, G. L. & Prabhakar, N. R. Defective carotid body function and impaired ventilatory responses to chronic hypoxia in mice partially deficient for hypoxia-inducible factor 1α. Proc. Natl Acad. Sci. USA 99, 821–826 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Peng, Y. J. et al. Hypoxia-inducible factor 2α (HIF-2α) heterozygous-null mice exhibit exaggerated carotid body sensitivity to hypoxia, breathing instability, and hypertension. Proc. Natl Acad. Sci. USA 108, 3065–3070 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Taylor, C. T. Interdependent roles for hypoxia inducible factor and nuclear factor-κB in hypoxic inflammation. J. Physiol. 586, 4055–4059 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bartels, K., Grenz, A. & Eltzschig, H. K. Hypoxia and inflammation are two sides of the same coin. Proc. Natl Acad. Sci. USA 110, 18351–18352 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kuhlicke, J., Frick, J. S., Morote-Garcia, J. C., Rosenberger, P. & Eltzschig, H. K. Hypoxia inducible factor (HIF)-1 coordinates induction of toll-like receptors TLR2 and TLR6 during hypoxia. PLoS ONE 2, e1364 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Cummins, E. P. et al. Prolyl hydroxylase-1 negatively regulates IκB kinase-β, giving insight into hypoxia-induced NFκB activity. Proc. Natl Acad. Sci. USA 103, 18154–18159 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yellon, D. M. & Hausenloy, D. J. Myocardial reperfusion injury. N. Engl. J. Med. 357, 1121–1135 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Heck-Swain, K. L. et al. Myeloid hypoxia-inducible factor HIF1A provides cardio-protection during ischemia and reperfusion via induction of netrin-1. Front. Cardiovasc. Med. 9, 970415 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Eltzschig, H. K., Bonney, S. K. & Eckle, T. Attenuating myocardial ischemia by targeting A2B adenosine receptors. Trends Mol. Med. 19, 345–354 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yuan, X. et al. Alternative adenosine receptor activation: the netrin-Adora2b link. Front. Pharmacol. 13, 944994 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Berner, R. A., Vandenbrooks, J. M. & Ward, P. D. Evolution. Oxygen and evolution. Science 316, 557–558 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Edmonds, C., Bennett, M., Lippmann, J. & Mitchell, S. Diving and Subaquatic Medicine (CRC, 2015).

  47. Donald, K. W. Oxygen poisoning in man. Br. Med. J. 1, 667 (1947).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Smith, J. L. The pathological effects due to increase of oxygen tension in the air breathed. J. Physiol. 24, 19–35 (1899).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Winter, P. M. & Smith, G. The toxicity of oxygen. Anesthesiology 37, 210–241 (1972).

    Article  CAS  PubMed  Google Scholar 

  50. Cedergren, B., Gyllensten, L. & Wersall, J. Pulmonary damage caused by oxygen poisoning: an electron-microscopic study in mice. Acta Paediatr. 48, 477–494 (1959).

    CAS  Google Scholar 

  51. Davis, W. B., Rennard, S. I., Bitterman, P. B. & Crystal, R. G. Pulmonary oxygen toxicity. Early reversible changes in human alveolar structures induced by hyperoxia. N. Engl. J. Med. 309, 878–883 (1983).

    Article  CAS  PubMed  Google Scholar 

  52. Buonocore, G., Perrone, S. & Tataranno, M. L. Oxygen toxicity: chemistry and biology of reactive oxygen species. Semin. Fetal Neonatal Med. 15, 186–190 (2010).

    Article  PubMed  Google Scholar 

  53. Halliwell, B. The wanderings of a free radical. Free Radic. Biol. Med. 46, 531–542 (2009).

    Article  CAS  PubMed  Google Scholar 

  54. Panday, A., Sahoo, M. K., Osorio, D. & Batra, S. NADPH oxidases: an overview from structure to innate immunity-associated pathologies. Cell Mol. Immunol. 12, 5–23 (2015).

    Article  CAS  PubMed  Google Scholar 

  55. Campbell, E. L. et al. Transmigrating neutrophils shape the mucosal microenvironment through localized oxygen depletion to influence resolution of inflammation. Immunity 40, 66–77 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Leonard, M. O. et al. Reoxygenation-specific activation of the antioxidant transcription factor Nrf2 mediates cytoprotective gene expression in ischemia-reperfusion injury. FASEB J. 20, 2624–2626 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. Zaman, M. B. et al. Lower expression of Nrf2 mRNA in older donor livers: a possible contributor to increased ischemia-reperfusion injury? Transplantation 84, 1272–1278 (2007).

    Article  CAS  PubMed  Google Scholar 

  58. Dikalov, S. Cross talk between mitochondria and NADPH oxidases. Free Radic. Biol. Med. 51, 1289–1301 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Frank, L. & Massaro, D. Oxygen toxicity. Am. J. Med. 69, 117–126 (1980).

    Article  CAS  PubMed  Google Scholar 

  60. Tretter, V. et al. Investigating disturbances of oxygen homeostasis: from cellular mechanisms to the clinical practice. Front. Physiol. 11, 947 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Xuefei, Y. et al. Effects of hyperoxia on mitochondrial homeostasis: are mitochondria the hub for bronchopulmonary dysplasia? Front. Cell Dev. Biol. 9, 642717 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Garcia, D. et al. Short exposure to hyperoxia causes cultured lung epithelial cell mitochondrial dysregulation and alveolar simplification in mice. Pediatr. Res. 90, 58–65 (2021).

    Article  CAS  PubMed  Google Scholar 

  63. Ma, C. et al. Hyperoxia causes mitochondrial fragmentation in pulmonary endothelial cells by increasing expression of pro-fission proteins. Arterioscler. Thromb. Vasc. Biol. 38, 622–635 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Russell, R. C., Roth, A. C., Kucan, J. O. & Zook, E. G. Reperfusion injury and oxygen free radicals: a review. J. Reconstr. Microsurg. 5, 79–84 (1989).

    Article  CAS  PubMed  Google Scholar 

  65. Wu, K. C. et al. Quantification and time course of microvascular obstruction by contrast-enhanced echocardiography and magnetic resonance imaging following acute myocardial infarction and reperfusion. J. Am. Coll. Cardiol. 32, 1756–1764 (1998).

    Article  CAS  PubMed  Google Scholar 

  66. Nowak-Machen, M. et al. Pulmonary natural killer T cells play an essential role in mediating hyperoxic acute lung injury. Am. J. Respir. Cell Mol. Biol. 48, 601–609 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hosford, G. E. & Olson, D. M. Effects of hyperoxia on VEGF, its receptors, and HIF-2α in the newborn rat lung. Am. J. Physiol. Lung Cell Mol. Physiol. 285, L161–L168 (2003).

    Article  CAS  PubMed  Google Scholar 

  68. Asikainen, T. M. et al. Activation of hypoxia-inducible factors in hyperoxia through prolyl 4-hydroxylase blockade in cells and explants of primate lung. Proc. Natl Acad. Sci. USA 102, 10212–10217 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Thiel, M. et al. Oxygenation inhibits the physiological tissue-protecting mechanism and thereby exacerbates acute inflammatory lung injury. PLoS Biol. 3, e174 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Ahmad, A. et al. Adenosine A2A receptor is a unique angiogenic target of HIF-2α in pulmonary endothelial cells. Proc. Natl Acad. Sci. USA 106, 10684–10689 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wan, J. et al. Supplemental oxygen reverses hypoxia-induced smooth muscle cell proliferation by modulating HIF-α and VEGF levels in a rabbit arteriovenous fistula model. Ann. Vasc. Surg. 28, 725–736 (2014).

    Article  PubMed  Google Scholar 

  72. Dong, D. et al. Hyperoxia sensitizes hypoxic HeLa cells to ionizing radiation by downregulating HIF-1α and VEGF expression. Mol. Med. Rep. 23, 62 (2021).

    Article  CAS  PubMed  Google Scholar 

  73. Hale, K. E., Gavin, C. & O’Driscoll, B. R. Audit of oxygen use in emergency ambulances and in a hospital emergency department. Emerg. Med. J. 25, 773–776 (2008).

    Article  CAS  PubMed  Google Scholar 

  74. Albin, R. J., Criner, G. J., Thomas, S. & Abou-Jaoude, S. Pattern of non-ICU inpatient supplemental oxygen utilization in a university hospital. Chest 102, 1672–1675 (1992).

    Article  CAS  PubMed  Google Scholar 

  75. Pellicer, A. & Bravo Mdel, C. Near-infrared spectroscopy: a methodology-focused review. Semin. Fetal Neonatal Med. 16, 42–49 (2011).

    Article  PubMed  Google Scholar 

  76. Li, J. et al. Assessment of the relationship between cerebral and splanchnic oxygen saturations measured by near-infrared spectroscopy and direct measurements of systemic haemodynamic variables and oxygen transport after the Norwood procedure. Heart 92, 1678–1685 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. de Courson, H. et al. The ability of Oxygen Reserve Index® to detect hyperoxia in critically ill patients. Ann. Intensive Care 12, 40 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  78. van Wijk, J. J., van Weteringen, W., Hoeks, S. E. & Staals, L. M. Validation of a new combined transcutaneous tcPCO2 and tcPO2 sensor in children in the operating theater. Paediatr. Anaesth. 32, 429–435 (2022).

    Article  PubMed  Google Scholar 

  79. Sukumalchantra, Y. et al. Correcting arterial hypoxemia by oxygen therapy in patients with acute myocardial infarction. Effect on ventilation and hemodynamics. Am. J. Cardiol. 24, 838–852 (1969).

    Article  CAS  PubMed  Google Scholar 

  80. Stub, D. et al. Air versus oxygen in ST-segment-elevation myocardial infarction. Circulation 131, 2143–2150 (2015).

    Article  CAS  PubMed  Google Scholar 

  81. Hofmann, R. et al. Oxygen therapy in suspected acute myocardial infarction. N. Engl. J. Med. 377, 1240–1249 (2017).

    Article  CAS  PubMed  Google Scholar 

  82. Jernberg, T. et al. Long-term effects of oxygen therapy on death or hospitalization for heart failure in patients with suspected acute myocardial infarction. Circulation 138, 2754–2762 (2018).

    Article  CAS  PubMed  Google Scholar 

  83. Nyström, T. et al. Oxygen therapy in myocardial infarction patients with or without diabetes: a predefined subgroup analysis from the DETO2X-AMI trial. Diabetes Care 42, 2032–2041 (2019).

    Article  PubMed  Google Scholar 

  84. Andell, P. et al. Oxygen therapy in suspected acute myocardial infarction and concurrent normoxemic chronic obstructive pulmonary disease: a prespecified subgroup analysis from the DETO2X-AMI trial. Eur. Heart J. Acute Cardiovasc. Care 9, 984–992 (2020).

    Article  PubMed  Google Scholar 

  85. Hofmann, R. et al. Oxygen therapy in ST-elevation myocardial infarction. Eur. Heart J. 39, 2730–2739 (2018).

    Article  CAS  PubMed  Google Scholar 

  86. James, S. K. et al. Effect of oxygen therapy on cardiovascular outcomes in relation to baseline oxygen saturation. JACC Cardiovasc. Interv. 13, 502–513 (2020).

    Article  PubMed  Google Scholar 

  87. Hofmann, R. et al. Supplemental oxygen therapy does not affect the systemic inflammatory response to acute myocardial infarction. J. Intern. Med. 283, 334–345 (2018).

    Article  CAS  PubMed  Google Scholar 

  88. Stewart, R. A. H. et al. High flow oxygen and risk of mortality in patients with a suspected acute coronary syndrome: pragmatic, cluster randomised, crossover trial. Br. Med. J. 372, n355 (2021).

    Article  Google Scholar 

  89. Ibanez, B. et al. 2017 ESC guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: the task force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC). Eur. Heart J. 39, 119–177 (2018).

    Article  PubMed  Google Scholar 

  90. O’Connor, R. E. et al. Part 9: acute coronary syndromes: 2015 American Heart Association Guidelines update for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation 132, S483–S500 (2015).

    Article  PubMed  Google Scholar 

  91. Kilgannon, J. H. et al. Association between arterial hyperoxia following resuscitation from cardiac arrest and in-hospital mortality. J. Am. Med. Assoc. 303, 2165–2171 (2010).

    Article  CAS  Google Scholar 

  92. Kilgannon, J. H. et al. Relationship between supranormal oxygen tension and outcome after resuscitation from cardiac arrest. Circulation 123, 2717–2722 (2011).

    Article  CAS  PubMed  Google Scholar 

  93. Young, P. J. et al. Conservative or liberal oxygen therapy in adults after cardiac arrest: an individual-level patient data meta-analysis of randomised controlled trials. Resuscitation 157, 15–22 (2020).

    Article  PubMed  Google Scholar 

  94. Bernard, S. A. et al. Effect of lower vs higher oxygen saturation targets on survival to hospital discharge among patients resuscitated after out-of-hospital cardiac arrest: the EXACT randomized clinical trial. J. Am. Med. Assoc. 328, 1818–1826 (2022).

    Article  CAS  Google Scholar 

  95. Holmberg, M. J. et al. Oxygenation and ventilation targets after cardiac arrest: a systematic review and meta-analysis. Resuscitation 152, 107–115 (2020).

    Article  PubMed  Google Scholar 

  96. Callaway, C. W. et al. Part 8: post-cardiac arrest care: 2015 American Heart Association Guidelines update for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation 132, S465–S482 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Pittman, R. N. Oxygen transport and exchange in the microcirculation. Microcirculation 12, 59–70 (2005).

    Article  CAS  PubMed  Google Scholar 

  98. Park, J. H., Balmain, S., Berry, C., Morton, J. J. & McMurray, J. J. Potentially detrimental cardiovascular effects of oxygen in patients with chronic left ventricular systolic dysfunction. Heart 96, 533–538 (2010).

    Article  PubMed  Google Scholar 

  99. Haque, W. A. et al. Hemodynamic effects of supplemental oxygen administration in congestive heart failure. J. Am. Coll. Cardiol. 27, 353–357 (1996).

    Article  CAS  PubMed  Google Scholar 

  100. Yu, Y. et al. Is oxygen therapy beneficial for normoxemic patients with acute heart failure? A propensity score matched study. Mil. Med. Res. 8, 38 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. McDonagh, T. A. et al. 2021 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 42, 3599–3726 (2021).

    Article  CAS  PubMed  Google Scholar 

  102. Butler, J., Rocker, G. M. & Westaby, S. Inflammatory response to cardiopulmonary bypass. Ann. Thorac. Surg. 55, 552–559 (1993).

    Article  CAS  PubMed  Google Scholar 

  103. Joachimsson, P. O. et al. Adverse effects of hyperoxemia during cardiopulmonary bypass. J. Thorac. Cardiovasc. Surg. 112, 812–819 (1996).

    Article  CAS  PubMed  Google Scholar 

  104. Onur, T. et al. Intraoperative hyperoxygenation may negatively affect postoperative cognitive functions in coronary artery bypass graft operations: a randomized controlled study. J. Card. Surg. 37, 2552–2563 (2022).

    Article  PubMed  Google Scholar 

  105. Shaefi, S. et al. Intraoperative oxygen concentration and neurocognition after cardiac surgery. Anesthesiology 134, 189–201 (2021).

    Article  CAS  PubMed  Google Scholar 

  106. Lopez, M. G. et al. The risk of oxygen during cardiac surgery (ROCS) trial: study protocol for a randomized clinical trial. Trials 18, 295 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Yuan, X. et al. Targeting hypoxia signaling for perioperative organ injury. Anesth. Analg. 126, 308–321 (2017).

    Article  Google Scholar 

  108. Hölscher, M. et al. Unfavourable consequences of chronic cardiac HIF-1α stabilization. Cardiovasc. Res. 94, 77–86 (2012).

    Article  PubMed  Google Scholar 

  109. Taylor, C. T. & Colgan, S. P. Regulation of immunity and inflammation by hypoxia in immunological niches. Nat. Rev. Immunol. 17, 774–785 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Murry, C. E., Jennings, R. B. & Reimer, K. A. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 74, 1124–1136 (1986).

    Article  CAS  PubMed  Google Scholar 

  111. Eltzschig, H. K., Weissmuller, T., Mager, A. & Eckle, T. Nucleotide metabolism and cell-cell interactions. Methods Mol. Biol. 341, 73–87 (2006).

    CAS  PubMed  Google Scholar 

  112. Vogler, M. et al. Pre- and post-conditional inhibition of prolyl-4-hydroxylase domain enzymes protects the heart from an ischemic insult. Pflug. Arch. 467, 2141–2149 (2015).

    Article  CAS  Google Scholar 

  113. Engstrøm, T. et al. Effect of ischemic postconditioning during primary percutaneous coronary intervention for patients with ST-segment elevation myocardial infarction: a randomized clinical trial. JAMA Cardiol. 2, 490–497 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Madsen, J. M. et al. Comparison of effect of ischemic postconditioning on cardiovascular mortality in patients with ST-segment elevation myocardial infarction treated with primary percutaneous coronary intervention with versus without thrombectomy. Am. J. Cardiol. 166, 18–24 (2022).

    Article  PubMed  Google Scholar 

  115. Kork, F. & Eltzschig, H. K. The devil is in the detail: remote ischemic preconditioning for perioperative kidney protection. Anesthesiology 126, 763–765 (2017).

    Article  PubMed  Google Scholar 

  116. Heusch, G., Botker, H. E., Przyklenk, K., Redington, A. & Yellon, D. Remote ischemic conditioning. J. Am. Coll. Cardiol. 65, 177–195 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Billah, M. et al. Circulating mediators of remote ischemic preconditioning: search for the missing link between non-lethal ischemia and cardioprotection. Oncotarget 10, 216–244 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Cai, Z., Luo, W., Zhan, H. & Semenza, G. L. Hypoxia-inducible factor 1 is required for remote ischemic preconditioning of the heart. Proc. Natl Acad. Sci. USA 110, 17462–17467 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Liem, D. A., Verdouw, P. D., Ploeg, H., Kazim, S. & Duncker, D. J. Sites of action of adenosine in interorgan preconditioning of the heart. Am. J. Physiol. Heart Circ. Physiol. 283, H29–H37 (2002).

    Article  CAS  PubMed  Google Scholar 

  120. Lim, S. Y., Yellon, D. M. & Hausenloy, D. J. The neural and humoral pathways in remote limb ischemic preconditioning. Basic Res. Cardiol. 105, 651–655 (2010).

    Article  PubMed  Google Scholar 

  121. Donato, M. et al. Role of the parasympathetic nervous system in cardioprotection by remote hindlimb ischaemic preconditioning. Exp. Physiol. 98, 425–434 (2013).

    Article  PubMed  Google Scholar 

  122. Konstantinov, I. E. et al. The remote ischemic preconditioning stimulus modifies inflammatory gene expression in humans. Physiol. Genomics 19, 143–150 (2004).

    Article  CAS  PubMed  Google Scholar 

  123. Zarbock, A. et al. Effect of remote ischemic preconditioning on kidney injury among high-risk patients undergoing cardiac surgery: a randomized clinical trial. J. Am. Med. Assoc. 313, 2133–2141 (2015).

    Article  CAS  Google Scholar 

  124. Meybohm, P. et al. A multicenter trial of remote ischemic preconditioning for heart surgery. N. Engl. J. Med. 373, 1397–1407 (2015).

    Article  CAS  PubMed  Google Scholar 

  125. Hausenloy, D. J. et al. Remote ischemic preconditioning and outcomes of cardiac surgery. N. Engl. J. Med. 373, 1408–1417 (2015).

    Article  CAS  PubMed  Google Scholar 

  126. Hill, P. et al. Inhibition of hypoxia inducible factor hydroxylases protects against renal ischemia-reperfusion injury. J. Am. Soc. Nephrol. 19, 39–46 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Berg, N. K. et al. Hypoxia-inducible factor-dependent induction of myeloid-derived netrin-1 attenuates natural killer cell infiltration during endotoxin-induced lung injury. FASEB J. 35, e21334 (2021).

    Article  CAS  PubMed  Google Scholar 

  128. Eckle, T. et al. Identification of hypoxia-inducible factor HIF-1A as transcriptional regulator of the A2B adenosine receptor during acute lung injury. J. Immunol. 192, 1249–1256 (2014).

    Article  CAS  PubMed  Google Scholar 

  129. U.S. National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT04478071 (2023).

  130. Chertow, G. M. et al. Vadadustat in patients with anemia and non-dialysis-dependent CKD. N. Engl. J. Med. 384, 1589–1600 (2021).

    Article  CAS  PubMed  Google Scholar 

  131. Jaakkola, P. et al. Targeting of HIF-α to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292, 468–472 (2001).

    Article  CAS  PubMed  Google Scholar 

  132. Lee, T. J. et al. Strategies to modulate microRNA functions for the treatment of cancer or organ injury. Pharmacol. Rev. 72, 639–667 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Neudecker, V., Yuan, X., Bowser, J. L. & Eltzschig, H. K. MicroRNAs in mucosal inflammation. J. Mol. Med. 95, 935–949 (2017).

    Article  CAS  PubMed  Google Scholar 

  134. Neudecker, V., Brodsky, K. S., Kreth, S., Ginde, A. A. & Eltzschig, H. K. Emerging roles for microRNAs in perioperative medicine. Anesthesiology 124, 489–506 (2016).

    Article  CAS  PubMed  Google Scholar 

  135. Ju, C. et al. Hypoxia-inducible factor-1α-dependent induction of miR122 enhances hepatic ischemia tolerance. J. Clin. Invest. 131, e140300 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Romashko, J. III et al. MAPK pathways mediate hyperoxia-induced oncotic cell death in lung epithelial cells. Free Radic. Biol. Med. 35, 978–993 (2003).

    Article  CAS  PubMed  Google Scholar 

  137. No authors listed. Correction to: 2018 Guidelines for the early management of patients with acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 49, e138 (2018).

    Google Scholar 

  138. Papazian, L. et al. Formal guidelines: management of acute respiratory distress syndrome. Ann. Intensive Care 9, 69 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Dellinger, R. P. et al. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock, 2012. Intensive Care Med. 39, 165–228 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Srinivasan, S. & Panigrahy, A. K. COVID-19 ARDS: can systemic oxygenation utilization guide oxygen therapy? Indian J. Crit. Care Med. 25, 115–116 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Singh, D. et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive lung disease: the GOLD science committee report 2019. Eur. Respir. J. 53, 1900164 (2019).

    Article  CAS  PubMed  Google Scholar 

  142. Qaseem, A. et al. Diagnosis and management of stable chronic obstructive pulmonary disease: a clinical practice guideline update from the American College of Physicians, American College of Chest Physicians, American Thoracic Society, and European Respiratory Society. Ann. Intern. Med. 155, 179–191 (2011).

    Article  PubMed  Google Scholar 

  143. Cai, Z. et al. Complete loss of ischaemic preconditioning-induced cardioprotection in mice with partialdeficiency of HIF-1α. Cardiovasc. Res. 77, 463–470 (2007).

    Article  PubMed  Google Scholar 

  144. Lee, J. W. et al. Transcription-independent induction of ERBB1 through hypoxia-inducible factor 2A provides cardioprotection during ischemia and reperfusion. Anesthesiology 132, 763–780 (2020).

    Article  CAS  PubMed  Google Scholar 

  145. Schrader, J. Ectonucleotidases as bridge between the ATP and adenosine world: reflections on Geoffrey Burnstock. Purinergic Signal. 18, 193–198 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Eltzschig, H. K., Sitkovsky, M. V. & Robson, S. C. Purinergic signaling during inflammation. N. Engl. J. Med. 367, 2322–2333 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Koeppen, M., Eckle, T. & Eltzschig, H. K. Selective deletion of the A1 adenosine receptor abolishes heart-rate slowing effects of intravascular adenosine in vivo. PLoS ONE 4, e6784 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Yang, Z. et al. Myocardial infarct-sparing effect of adenosine A2A receptor activation is due to its action on CD4+ T lymphocytes. Circulation 114, 2056–2064 (2006).

    Article  CAS  PubMed  Google Scholar 

  149. Li, J. et al. PMN-derived netrin-1 attenuates cardiac ischemia-reperfusion injury via myeloid ADORA2B signaling. J. Exp. Med. 218, e20210008 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors were awarded the following grants: the Natural Science Foundation of Hunan Province Grant (2018JJ3736), Hunan Youth Talents Program (2021RC3034) and the 2022 International Anaesthesia Research Society Mentored Research Award to W.R.; the American Thoracic Society Unrestricted Grant, American Heart Association Career Development Award (19CDA34660279), American Lung Association Catalyst Award (CA-622265), the Center for Clinical and Translational Sciences McGovern Medical School Pilot Award (1UL1TR003167–01) and the Parker B. Francis Fellowship to X.Y.; National Institute of Health grants (R01HL154720, R01DK122796, R01DK109574, R01HL133900) and the Department of Defense Grant (W81XWH2110032) to H.K.E.

Author information

Authors and Affiliations

Authors

Contributions

Y.L. and H.K.E. researched data for the article. Y.L., Y.J., X.Y. and H.K.E. contributed to the discussion of its content. Y.L., W.R., Y.J., X.Y. and H.K.E. wrote the manuscript, and all the authors contributed to reviewing and editing the manuscript before submission.

Corresponding author

Correspondence to Yafen Liang.

Ethics declarations

Competing interests

X.Y. and H.K.E. have received a sponsored research contract from Akebia Therapeutics. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Cardiology thanks Robin Hofmann, Cormac Taylor and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, Y., Ruan, W., Jiang, Y. et al. Interplay of hypoxia-inducible factors and oxygen therapy in cardiovascular medicine. Nat Rev Cardiol 20, 723–737 (2023). https://doi.org/10.1038/s41569-023-00886-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41569-023-00886-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing